1
|
Jiang W, Sun BX, Fan TG, Zhang C, Zhou XS, Shen Y, Li YM. Copper-Catalyzed Cycloaddition/Coupling Cascades of Azomethine Imines with Alkynes for Divergent Synthesis of ( Z)-Alkenyl and Alkynyl N, N'-Bicyclic Pyrazolidinones. Org Lett 2024; 26:11090-11095. [PMID: 39665784 DOI: 10.1021/acs.orglett.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Copper-catalyzed cycloaddition/coupling cascades utilizing azomethine imines and alkynes have been developed for the divergent synthesis of (Z)-alkenyl and alkynyl N,N'-bicyclic pyrazolidinones by varying the reaction conditions. The choice of inert or oxidative atmosphere plays a crucial role in determining the transformation pathways. These reactions have broad substrate scopes and mild conditions, making them potentially useful.
Collapse
Affiliation(s)
- Wei Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo-Xun Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Cui Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Xin-Song Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yuehai Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
2
|
Martina K, Tagliapietra S, Calsolaro F, Paraschiv A, Sacco M, Picollo F, Sturari S, Arpà P, Mino L, Barge A, Cravotto G. Covalent Functionalisation of rGO and Nanodiamonds: Complementary Versatility and Applicability of Azomethine Ylide, Nitrile Oxide and Nitrone. Chempluschem 2024:e202400510. [PMID: 39668110 DOI: 10.1002/cplu.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
The existing synthetic protocols for the direct functionalization of carbon-based nanomaterials often entail limitations due to their harsh reaction conditions, which require the use of high temperatures for extended periods. This study aims to overcome these limitations by developing mild and efficient synthetic protocols around 1,3-dipolar cycloaddition. Beginning with the well-established azomethine ylide derivatization, we progress to the utilization of nitrile oxide, and of nitrone derivatives for the functionalization of reduced graphene oxide (rGO) as well as of nanodiamonds (NDs). This comparative work employs both classical heating and microwave activation with the aim of reducing reaction times and enhancing efficacy. Results demonstrate that nitrone can react at 60 °C and that the reaction temperature may be decreased to 30 °C with nitrile oxide. Excellent progress was made in reducing the large excess of dipoles typically required for derivatization. Nitrile oxide was proved to be the most efficient in terms of derivatization degree, while nitrone was the most versatile reagent, facilitating the decoration of the carbon nanolayer with disubstituted dihydroisoxazole. To accurately assess the degree of functionalization, the reaction products underwent characterization using various spectroscopic and analytical techniques. Additionally, an indirect evaluation of the reaction outcome was conducted through Fmoc deprotection and quantification.
Collapse
Affiliation(s)
- Katia Martina
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Silvia Tagliapietra
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federica Calsolaro
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Andrei Paraschiv
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirko Sacco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federico Picollo
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Sofia Sturari
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Pietro Arpà
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|
3
|
Torres-Oya S, Zurro M. Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines. Beilstein J Org Chem 2024; 20:3221-3255. [PMID: 39691215 PMCID: PMC11650568 DOI: 10.3762/bjoc.20.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of N-heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.
Collapse
Affiliation(s)
- Sergio Torres-Oya
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain
| | - Mercedes Zurro
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain
| |
Collapse
|
4
|
Ghosh P, Saikia AK. BF 3·OEt 2-catalyzed/mediated alkyne cyclization: a comprehensive review of heterocycle synthesis with mechanistic insights. Org Biomol Chem 2024; 22:8991-9020. [PMID: 39431437 DOI: 10.1039/d4ob01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The quest for efficient and versatile methods for heterocycle synthesis continues to drive innovation in organic chemistry. In this context, the cyclization of alkynes catalyzed or mediated by boron trifluoride diethyl etherate (BF3·OEt2) has emerged as a powerful and widely applicable strategy. This review provides a comprehensive and authoritative overview of BF3·OEt2-catalyzed/mediated alkyne cyclization reactions, covering the scope, mechanisms, and applications of these processes. We discuss the synthesis of a diverse range of heterocyclic compounds, including dihydropyrans, quinolines, dehydropiperidines, oxindoles and others, and highlight the unique advantages of BF3·OEt2 as a catalyst/mediator. Recent advances, challenges, and future directions in this rapidly evolving field are also addressed. This review aims to serve as a valuable resource for synthetic chemists, inspiring further research and applications in this exciting area.
Collapse
Affiliation(s)
- Priya Ghosh
- Department of Chemistry, Ganesh Lal Choudhury College, Borpeta-781315, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
5
|
Ho KT, Pierce JG. Synthesis of Spiropyrrolines via One-Pot Tf 2O-Mediated Amide Activation/Formal [3 + 2]-Cycloaddition of α-Formylamino Ketones. J Org Chem 2024; 89:13031-13037. [PMID: 39230008 DOI: 10.1021/acs.joc.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
An efficient method for the synthesis of spiropyrrolines from readily accessible α-formylamino ketones is reported. The method involves amide activation using Tf2O, followed by a formal [3 + 2]-cycloaddition of the resulting enolic nitrilium intermediate with Michael acceptors, ultimately affording spiropyrrolines. Mechanistic insights were gained through NMR studies, elucidating the precise role of the base additive and suggesting the formation of an enolic nitrilium intermediate.
Collapse
Affiliation(s)
- Khanh-Toan Ho
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Yuan X, Guo H, Wu Y, Liu Q, Huang S, Li X. Catalyst-Controlled [3 + 2] Annulation of Allenes with N-Monosubstituted Hydroxylamines for Regioselective Synthesis of Two Types of Isomeric Isoxazolidines. Org Lett 2024; 26:7249-7254. [PMID: 39163647 DOI: 10.1021/acs.orglett.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Catalyst-controlled regioselective [3 + 2] cascade annulation of allenes with N-monosubstituted hydroxylamines for precise construction of two types of isoxazolidine regiomers has been developed. The Ce(OTf)3 and MgCl2 can guide the nitrogen and oxygen atoms of N-hydroxyarylamides to both ends of the consecutive double bond of allenes, respectively, to afford two kinds of isomeric products. Notably and remarkably, the consecutive double bond of allenes served as a C3 synthon.
Collapse
Affiliation(s)
- Xinyufei Yuan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Honghong Guo
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Yuting Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Shuangping Huang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Xing Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| |
Collapse
|
7
|
Mandal PK, Patel S, Katukojvala S. Enal-azomethine ylides: application in the synthesis of functionalized pyrroles. Org Biomol Chem 2024; 22:5734-5738. [PMID: 38953694 DOI: 10.1039/d4ob00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Rhodium-catalyzed [3 + 2] annulation of diazoenals and N-alkyl imines resulted in N-alkyl-pyrrole-3-carbaldehyde derivatives. The reaction involves thermal 6π-electrocyclization and aromatization of a new class of enal-azomethine ylides (EAYs). The EAYs derived from dihydroisoquinoline and 2H-azirine gave fused-pyrrole and pyridine derivatives, respectively. The synthetic importance of pyrrole products has been demonstrated by one-step synthesis of the biologically relevant pyrrolo[3,2-c]quinoline scaffold as well as pyrrolo[2,1-a]isoquinoline which is a core structure of lamellarin alkaloids.
Collapse
Affiliation(s)
- Pratap Kumar Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| | - Sandeep Patel
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| | - Sreenivas Katukojvala
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066 India.
| |
Collapse
|
8
|
Ao Y, Ma H, Gan B, Wang W, Zhang J, Zhou W, Zhang X, Cai Q. Copper-Catalyzed Asymmetric Kinugasa/Michael Addition Cascade Reactions for the Synthesis of Chiral Spiro β-Lactams. Org Lett 2024. [PMID: 38809099 DOI: 10.1021/acs.orglett.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A mild copper-catalyzed asymmetric Kinugasa/Michael addition cascade process is developed. The reaction of α, β-unsaturated ester-tethered propiolamides with nitrones provides an efficient protocol for the construction of functionalized chiral 2,6-diazaspiro[3.4]octane-1,5-dione products in satisfactory yields and with high enantio- and diastereoselectivities.
Collapse
Affiliation(s)
- Yunlin Ao
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Haowen Ma
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Binghan Gan
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Wenjing Wang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Jiehao Zhang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Wei Zhou
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Xiaoqi Zhang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Qian Cai
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, P. R. China
| |
Collapse
|
9
|
Marco-Contelles J. α-Phenyl- N-tert-Butylnitrone and Analogous α-Aryl- N-alkylnitrones as Neuroprotective Antioxidant Agents for Stroke. Antioxidants (Basel) 2024; 13:440. [PMID: 38671888 PMCID: PMC11047398 DOI: 10.3390/antiox13040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The recent advances in research on the use of the antioxidant and neuroprotective agent α-phenyl-N-tert-butylnitrone (PBN) for the therapy of stroke have been reviewed. The protective effect of PBN in the transient occlusion of the middle cerebral artery (MCAO) has been demonstrated, although there have been significant differences in the neuronal salvaging effect between PBN-treated and untreated animals, each set of data having quite large inter-experimental variation. In the transient forebrain ischemia model of gerbil, PBN reduces the mortality after ischemia and the neuronal damage in the hippocampal cornu ammonis 1 (CA1) area of the hippocumpus caused by ischemia. However, PBN fails to prevent postischemic CA1 damage in the rat. As for focal cerebral ischemia, PBN significantly reduces cerebral infarction and decreases neurological deficit after ischemia using a rat model of persistent MCAO in rats. Similarly, the antioxidant and neuroprotective capacity of a number of PBN-derived nitrones prepared in the author's laboratory have also been summarized here, showing their high potential therapeutic power to treat stroke.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/ Juan de la Cierva, 3, 28006 Madrid, Spain;
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Center for Biomedical Network Research (CIBER), Carlos III Health Institute (ISCIII), 46010 Madrid, Spain
| |
Collapse
|
10
|
Samantaray S, Maharana PK, Kar S, Saha S, Punniyamurthy T. Redox-neutral zinc-catalyzed cascade [1,4]-H shift/annulation of diaziridines with donor-acceptor aziridines. Chem Commun (Camb) 2024; 60:3441-3444. [PMID: 38445334 DOI: 10.1039/d4cc00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The coupling of diaziridines with donor-acceptor aziridines (DAAs) has been achieved using Zn-catalysis to furnish imidazopyrazole-4,4-dicarboxylates via [1,4]-hydride shift. The use of Zn-catalysis, [1,4]-hydride shift, natural product modification and a late-stage molecular docking study are important practical features.
Collapse
Affiliation(s)
- Swati Samantaray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
11
|
Li Y, Li S, Yin X, Liu S. Design, synthesis and insecticidal activity of novel Isoxazoline Acylhydrazone compounds. PEST MANAGEMENT SCIENCE 2024; 80:1654-1662. [PMID: 37985394 DOI: 10.1002/ps.7897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Nowadays, the diamondback moth has ascended to become one of the most formidable pests plaguing cruciferous vegetables. Consequently, the exigency for the development of efficacious pesticide candidates for crop protection has never been more paramount. In response to this pressing need, this study presents a compendium of novel isoxazoline derivatives, incorporating acylhydrazone moieties, synthesized with the express purpose of serving as potential insecticides. RESULTS The structures of these derivatives were confirmed using Proton nuclear magnetic resonance (1 H NMR), Carbon-13 nuclear magnetic resonance (13 C NMR), and high-resolution mass spectrometry (HR-MS). Most of these derivatives demonstrated effective insecticidal activities against Plutella xylostella. Notably, compound E3 exhibited exceptional insecticidal activity against Plutella xylostella (LC50 = 0.19 mg L-1 ), surpassing the effectiveness of ethiprole (LC50 = 3.28 mg L-1 ), and comparable to that of fluxametamide (LC50 = 0.22 mg L-1 ). Interestingly, compound E3 also displayed potent insecticidal activity against Pyrausta nubilalis (LC50 = 0.182 mg L-1 ) and Chilo suppressalis (LC50 = 0.64 mg L-1 ), and the LC50 values of fluxametamide were 0.23 mg L-1 (P. nubilalis) and 2.26 mg L-1 (C. suppressalis), respectively. The molecular docking results revealed that the compound E3 can form a hydrogen bond and two Pi-Pi bonds with the active sites of GABA receptors. In addition, the DFT calculations were also performed to study the relationship between insecticidal activities. The structure-activity relationships suggested that the identity of the R substituent was crucial for their pesticidal activities. CONCLUSION The results of the present study suggest that isoxazoline acylhydrazone derivatives could be promising candidates against P. xylostella and other Lepidopteran pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yahui Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Shaochen Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xue Yin
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Shaoli Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| |
Collapse
|
12
|
González-Pinardo D, Goicoechea JM, Fernández I. Metal Influence on Cyaphide-Azide 1,3-Dipolar Cycloaddition Reactions: Aromaticity and Activation Strain. Chemistry 2024:e202303977. [PMID: 38224196 DOI: 10.1002/chem.202303977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
The factors governing 1,3-dipolar cycloaddition reactions involving C≡P-containing compounds are computationally explored in detail using quantum chemical tools. To this end, the parent process involving tBuN3 and tBuCP is analyzed and compared to the analogous reaction involving organometallic cyaphide complexes (metal=Au, Pt, Ge, Mg), in order to understand the role of the metal fragment in such transformations. It is found that while the metal fragment does not significantly influence the aromaticity of the corresponding concerted transition states or the regioselectivity of the transformation, it may modify the reactivity of the cyaphide complexes (i. e. Ge and Mg cyaphide complexes are comparatively more reactive). The computed reactivity trends and the factors behind the regioselectivity of the cycloaddition reaction are quantitatively analyzed with the help of the activation strain model in combination with the energy decomposition analysis method.
Collapse
Affiliation(s)
- Daniel González-Pinardo
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universidad, Campus Universitario, 28040-, Madrid, Spain
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, 800 E. Kirwood Ave., Bloomington, IN-47405
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universidad, Campus Universitario, 28040-, Madrid, Spain
| |
Collapse
|
13
|
Yao WZ, Cai BG, Xuan J. Rhodium-Catalyzed [3+2]-Cycloaddition of in-situ Generated Nitrile Ylides with Nitrosoarenes. Chem Asian J 2023:e202301053. [PMID: 38108615 DOI: 10.1002/asia.202301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Herein we report the rhodium-catalyzed one-pot three-component reaction of diazo compounds, nitriles, and nitrosoarenes to construct 2,5-dihydro-1,2,4-oxadiazole derivatives. Mechanistic studies indicate that the transformation may proceed through the formation of nitrile ylides intermediates, which then undergo [3+2]-cycloaddition with nitrosoarenes. The strategy exhibits several synthetic advantages, including operational simplicity, good functional group tolerance, and scalability.
Collapse
Affiliation(s)
- Wei-Zhong Yao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University), Ministry of Education, Hefei, Anhui, 230601, People's Republic of China
| |
Collapse
|
14
|
Liu RH, Chai GL, Wang X, Deng HY, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of β-Trifluoromethyl α,β-Unsaturated Ketones with N,N'-Cyclic Azomethine Imines. J Org Chem 2023; 88:16566-16580. [PMID: 37967281 DOI: 10.1021/acs.joc.3c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of β-trifluoromethyl α,β-unsaturated ketone with N,N'-cyclic azomethine imines was developed to afford N,N'-bicyclic pyrazolidine derivatives bearing a stereogenic carbon center containing CF3 motifs in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr, and >99% ee). This catalytic system features mild reaction conditions, high efficiency, and a broad substrate scope.
Collapse
Affiliation(s)
- Rui-Hao Liu
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Yu Deng
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Kowalska E, Dyguda M, Artelska A, Albrecht A. Visible Light Promoted [3+2]-Cycloaddition for the Synthesis of Cyclopenta[ b]chromenocarbonitrile Derivatives. J Org Chem 2023; 88:16589-16597. [PMID: 38037694 PMCID: PMC10696553 DOI: 10.1021/acs.joc.3c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
In the manuscript, a novel method for the preparation of cyclopenta[b]chromenocarbonitrile derivatives via [3+2] cycloaddition reaction of substituted 3-cyanochromones and N-cyclopropyloamines initiated by visible light catalysis has been described. The reaction was performed in the presence of Eosin Y as a photocatalyst. The key parameters responsible for the success of the described strategy are visible light, a small amount of photoredox catalyst, an anhydrous solvent, and an inert atmosphere.
Collapse
Affiliation(s)
- Ewelina Kowalska
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Mateusz Dyguda
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Angelika Artelska
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Anna Albrecht
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| |
Collapse
|
16
|
Lu JB, Xu XQ, Ruan ZS, Liu K, Liang RX, Jia YX. Pd-Catalyzed Intramolecular Dearomative [4 + 2] Cycloaddition of Naphthalenes with Arylalkynes. Org Lett 2023; 25:8139-8144. [PMID: 37934112 DOI: 10.1021/acs.orglett.3c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A Pd-catalyzed intramolecular dearomative [4 + 2] cycloaddition reaction of naphthalenes with arylalkynes is developed. The protocol provides a straightforward method to access a range of polycyclic dihydronaphthalenes containing two vicinal all-carbon stereocenters in moderate yields under mild conditions in an air atmosphere. The deuterium labeling experiment suggests a pathway involving electrophilic dearomatization followed by Friedel-Crafts cyclization. Several synthetic transformations of the product were conducted to demonstrate the utility of this reaction.
Collapse
Affiliation(s)
- Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Zi-Sheng Ruan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Kai Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
17
|
Blanco-López E, Foubelo F, Retamosa MDG, Sansano JM. Stereoselective Synthesis of Densely Substituted Pyrrolidines via a [3 + 2] Cycloaddition Reaction between Chiral N- tert-Butanesulfinylazadienes and Azomethine Ylides. Org Lett 2023; 25:8051-8056. [PMID: 37791663 PMCID: PMC10661044 DOI: 10.1021/acs.orglett.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 10/05/2023]
Abstract
The N-tert-butanesulfinylimine group behaves as a suitable electron-withdrawing group in 1-azadienes, allowing the diastereoselective synthesis of densely substituted pyrrolidines by 1,3-dipolar cycloadditions (1,3-DCs) with azomethylene ylides. The use of Ag2CO3 as catalyst has allowed one to obtain a wide variety of proline derivatives with high regio- and diastereoselectivities. Subsequent efficient transformations provide valuable proline derivatives, some of which can be used as organocatalysts. The influence of the N-tert-butanesulfinyl group on the diastereoselectivity was studied by computational methods.
Collapse
|
18
|
Zhang X, Ma X, Zhang W. Decarboxylative 1,3-dipolar cycloaddition of amino acids for the synthesis of heterocyclic compounds. Beilstein J Org Chem 2023; 19:1677-1693. [PMID: 38025085 PMCID: PMC10644012 DOI: 10.3762/bjoc.19.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
The [3 + 2] cycloadditions of stabilized azomethine ylides (AMYs) derived from amino esters are well-established. However, the reactions of semi-stabilized AMYs generated from decarboxylative condensation of α-amino acids with arylaldehydes are much less explored. The [3 + 2] adducts of α-amino acids could be used for a second [3 + 2] cycloaddition as well as for other post-condensation modifications. This article highlights our recent work on the development of α-amino acid-based [3 + 2] cycloaddition reactions of N-H-type AMYs in multicomponent, one-pot, and stepwise reactions for the synthesis of diverse heterocycles related to some bioactive compounds and natural products.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
- Department of Medicinal Chemistry, Cerevel Therapeutics, 222 Jacobs St Suite 200, Cambridge, MA 02141, USA
| | - Xiaoming Ma
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Wei Zhang
- Center for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
19
|
Mondal SL, Bhajammanavar V, Ramakrishna I, Baidya M. Brønsted acid-catalyzed annulation reaction of hydroxamic acids: synthesis of cyclopentane-fused isoxazolidines and their benzilic amide rearrangement. Chem Commun (Camb) 2023; 59:13211-13214. [PMID: 37853763 DOI: 10.1039/d3cc03810f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Readily available hydroxamic acids were leveraged to access challenging nitrones in the presence of H3PO4 as a Brønsted acid catalyst and engaged in an intramolecular (3+2) annulation reaction to make valuable cyclopentane-fused isoxazolidines with high yields and excellent diastereoselectivity. The products were further utilized in a unique base-promoted benzilic amide rearrangement to provide cyclopentane-fused γ-lactams bearing three contiguous stereocenters as a single diastereomer.
Collapse
Affiliation(s)
- Swati Lekha Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
20
|
Suresh Babu AR, Sharma A, Athira MP, Alajangi HK, Naresh Raj AR, Gartia J, Singh G, Barnwal RP. Evaluation of antibiofilm properties of dehydroacetic acid (DHA) grafted spiro-oxindolopyrrolidines synthesized via multicomponent 1,3-dipolar cycloaddition reaction. Sci Rep 2023; 13:15289. [PMID: 37714933 PMCID: PMC10504327 DOI: 10.1038/s41598-023-42528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
The current work involves the use of dehydroacetic acid based chalcone derivatives for the synthesis of spirooxindole grafted pyrrolidine moieties. All the synthesized compounds have been characterized using spectroscopic techniques such as NMR (1H-NMR and 13C-NMR), IR, mass and elemental analysis. Molecular mechanics studies were performed to comprehend the regioselectivity in the product formation. Molecular docking of the synthesized compounds was performed with few bacterial proteins of Bacillus subtilis and Pseudomonas aeruginosa responsible for biofilm formation followed by molecular dynamics simulations with the potential lead compound. Further, to corroborate the results obtained via in silico study, anti-biofilm activity etc. of the synthesized compounds (4a-e) was checked for effectiveness against biofilm formation. Taken together, this study opens up to explore these compounds' multiple roles in diverse fields in the arena of medical sciences.
Collapse
Affiliation(s)
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - M P Athira
- Department of Chemistry, IISER, Mohali, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Hema K Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - A R Naresh Raj
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, 600106, India
| | - Janeka Gartia
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
21
|
Xu XC, Gong Y, Wang J, Yuan YR, Zhao YL. DBU-Promoted Tandem Cyclization of Ynones and Diazo Compounds: Direct Synthesis of Eight-Membered Cyclic Ethers. Org Lett 2023; 25:5750-5755. [PMID: 37498163 DOI: 10.1021/acs.orglett.3c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A novel DBU-promoted tandem cyclization reaction of ynones with diazo compounds as the N-terminal electrophiles has been developed. The reaction provides a simple and efficient method for the synthesis of fused eight-membered oxocino[2,3-c] pyrazoles from readily available acyclic starting materials in a single step. This reaction allows the formation of four new bonds and two rings in a highly regio- and diastereoselective manner, where two adjacent stereocenters are created simultaneously in an atom-economic manner.
Collapse
Affiliation(s)
- Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jie Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yi-Rong Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
22
|
Sahu NK, Sharma R, Suhas KP, Joshi J, Prakash K, Sharma R, Pratap R, Hu X, Kaur S, Jain M, Coluccini C, Coghi P, Chaudhary S. Natural-Product-Inspired Microwave-Assisted Synthesis of Novel Spirooxindoles as Antileishmanial Agents: Synthesis, Stereochemical Assignment, Bioevaluation, SAR, and Molecular Docking Studies. Molecules 2023; 28:4817. [PMID: 37375374 DOI: 10.3390/molecules28124817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease, and there is an emerging need for the development of effective drugs to treat it. To identify novel compounds with antileishmanial properties, a novel series of functionalized spiro[indoline-3,2'-pyrrolidin]-2-one/spiro[indoline-3,3'-pyrrolizin]-2-one 23a-f, 24a-f, and 25a-g were prepared from natural-product-inspired pharmaceutically privileged bioactive sub-structures, i.e., isatins 20a-h, various substituted chalcones 21a-f, and 22a-c amino acids, via 1,3-dipolar cycloaddition reactions in MeOH at 80 °C using a microwave-assisted approach. Compared to traditional methods, microwave-assisted synthesis produces higher yields and better quality, and it takes less time. We report here the in vitro antileishmanial activity against Leishmania donovani and SAR studies. The analogues 24a, 24e, 24f, and 25d were found to be the most active compounds of the series and showed IC50 values of 2.43 µM, 0.96 µM, 1.62 µM, and 3.55 µM, respectively, compared to the standard reference drug Amphotericin B (IC50 = 0.060 µM). All compounds were assessed for Leishmania DNA topoisomerase type IB inhibition activity using the standard drug Camptothecin, and 24a, 24e, 24f, and 25d showed potential results. In order to further validate the experimental results and gain a deeper understanding of the binding manner of such compounds, molecular docking studies were also performed. The stereochemistry of the novel functionalized spirooxindole derivatives was confirmed by single-crystal X-ray crystallography studies.
Collapse
Affiliation(s)
- Nawal Kishore Sahu
- Laboratory of Organic and Medicinal Chemistry (OMC Lab), Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
- Department of Chemistry, Government Engineering College, Bharatpur 321303, India
| | - Ritu Sharma
- Laboratory of Organic and Medicinal Chemistry (OMC Lab), Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Kshirsagar Prasad Suhas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow 226002, India
| | - Jyoti Joshi
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Kunal Prakash
- Department of Chemistry, University of Delhi, North Campus, Delhi 110007, India
| | - Richa Sharma
- Laboratory of Organic and Medicinal Chemistry (OMC Lab), Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi, North Campus, Delhi 110007, India
| | - Xiwen Hu
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Mukesh Jain
- Laboratory of Organic and Medicinal Chemistry (OMC Lab), Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry (OMC Lab), Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow 226002, India
| |
Collapse
|
23
|
Karjee P, Mandal S, Debnath B, Namdev N, Punniyamurthy T. Expedient (3+3)-annulation of in situ generated azaoxyallyl cations with diaziridines. Chem Commun (Camb) 2023. [PMID: 37317582 DOI: 10.1039/d3cc02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient annulation of in situ formed azaoxyallyl cations using a base has been accomplished with diaziridines to provide 1,2,4-triazines at room temperature. The substrate scope, scale up, functional group tolerance and transition-metal free reaction conditions are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Nirali Namdev
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
24
|
Molteni G, Ponti A. Is DFT Accurate Enough to Calculate Regioselectivity? The Case of 1,3-Dipolar Cycloaddition of Azide to Alkynes and Alkenes. Chemphyschem 2023; 24:e202300114. [PMID: 36896728 DOI: 10.1002/cphc.202300114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/11/2023]
Abstract
The importance of regioselectivity in 1,3-dipolar cycloadditions (DCs) makes it surprising that no benchmarking study on this problem has appeared. We investigated whether DFT calculations are an accurate tool to predict the regioselectivity of uncatalyzed thermal azide 1,3-DCs. We considered the reaction between HN3 and 12 dipolarophiles, comprising ethynes HC≡C-R and ethenes H2 C=CH-R (R=F, OH, NH2 , Me, CN, CHO), which cover a broad range of electron demand and conjugation ability. We established benchmark data by the W3X protocol [complete-basis-set-extrapolated CCSD(T)-F12 energy with T-(T) and (Q) corrections and MP2-calculated core/valence and relativistic effects] and showed that core/valence effects and high-order excitations are important for accurate regioselectivity. Regioselectivities calculated using an extensive set of density functional approximations (DFAs) were compared with benchmark data. Range-separated and meta-GGA hybrids gave the best results. Good treatment of self-interaction and electron exchange are the key features for accurate regioselectivity. Dispersion correction slightly improves agreement with W3X results. The best DFAs provide the isomeric TS energy difference with an expected error ≈0.7 mh and errors ≈2 mh can occur. The isomer yield provided by the best DFA has an expected error of ±5 %, though errors up to 20 % are not rare. At present, an accuracy of 1-2 % is unfeasible but it seems that we are not far from achieving this goal.
Collapse
Affiliation(s)
- Giorgio Molteni
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Via C. Golgi 19, 20133, Milano, Italy
| |
Collapse
|
25
|
Wang D, Liu X, Ajitha MJ, Liu Z, Hu Y, Huang KW. Stereospecific [3+2] Cycloaddition of Chiral Arylallenes with C,N-Cyclic Azomethine Imines. Org Lett 2023; 25:3249-3253. [PMID: 37114764 DOI: 10.1021/acs.orglett.3c00984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A novel α,β-regioselective [3+2] cycloaddition reaction of arylallene with C,N-cyclic azomethine imine is reported. The axial-to-central chirality transfer phenomenon has been disclosed with chiral allenes in the reaction. The wide substrate scope, including different functional groups and natural products, reveals the generality of the methodology. Both experiments and density functional theory calculations have been used to elucidate a plausible mechanism.
Collapse
Affiliation(s)
- De Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Xinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Manjaly J Ajitha
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhixin Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Yongyi Hu
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment, Singapore 138634
| |
Collapse
|
26
|
Zheng Y, Wang Z, Chen P, Zhang W, Gao Q. Roughness-Dependent Electro-Reductive Coupling of Nitrobenzenes and Aldehydes on Copper Electrodes. CHEMSUSCHEM 2023:e202300180. [PMID: 36988187 DOI: 10.1002/cssc.202300180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
The electro-reductive coupling of nitro and carbonyl compounds enables a facile, environmentally friendly and energy benign transformation toward value-added nitrones or imines, but the selectivity is still challenging. Here, the surface roughness of Cu electrodes is introduced for the first time as the determinant to switch products from nitrones to imines owing to the controllable reduction of nitroarenes to hydroxylamines or amines on tailored CuI /Cu0 interfaces. The roughness-dependent selectivity, that is the decrease of nitrones and the increase of imines with enhanced roughness, is visible in the electro-reductive coupling of nitrobenzene and furfural. Thus, the high selectivity of nitrone (98 %) and imine (80 %) can be achieved on a surface smooth Cu foil and the one electrochemically roughened in the presence of I- , respectively. Such roughness-dependence of nitrone/imine selectivity on Cu electrodes is further verified in a wide substrate scope, highlighting the promise of surface/interfacial engineering for electrochemical synthesis.
Collapse
Affiliation(s)
- Yinjian Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Zhiyuan Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Peng Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| |
Collapse
|
27
|
Asmari Bardazard K, Shahrestani N, Zamani A, Eskandari M, Jadidi K, Hamzehloueian M, Notash B. Regioselective synthesis of enantiopure 1,2- and 1,3-dispirooxindoles along with a DFT study. Org Biomol Chem 2023; 21:2143-2161. [PMID: 36799076 DOI: 10.1039/d2ob02311c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In the present study, a library of important enantiopure dispirooxindole [indolizidine, pyrrolizidine, and pyrrolidine] derivatives with three or four contiguous and two quaternary stereogenic centers using different amino acids (pipecolic acid, sarcosine, proline and hydroxyproline) were synthesized in high yields (up to 96%) through a regio- and diastereoselective (up to 99 : 1) multicomponent 1,3-dipolar cycloaddition strategy. Based on the results, the alteration of amino acids led to a change in the regioselectivity and unusual regioisomers (pyrrolizidine versus indolizidine/pyrrolidine) were obtained to construct a novel enantiopure 1,3-dispirooxindole skeleton. The stereochemical outcome of the cycloaddition was determined by single crystal X-ray diffraction analysis and the self-disproportionation of enantiomers (SDE) test confirmed the enantiomeric purity of the desired products. The mechanism and differences in the regioselectivity of the 1,3-dipolar cycloaddition reactions between the stable azomethane ylides obtained from ninhydrin, pipecolinic acid, and proline with (E)-2-oxoindolin-3-ylideneacetyl sultam were theoretically studied through DFT calculations at the M06-2X/6-31G(d,p) level in methanol.
Collapse
Affiliation(s)
- Kamal Asmari Bardazard
- Department of Organic Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Naeimeh Shahrestani
- Department of Organic Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Amirhosein Zamani
- Department of Organic Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Mehdi Eskandari
- Department of Organic Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Khosrow Jadidi
- Department of Organic Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | | | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, G.C., Tehran 19839 69411, Iran
| |
Collapse
|
28
|
Nong CM, Lv SN, Shi WM, Liang C, Su GF, Mo DL. Synthesis of 1,2,4-Oxadiazolines through Deoxygenative Cyclization of N-Vinyl-α,β-Unsaturated Nitrones with in Situ Generated Nitrile Oxides from Hydroxamoyl Chlorides. Org Lett 2023; 25:267-271. [PMID: 36583596 DOI: 10.1021/acs.orglett.2c04121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A variety of 1,2,4-oxadiazoline derivatives were synthesized in moderate to good yields through a deoxygenative cyclization cascade reaction of N-vinyl-α,β-unsaturated nitrones and hydroxamoyl chlorides. Mechanistic studies revealed that the reaction underwent double additions of nitrile oxides to N-vinyl-α,β-unsaturated nitrones, sequential elimination, and intramolecular cyclization to afford 1,2,4-oxadiazolines. Alternatively, 1,2,5-oxadiazolines were also obtained as major products in i-PrOH solvent through [3 + 3] cycloaddition and selective [3,3]-rearrangement. Moreover, the prepared 1,2,4-oxadiazolines were easily converted to polysubstituted pyrroles under thermal conditions.
Collapse
Affiliation(s)
- Cai-Mei Nong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Si-Ning Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Wei-Min Shi
- School of Medicine, Guangxi University of Science and Technology, 257 Liu Shi Road, Liuzhou, 545006, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| |
Collapse
|
29
|
Investigating the regio-, stereo-, and enantio-selectivities of the [3 + 2] cycloaddition reaction of C, N-diarylnitrone derivatives with N-propadienylindole derivatives. A DFT Study. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Brufani G, Valentini F, Rossini G, Rosignoli L, Gu Y, Liu P, Vaccaro L. Waste-minimized continuous flow copper-catalyzed azide-alkyne cycloaddition with low metal contamination. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
31
|
Xu XC, Wu DN, Liang YX, Yang M, Yuan HY, Zhao YL. Visible Light-Induced Coupling Cyclization Reaction of α-Diazosulfonium Triflates with α-Oxocarboxylic Acids or Alkynes. J Org Chem 2022; 87:16604-16616. [DOI: 10.1021/acs.joc.2c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dan-Ni Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hai-Yan Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
32
|
Lu J, Yao B, Zhan D, Sun Z, Ji Y, Zhang X. One-pot double annulations to confer diastereoselective spirooxindolepyrrolothiazoles. Beilstein J Org Chem 2022; 18:1607-1616. [PMID: 36530533 PMCID: PMC9727273 DOI: 10.3762/bjoc.18.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023] Open
Abstract
A novel four-component reaction in one pot as an atom- and step-economic process was developed to synthesize diastereoselectively spirooxindolepyrrolothiazoles through sequential N,S-acetalation of aldehydes with cysteine and decarboxylative [3 + 2] cycloaddition with olefinic oxindoles. High synthetic efficiency, operational simplification and reaction process economy using EtOH as solvent, and only releasing CO2 and H2O as side products confer this approach favorable in green chemistry metrics analysis.
Collapse
Affiliation(s)
- Juan Lu
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Bin Yao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
| | - Desheng Zhan
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Zhuo Sun
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Yun Ji
- Department of Chemical Engineering, University of North Dakota, 241 Centennial Drive Stop 7101, Grand Forks, North Dakota 58202, United States
| | - Xiaofeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| |
Collapse
|
33
|
[DBU][OAc]-mediated synthesis and anthelmintic activity of triazole–tetrazole conjugates. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Enantioselective, Decarboxylative (3+2)-Cycloaddition of Azomethine Ylides and Chromone-3-Carboxylic Acids. Molecules 2022; 27:molecules27206809. [PMID: 36296402 PMCID: PMC9607314 DOI: 10.3390/molecules27206809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, we describe the synthesis of a variety of chiral hybrid pyrrolidine-chromanone polycyclic derivatives. A convenient (3+2)-annulation of azomethine ylides with chromone-3-carboxylic acid realized under Brønsted base catalysis produced highly functionalized products in high yields with good stereoselectivities through asymmetric, intermolecular, and decarboxylative (3+2)-cyclization.
Collapse
|
35
|
Domingo LR, Ríos-Gutiérrez M, Chulan R, Mahmoud MHH, Ibrahim MM, El-Bahy SM, Rhyman L, Ramasami P. Unveiling the non-polar [3+2] cycloaddition reactions of cyclic nitrones with strained alkylidene cyclopropanes within a molecular electron density theory study. RSC Adv 2022; 12:25354-25363. [PMID: 36199340 PMCID: PMC9446111 DOI: 10.1039/d2ra03327e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
The role of cyclopropane substitution on the ethylene in zw-type [3+2] cycloaddition (32CA) reactions of cyclic nitrones has been studied within Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) computational level. Electron Localization Function (ELF) analysis of the ethylenes shows that the presence the cyclopropane only slightly increases the electron density in the C-C bonding region. Analysis of the Conceptual DFT reactivity indices indicates that the presence of the cyclopropane does not produce any remarkable change in the reactivity of these strained ethylenes. The marginal electrophilic character of ethylene makes the zw-type 32CA reactions of non-polar character. The presence of the cyclopropane in the ethylene decreases the activation enthalpy of the 32CA reactions by only 1.7 and 2.6 kcal mol-1, and also decreases the ortho regioselectivity. The loss of the strain present in the cyclopropane is responsible for the reduction of the activation enthalpy and the increase of the reaction enthalpy in these non-polar 32CA reactions. The presence of the cyclopropane does not cause any change, neither in the transition state structure (TS) geometries nor in their electronic structure. The very low global electron density transfer (GEDT) computed at the TSs confirms the non-polar character of these 32CA reactions. The ortho regioselectivity experimentally observed in these non-polar 32CA reactions is determined by the most favorable two-center interaction between the less electronegative C1 carbon of nitrone and the non-substituted methylene C5 carbon of the ethylenes.
Collapse
Affiliation(s)
- Luis R Domingo
- Department of Organic Chemistry, University of Valencia Dr Moliner 50 E-46100 Burjassot Valencia Spain
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia Dr Moliner 50 E-46100 Burjassot Valencia Spain
| | - Rishikesh Chulan
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - M H H Mahmoud
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg Doornfontein Johannesburg 2028 South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg Doornfontein Johannesburg 2028 South Africa
| |
Collapse
|
36
|
Rapid assembly of stereochemically rich polycyclic tetrahydrofurans by a conjugate addition-Rh(II) catalysis sequence. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Chai GL, Yao EZ, Liu RH, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of 2'-Hydroxychalcones with N, N'-Cyclic Azomethine Imines. Org Lett 2022; 24:6449-6454. [PMID: 36040361 DOI: 10.1021/acs.orglett.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the (R)-3,3'-I2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of 2'-hydroxychalcones with N,N'-cyclic azomethine imines, providing the corresponding N,N'-bicyclic pyrazolidine derivatives with three contiguous tertiary stereocenters in high yields with excellent diastereo- and enantioselectivities (up to >99:1 diastereomeric ratio and >99% enantiomeric excess). This catalytic system exhibits advantages of mild reaction conditions, high efficiency, and broad substrate scopes.
Collapse
Affiliation(s)
- Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - En-Ze Yao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Rui-Hao Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
38
|
Tian J, Sun W, Li R, Tian G, Wang X. Borane/Gold(I)‐Catalyzed C−H Functionalization Reactions and Cycloaddition Reactions of Amines and α‐Alkynylenones. Angew Chem Int Ed Engl 2022; 61:e202208427. [DOI: 10.1002/anie.202208427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Jun‐Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Wei Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Rui‐Rui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Gui‐Xiu Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
39
|
Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Cantelmi P, Mattellone A, Palladino C, Monari M, Pedrazzani R, Tolomelli A, Cabri W. Fast MacMillan's Imidazolidinone-Catalyzed Enantioselective Synthesis of Polyfunctionalized 4-Isoxazoline Scaffolds. ACS OMEGA 2022; 7:26919-26927. [PMID: 35936453 PMCID: PMC9352246 DOI: 10.1021/acsomega.2c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The enantioselective 1,3-dipolar cycloaddition of nitrones and arylpropionaldehydes to generate highly functionalized scaffolds for application in drug discovery was herein investigated. The use of a second-generation MacMillan catalyst as hydrochloride salt consistently accelerated the reaction speed, allowing a decrease in the reaction time up to >100 times, still affording 4-isoxazolines with good to excellent enantiomeric ratios at room temperature. As a proof of concept, further functionalization of the isoxazoline core through Pd-catalyzed cross-coupling was performed, generating differently functionalized chemical architectures in high yield.
Collapse
|
40
|
Hafeez J, Bilal M, Rasool N, Hafeez U, Adnan Ali Shah S, Imran S, Amiruddin Zakaria Z. Synthesis of Ruthenium complexes and their catalytic applications: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Yao JJ, Ding R, Chen X, Zhai H. Asymmetric Total Synthesis of (+)-Alstonlarsine A. J Am Chem Soc 2022; 144:14396-14402. [PMID: 35894835 DOI: 10.1021/jacs.2c06518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first asymmetric total synthesis of (+)-alstonlarsine A has been realized. The prominent features of the current synthesis include the following: (i) a Pd/self-adaptable ligand complex-catalyzed asymmetric allylic alkylation of 2-methyl-2-cyclopentenyl carbonate with 2-indolylsubstituted dimethyl malonate to establish the key stereocenter of C15, (ii) an intramolecular nitrile oxide-alkene [3 + 2] cycloaddition (INOC [3 + 2]) to construct the cyclohepta[b]indole backbone with the installment of the requisite stereochemistry of the all-carbon quaternary center of C20, and (iii) a late-stage interrupted Pictet-Spengler reaction (IPSR) to rapidly assemble the core structure of (+)-alstonlarsine A.
Collapse
Affiliation(s)
- Jun-Jun Yao
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Rui Ding
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaoming Chen
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
42
|
Chen Y, He J, Zhuang C, Liu Z, Xiao K, Su Z, Ren X, Wang T. Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metal‐Based Lewis Acid for Asymmetric Synthesis of
N
‐Bridged [3.2.1] Ring Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
43
|
Tian JJ, Sun W, Li RR, Tian GX, Wang XC. Borane/Gold(I)‐Catalyzed C–H Functionalization Reactions and Cycloaddition Reactions of Amines and α‐Alkynylenones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Wei Sun
- Nankai University College of Chemistry CHINA
| | - Rui-Rui Li
- Nankai University College of Chemistry CHINA
| | | | - Xiao-Chen Wang
- Nankai University College of Chemistry 94 Weijin Rd 300071 Tianjin CHINA
| |
Collapse
|
44
|
Umemoto N, Imayoshi A, Tsubaki K. Development of Regio- and Face-Selective [2 + 3] Cycloaddition Reactions of Readily Preparable Oxime-Substituted Nitrile Oxides with Silicon-Linked Allylic-Alcohol Moieties for Intramolecular Reactions. CHEM LETT 2022. [DOI: 10.1246/cl.220258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nao Umemoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
45
|
Chen Y, He J, Zhuang C, Liu Z, Xiao K, Su Z, Ren X, Wang T. Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metal-Based Lewis Acid for Asymmetric Synthesis of N-Bridged [3.2.1] Ring Systems. Angew Chem Int Ed Engl 2022; 61:e202207334. [PMID: 35766480 DOI: 10.1002/anie.202207334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 02/05/2023]
Abstract
We present an unprecedented synergic catalytic route for the asymmetric construction of fluorinated N-bridged [3.2.1] cyclic members of tropane family via a bifunctional phosphonium salt/silver co-catalyzed cyclization process. A broad variety of substrates bearing an assortment of functional groups are compatible with this method, providing targeted compounds bearing seven-membered ring and four contiguous stereocenters in high yields with excellent stereoselectivities. The gram-scale preparations, facile elaborations and preliminary biological activities of the products demonstrate the application potential. Moreover, both experimental and computational mechanistic studies revealed that the cyclization proceeded via a "sandwich" reaction model with multiple weak-bond cooperative activations. Insights gained from our studies are expected to advance general efforts towards the catalytic synthesis of challenging chiral heterocyclic molecules.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
46
|
Synthesis of pyrazoles by 1,3‐dipolar cycloaddition under aqueous micellar catalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Synthesis of Substituted Tropones and Advancement for the Construction of Structurally Significant Skeletons. ChemistrySelect 2022. [DOI: 10.1002/slct.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Pan B, Li A, Liu D, Ni Q, Liang W, Du F, Gu J, Ouyang Q. Highly diastereoselective synthesis of benzothiazolo[3,2- a]pyridines via [4 + 2] annulation reaction of 2-vinylbenzothiazoles and azlactones. Org Biomol Chem 2022; 20:4512-4517. [PMID: 35593711 DOI: 10.1039/d2ob00618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient AgOTf-catalyzed [4 + 2] annulation reaction of 2-vinylbenzothiazoles and azlactones was successfully performed under mild reaction conditions. With this approach, a series of novel benzothiazolo[3,2-a]pyridine derivatives was readily obtained in good to excellent yields (68-96%), with high diastereoselectivities and tolerating quite a broad scope of substituents. By using chiral phosphoric acid catalyst, the desired products were obtained in high enantioselectivities, up to -94%. This methodology provides a rapid and useful method for constructing fused benzothiazole derivatives.
Collapse
Affiliation(s)
- Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Ao Li
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Dong Liu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - QingShan Ni
- Biomedical Analysis Center, School of Basic Medical Science, Third Military Medical University, Chongqing, 400038, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
| |
Collapse
|
49
|
Tao LF, Zhang S, Huang F, Wang WT, Luo ZH, Qian L, Liao JY. Diastereo- and Enantioselective Silver-Catalyzed [3+3] Cycloaddition and Kinetic Resolution of Azomethine Imines with Activated Isocyanides. Angew Chem Int Ed Engl 2022; 61:e202202679. [PMID: 35289973 DOI: 10.1002/anie.202202679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/15/2022]
Abstract
In contrast to the well-established [3+2] cycloaddition reactions, the catalytic enantioselective [3+n] (n≥3) cycloaddition reaction of activated isocyanides for the preparation of six-membered or larger ring systems has remained underdeveloped. Herein, we report the first example of highly diastereo- and enantioselective [3+3] cycloaddition of activated isocyanides with azomethine imines. By employing silver catalysis, a wide range of biologically important bicyclic 1,2,4-triazines were obtained in high yields (up to 99 %) with good to excellent stereoselectivities (up to >20 : 1 dr, 99 % ee). In addition, the same catalytic system could be applied to both the late-stage functionalization of complex bioactive molecules and the kinetic resolution of racemic azomethine imines, further highlighting its versatility and synthetic utility.
Collapse
Affiliation(s)
- Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sen Zhang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fen Huang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhang-Hong Luo
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| |
Collapse
|
50
|
Sampath M, Jayaraman SR, Eda VR, Potham R, Budhdev RR, Sen S, Bandichhor R, Oruganti S. Enantioselective Synthesis of the Chiral Pyrrolidine Fragment of Upadacitinib via Chiral Auxiliary Directed Diastereoselective 1,3-Dipolar Cycloaddition. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magesh Sampath
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Sembian Ruso Jayaraman
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Vishnuvardhan Reddy Eda
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Rajendar Potham
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Rajeev Rehani Budhdev
- Integrated Product Development Organization, Dr. Reddy’s Laboratories, Bachupally, Qutbullapur, Hyderabad 500 090, Telangana, India
| | - Saikat Sen
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Rakeshwar Bandichhor
- Integrated Product Development Organization, Dr. Reddy’s Laboratories, Bachupally, Qutbullapur, Hyderabad 500 090, Telangana, India
| | - Srinivas Oruganti
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, Telangana, India
| |
Collapse
|