1
|
Tricoire M, Danoun G, Nocton G. Preparation and Ground-State Electronic Structure of Heterobimetallic Yb-Pt IV-Alkyl Complexes. Inorg Chem 2024; 63:19728-19737. [PMID: 39387267 DOI: 10.1021/acs.inorgchem.4c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This article focuses on the synthesis of heterobimetallic complexes of lanthanide and platinum. It describes the synthesis of the Cp*Yb(bipym)PtMe2 complex and its characterization, followed by its reactivity with oxidants, giving access to various Pt + IV compounds of trismethyl (PtMe3) and tetramethyl (PtMe4) fragments. Characterization of the electronic properties of the complexes by magnetic measurements demonstrated that the tetramethyl complex possesses a singlet ground state. The trismethyl fragments, on the other hand, have a ground state that evolves as a function of the ligand saturating the coordination sphere: a singlet for triflate and pyridine and a triplet for iodine, demonstrating the capacity for simple tuning of the electronic structure of these complexes. While the addition of B(C6F5)3 to the platinum + II bis methyl complex leads to FLP-like reactivity triggering THF opening, reactivity with [Ph3C]+[BPh4]- leads to oxidation of the bipym ligand. Furthermore, the light reactivity of the tetramethyl complex indicated the possible transfer of a methyl group, leading to functionalization of the bridging bipym ligand.
Collapse
Affiliation(s)
- Maxime Tricoire
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau 91120, France
| | - Grégory Danoun
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau 91120, France
| | - Grégory Nocton
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau 91120, France
| |
Collapse
|
2
|
Habibagahi B, Hoseini SJ, Bahrami M, Nabavizadeh SM, Chen W, De Giglio E, Mesto E, Schingaro E, Rizzuti A, Mastrorilli P. Self-Assembly of a Hierarchical Metal-Organic Framework at the Liquid/Liquid Interface via π-π Stacking Manipulations in Organoplatinum(IV) Complexes for Methanol Fuel Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16303-16319. [PMID: 39029094 DOI: 10.1021/acs.langmuir.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
This study focuses on the facile synthesis of the hierarchical architecture of zeolitic imidazolate framework-8 (ZIF-8) films containing an ultrasmall amount of Pt(0) by investigating the synthesis of different organoplatinum complexes and manipulating the π-π stacking effect in these complexes at the liquid/liquid interface. The organometallic Pt(IV) precursors were complexes with a formula of [PtXMe2(R)(bpy)] (bpy = 2,2'-bipyridine; for complex 2, R = CH2CH═CHC6H5 and X = Br; for complex 3, R = CH2CH═CH2 and X = Br; for complex 4, R = Me and X = I) prepared by oxidative addition of cinnamyl bromide, allyl bromide, or methyl iodide to [PtMe2(bpy)] (complex 1). Different thin films were synthesized starting from three organometallic Pt(IV) precursors (i) by reduction of the Pt complexes at the toluene/water interface (TF2-TF4), (ii) by encapsulation of the Pt precursors in a ZIF-8 (TF5-TF7), and (iii) by reduction of the Pt precursors onto a ZIF-8 (TF8-TF10). The self-assembly of ZIF-8 and different organoplatinum precursors at the interface of two immiscible liquids leads to the preparation of films with well-engineered structures such as rhombic dodecahedra, nanorods, hierarchical architectures, and nanowires, which are very difficult and complicated to synthesize under normal conditions. The ultralow loading of platinum complexes with different degrees of π-π stacking of dangling moieties has a great impact on the structure and morphology (directing agent), which in turn drastically changes the catalytic properties. The obtained films were applied as electrocatalysts for methanol oxidation in fuel cells. The electrocatalytic performance of organoplatinum containing a cinnamyl group in hierarchical architecture TF8 was found to be superior to those of nonhierarchical structures.
Collapse
Affiliation(s)
- Behnaz Habibagahi
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Mehrangiz Bahrami
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | | | | |
Collapse
|
3
|
Manca L, Senzacqua G, Stoccoro S, Zucca A. Regioselective C(sp 2)-C(sp 3) Coupling Mediated by Classical and Rollover Cyclometalation. Molecules 2024; 29:707. [PMID: 38338451 PMCID: PMC10856536 DOI: 10.3390/molecules29030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
By taking advantage of a sequence of oxidative addition/reductive elimination reactions, Pt(II) cyclometalated derivatives are able to promote a rare C(sp2)-C(sp3) bond coupling, resulting in the production of novel methyl-substituted pyridines and bipyridines. Starting from 6-phenyl-2,2'-bipyridine, the step-by-step full sequence of reactions has been followed, leading to the unprecedented 3-methyl-6-phenyl-2,2'-bipyridine, which was isolated and fully characterized. The synthesis involves the following steps: (1) rollover cyclometalation to give the starting complex [Pt(N^C)(DMSO)Me]; (2) the synthesis of a more electron-rich complex [Pt(N^C)(PPh3)Me] by the substitution of DMSO with triphenylphosphine; (3) oxidative addition with methyl iodide to give the Pt(IV) complex [Pt(N^C)(PPh3)(Me)2(I)]; (4) iodide abstraction with silver tetrafluoborate to give an unstable pentacoordinate intermediate, which rapidly evolves through a carbon-carbon reductive coupling, forming a new C(sp3)-C(sp2) bond; (5) finally, the extrusion and characterization of the newly formed 3-methyl-6-phenyl-2,2'-bipyridine. The reaction has been therefore extended to a well-known classical cyclometalating ligand, 2-phenylpyridine, demonstrating that the method is not restricted to rollover derivatives. Following the same step-by-step procedure, 2-phenylpyridine was converted to 2-o-tolyl-pyridine, displaying the potential application of the method to the larger family of classical cyclometalated complexes. The application of this protocol may be useful to convert an array of heterocyclic compounds to their methyl- or alkyl-substituted analogs.
Collapse
Affiliation(s)
- Lorenzo Manca
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
| | - Giacomo Senzacqua
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Villa La Rocca, Via Celso Ulpiani, 27, 70126 Bari, Italy
| | - Sergio Stoccoro
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Villa La Rocca, Via Celso Ulpiani, 27, 70126 Bari, Italy
| | - Antonio Zucca
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Villa La Rocca, Via Celso Ulpiani, 27, 70126 Bari, Italy
| |
Collapse
|
4
|
Gopakumar K, Samantaray V, Prusty MK, Swain L, Ramanan R. Internal charge-transfer in a metal-catalyzed oxidative addition reaction turns an inhibitive electric field stimulus to catalytic. Chem Commun (Camb) 2023; 59:13054-13057. [PMID: 37846773 DOI: 10.1039/d3cc04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In a metal-catalyzed oxidative addition, an oriented external electric field (EEF) catalyzes the reaction along one direction and inhibits it when applied in the opposite direction. Beyond a threshold value, the inhibitory direction becomes catalyzing by swapping the metal-to-ligand charge transfer (MLCT) to ligand-to-metal charge-transfer (LMCT) or vice versa. The change in direction of the charge-transfer mechanism triggers the inversion of the dipole moment along the reaction axis, that results in the resurgence of catalysis. The charge-transfer mechanism in metal-catalyzed oxidative addition is tunable by EEF.
Collapse
Affiliation(s)
- Karthik Gopakumar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Vivekananda Samantaray
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Mithun Kumar Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Lopita Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Rajeev Ramanan
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
5
|
Greenberg M, Tulloch KM, Reynoso ME, Knapp JL, Sayem FH, Bartkus DD, Lum RH, LaFratta CN, Tanski JM, Anderson CM. Synthesis, Structure, and Photophysical Properties of Platinum Compounds with Thiophene-Derived Cyclohexyl Diimine Ligands. ACS OMEGA 2023; 8:38587-38596. [PMID: 37867690 PMCID: PMC10586441 DOI: 10.1021/acsomega.3c05567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Platinum(II) and platinum(IV) compounds were prepared by the stereoselective and regioselective reactions of thiophene-derived cyclohexyl diimine C^N^N-ligands with [Pt2Me4(μ-SMe2)2]. Newly synthesized ligands were characterized by NMR spectroscopy and elemental analysis, and Pt(II)/Pt(IV) compounds were characterized by NMR spectroscopy, elemental analysis, high-resolution mass spectrometry, and single-crystal X-ray diffraction. UV-vis absorbance and photoluminescence measurements were performed on newly synthesized complexes, as well as structurally related Pt(II)/Pt(IV) compounds with benzene-derived cyclohexyl diimine ligands, in dichloromethane solution, as solids, and as 5% by weight PMMA-doped films. DFT and TD-DFT calculations were performed, and the results were compared with the observed spectroscopic properties of the newly synthesized complexes. X-ray total scattering measurements and real space pair distribution function analysis were performed on the synthesized complexes to examine the local- and intermediate-range atomic structures of the emissive solid states.
Collapse
Affiliation(s)
- Matthew
W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Kris M. Tulloch
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Michelle E. Reynoso
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Juliette L. Knapp
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Farman H. Sayem
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Ryan H. Lum
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
6
|
Luo Y, Li Y, Wu J, Xue XS, Hartwig JF, Shen Q. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 2023; 381:1072-1079. [PMID: 37676952 PMCID: PMC10658983 DOI: 10.1126/science.adg9232] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
The step that cleaves the carbon-halogen bond in copper-catalyzed cross-coupling reactions remains ill defined because of the multiple redox manifolds available to copper and the instability of the high-valent copper product formed. We report the oxidative addition of α-haloacetonitrile to ionic and neutral copper(I) complexes to form previously elusive but here fully characterized copper(III) complexes. The stability of these complexes stems from the strong Cu-CF3 bond and the high barrier for C(CF3)-C(CH2CN) bond-forming reductive elimination. The mechanistic studies we performed suggest that oxidative addition to ionic and neutral copper(I) complexes proceeds by means of two different pathways: an SN2-type substitution to the ionic complex and a halogen-atom transfer to the neutral complex. We observed a pronounced ligand acceleration of the oxidative addition, which correlates with that observed in the copper-catalyzed couplings of azoles, amines, or alkynes with alkyl electrophiles.
Collapse
Affiliation(s)
- Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yuli Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jian Wu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
7
|
Momeni BZ, Abd-El-Aziz AS. Recent advances in the design and applications of platinum-based supramolecular architectures and macromolecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Moustafa ME, Fard MA, Puddephatt RJ. Oxidative Addition of Halogens to a Dineophylplatinum(II) Complex: Halogen Complexes and Fluxional Platinum(IV) Complexes. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Nieradko MJ, Puddephatt RJ. Supramolecular chemistry of organoplatinum(IV) complexes: A syndiotactic polymer with uracil substituents. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The reaction of RCH2X with [PtMe2(DPA)], 1, (DPA = di-2-pyridylamine) has given [PtXMe2(CH2R)(DPA)] by cis oxidative addition to give 2a, when R = 6-uracil, X = Cl, or 3a, when R = CO2H, X = Br, but by a mixture of cis and trans oxidative addition to give 4a/4b when R = 4-C6H4CO2H, X = Br. The unusual cis stereochemistry of oxidative addition is rationalized thermodynamically by the formation of an intramolecular hydrogen bond in 2a and 3a but not 4a, and kinetically by the role of the ligand DPA NH group in hydrogen bonding to halide. Complex 2a in the solid state forms an unusual supramolecular syndiotactic polymer by forming two different intermolecular NH..O=C hydrogen bonds to neighbouring molecules.
Collapse
Affiliation(s)
- Michael J Nieradko
- Department of Chemistry, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
10
|
Zhou J, Shi X, Zheng H, Chen G, Zhang C, Liu X, Cao H. Deconstructive Cycloaromatization Strategy toward N, O-Bidentate Ligands from Indolizines and Cyclopropenones. Org Lett 2022; 24:3238-3243. [PMID: 35446037 DOI: 10.1021/acs.orglett.2c01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The innovative construction of novel N,O-bidentate ligands represents a long-standing challenge for chemists. Here, we report an unprecedented approach for the construction of N,O-bidentate derivatives via the merging of ring deconstruction with cycloaromatization of indolizines and cyclopropenones. Without any catalysts, our method can deliver a series of polyaryl 2-(pyridin-2-yl)phenols in excellent yields. In addition, N,O-bidentate organic BF2 complexes can also be constructed via this one-pot protocol.
Collapse
Affiliation(s)
- Jinlei Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Huitao Zheng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Guangxian Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
11
|
Sarmah BJ, Nath J, Guha AK. Rhodium(I) carbonyl complexes containing amino acid ester ligands: synthesis, reactivity and DFT studies. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2059358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bhaskar Jyoti Sarmah
- Department of Chemistry, Jorhat Institute of Science and Technology, Jorhat, Assam, India
| | - Jayashree Nath
- Department of Chemistry, J. B. College (Autonomous), Jorhat, Assam, India
| | - Ankur Kanti Guha
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| |
Collapse
|
12
|
Computational Studies of Coinage Metal Anion M - + CH 3X (X = F, Cl, Br, I) Reactions in Gas Phase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010307. [PMID: 35011542 PMCID: PMC8746851 DOI: 10.3390/molecules27010307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/03/2022]
Abstract
We characterized the stationary points along the nucleophilic substitution (SN2), oxidative insertion (OI), halogen abstraction (XA), and proton transfer (PT) product channels of M− + CH3X (M = Cu, Ag, Au; X = F, Cl, Br, I) reactions using the CCSD(T)/aug-cc-pVTZ level of theory. In general, the reaction energies follow the order of PT > XA > SN2 > OI. The OI channel that results in oxidative insertion complex [CH3–M–X]− is most exothermic, and can be formed through a front-side attack of M on the C-X bond via a high transition state OxTS or through a SN2-mediated halogen rearrangement path via a much lower transition state invTS. The order of OxTS > invTS is inverted when changing M− to Pd, a d10 metal, because the symmetry of their HOMO orbital is different. The back-side attack SN2 pathway proceeds via typical Walden-inversion transition state that connects to pre- and post-reaction complexes. For X = Cl/Br/I, the invSN2-TS’s are, in general, submerged. The shape of this M− + CH3X SN2 PES is flatter as compared to that of a main-group base like F− + CH3X, whose PES has a double-well shape. When X = Br/I, a linear halogen-bonded complex [CH3−X∙··M]− can be formed as an intermediate upon the front-side attachment of M on the halogen atom X, and it either dissociates to CH3 + MX− through halogen abstraction or bends the C-X-M angle to continue the back-side SN2 path. Natural bond orbital analysis shows a polar covalent M−X bond is formed within oxidative insertion complex [CH3–M–X]−, whereas a noncovalent M–X halogen-bond interaction exists for the [CH3–X∙··M]− complex. This work explores competing channels of the M− + CH3X reaction in the gas phase and the potential energy surface is useful in understanding the dynamic behavior of the title and analogous reactions.
Collapse
|
13
|
Dadkhah Aseman M, Nikravesh M, Abbasi A, Shahsavari HR. Oxidative Addition of a Hypervalent Iodine Compound to Cycloplatinated(II) Complexes for the C-O Bond Construction: Effect of Cyclometalated Ligands. Inorg Chem 2021; 60:18822-18831. [PMID: 34855391 DOI: 10.1021/acs.inorgchem.1c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex [PtMe(Obpy)(OAc)2(H2O)], 2a, Obpy = 2,2'-bipyridine N-oxide, is prepared through the reaction of [PtMe(Obpy)(SMe2)], 1a, by 1 equiv of PhI(OAc)2 via an oxidative addition (OA) reaction. Pt(IV) complex 2a attends the process of C-O bond reductive elimination (RE) reaction to form methyl acetate and corresponding Pt(II) complex [Pt(Obpy)(OAc)(H2O)], 3a. The kinetic of OA and RE reactions are investigated by means of different spectroscopies. The obtained results show that the reaction rates of OA step of 1a are faster than its analogous complex [PtMe(ppy)(SMe2)], 1b, ppy = 2-phenylpyridine. The density functional theory (DFT) calculations signify that the OA reaction initiated by a nucleophilic attack of the platinum(II) central atom of 1b on the iodine(III) atom while it had commenced by a nucleophilic substitution reaction of coordinated SMe2 in 1a with a carbonyl oxygen atom of PhI(OAc)2. Our calculation revealed that the key step for 1a is an acetate transfer from the I(III) to Pt(II) through a formation of square pyramidal iodonium complex. This can be attributed to the more electron-withdrawing character of Obpy ligand than to ppy which reduces the nucleophilicity of Pt atom in 1a. Furthermore, 2a with electron-withdrawing Obpy ligand prone to C-O bond formation faster than complex [PtMe(ppy)(OAc)2(H2O)], 2b, with an electron-rich ppy ligand which conforms to the anticipation that REs occur faster on electron-poor metal centers.
Collapse
Affiliation(s)
- Marzieh Dadkhah Aseman
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 15719-14911, Iran
| | - Mahshid Nikravesh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran 14155-6455, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
14
|
Ho SKY, Lam FYT, de Aguirre A, Maseras F, White AJP, Britovsek GJP. Photolytic Activation of Late-Transition-Metal–Carbon Bonds and Their Reactivity toward Oxygen. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah K. Y. Ho
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francis Y. T. Lam
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Adiran de Aguirre
- Institute of Chemical Research of Catalonia, The Barcelona Institute for Science and Technology, Avgda. Països Catalans, 16, Tarragona 43007, Catalonia, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia, The Barcelona Institute for Science and Technology, Avgda. Països Catalans, 16, Tarragona 43007, Catalonia, Spain
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - George J. P. Britovsek
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
15
|
Coffey B, Clough L, Bartkus DD, McClellan IC, Greenberg MW, LaFratta CN, Tanski JM, Anderson CM. Photophysical Properties of Cyclometalated Platinum(II) Diphosphine Compounds in the Solid State and in PMMA Films. ACS OMEGA 2021; 6:28316-28325. [PMID: 34723028 PMCID: PMC8552474 DOI: 10.1021/acsomega.1c04509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
Platinum(II) compounds were synthesized with both chelate cyclometalated ligands and chelate diphosphine ligands. The cyclometalated ligands include phenylpyridine and a benzothiophene-containing ligand. The three new benzothiophene compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HR-MS), and photophysical measurements. In the case of one compound, L1-DPPM, the structure was determined by single crystal X-ray diffraction. The structural coherence of the noncrystalline emissive solid state was measured by X-ray total scattering real space pair distribution function analysis. Quantum yield values of all of the platinum compounds measured in the solid state and in PMMA films were much greater than in solution.
Collapse
Affiliation(s)
- Belle Coffey
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Lily Clough
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Ian C. McClellan
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Matthew W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
16
|
Niroomand Hosseini F, Nabavizadeh SM, Shoara R, Dadkhah Aseman M, Abu-Omar MM. Selectivity in Competitive C sp2–C sp3 versus C sp3–C sp3 Reductive Eliminations at Pt(IV) Complexes: Experimental and Computational Approaches. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Rahim Shoara
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Marzieh Dadkhah Aseman
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Moustafa ME, Boyle PD, Puddephatt RJ. Reactivity and mechanism in reactions of methylene halides with cycloneophylplatinum(II) complexes: Oxidative addition and methylene insertion. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Pérez-Bitrián A, Baya M, Casas JM, Martín A, Menjón B. Hydrogen bonding to metals as a probe for an inverted ligand field. Dalton Trans 2021; 50:5465-5472. [PMID: 33908974 DOI: 10.1039/d1dt00597a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-rich, late transition metals are known to act as hydrogen-bonding (HBd) acceptors. In this regard, Pt(ii) centres in square-planar environments are particularly efficient. It is however puzzling that no convincing experimental evidence is currently available for the isoelectronic neighbour Au(iii) being involved in HBd interactions. We report now on the synthesis and characterisation of two series of isoleptic and isoelectronic (d8) compounds [(CF3)3Pt(L)]- and (CF3)3Au(L), where the L ligands are based on the quinoline frame and have been selected to favour HBd with the metal centre. Strong HBd interactions were actually found in the Pt(ii) compounds, based on structural and spectroscopic evidence, and they were further confirmed by theoretical calculations. In contrast, no evidence was obtained in the Au(iii) case. In order to find the reason underlying this general disparity, we undertook a detailed theoretical analysis of the model systems [(CF3)3Pt(py)]- and (CF3)3Au(py). This study revealed that the filled dz2 orbital is the HOMO in the case of Pt(ii), but is buried in the lower energy levels in the case of Au(iii). The sharply different electronic configurations involve ligand-field inversion on going from Pt to the next element Au. This is not a gradual but an abrupt change, which invalidates Au(iii) as a HBd-acceptor wherever ligand-field inversion occurs.
Collapse
Affiliation(s)
- Alberto Pérez-Bitrián
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - José M Casas
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
19
|
|
20
|
Photophysical Properties and Kinetic Studies of 2-Vinylpyridine-Based Cycloplatinated(II) Complexes Containing Various Phosphine Ligands. Molecules 2021; 26:molecules26072034. [PMID: 33918450 PMCID: PMC8038257 DOI: 10.3390/molecules26072034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022] Open
Abstract
A series of cycloplatinated(II) complexes with general formula of [PtMe(Vpy)(PR3)], Vpy = 2-vinylpyridine and PR3 = PPh3 (1a); PPh2Me (1b); PPhMe2 (1c), were synthesized and characterized by means of spectroscopic methods. These cycloplatinated(II) complexes were luminescent at room temperature in the yellow–orange region’s structured bands. The PPhMe2 derivative was the strongest emissive among the complexes, and the complex with PPh3 was the weakest one. Similar to many luminescent cycloplatinated(II) complexes, the emission was mainly localized on the Vpy cyclometalated ligand as the main chromophoric moiety. The present cycloplatinated(II) complexes were oxidatively reacted with MeI to yield the corresponding cycloplatinated(IV) complexes. The kinetic studies of the reaction point out to an SN2 mechanism. The complex with PPhMe2 ligand exhibited the fastest oxidative addition reaction due to the most electron-rich Pt(II) center in its structure, whereas the PPh3 derivative showed the slowest one. Interestingly, for the PPhMe2 analog, the trans isomer was stable and could be isolated as both kinetic and thermodynamic product, while the other two underwent trans to cis isomerization.
Collapse
|
21
|
Synthesis of new arylplatinum complexes containing 2,2′-dipyridylamine; single crystal structure, electrochemical studies and calculation of the kinetic parameters. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Robinson S, Puddephatt RJ. Reactions of organoplatinum complexes with dimethylamine-borane. NEW J CHEM 2021. [DOI: 10.1039/d0nj03168b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of organoplatinum complexes with dimethylamineborane are reported.
Collapse
Affiliation(s)
- Shawn Robinson
- Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
| | | |
Collapse
|
23
|
Behnia A, A. Fard M, Blacquiere JM, Puddephatt RJ. Cycloneophylpalladium(IV) Complexes: Formation by Oxidative Addition and Selectivity of Their Reductive Elimination Reactions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ava Behnia
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mahmood A. Fard
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Johanna M. Blacquiere
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Richard J. Puddephatt
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
24
|
Bavi M, Nabavizadeh SM, Hosseini FN, Niknam F, Hamidizadeh P, Hoseini SJ, Raoof F, Abu-Omar MM. Ligand-Mediated C-Br Oxidative Addition to Cycloplatinated(II) Complexes and Benzyl-Me C-C Bond Reductive Elimination from a Cycloplatinated(IV) Complex. ACS OMEGA 2020; 5:28621-28631. [PMID: 33195914 PMCID: PMC7658948 DOI: 10.1021/acsomega.0c03573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Reaction of the Pt(II) complexes [PtMe2(pbt)], 1a, (pbt = 2-(2-pyridyl)benzothiazole) and [PtMe(C^N)(PPh2Me)] [C^N = deprotonated 2-phenylpyridine (ppy), 1b, or deprotonated benzo[h]quinoline (bhq), 1c] with benzyl bromide, PhCH2Br, is studied. The reaction of 1a with PhCH2Br gave the Pt(IV) product complex [PtBr(CH2Ph)Me2(pbt)]. The major trans isomer is formed in a trans oxidative addition (2a), while the minor cis products (2a' and 2a″) resulted from an isomerization process. A solution of Pt(II) complex 1a in the presence of benzyl bromide in toluene at 70 °C after 7 days gradually gave the dibromo Pt(IV) complex [Pt(Br)2Me2(pbt)], 4a, as determined by NMR spectroscopy and single-crystal XRD. The reaction of complexes 1b and 1c with PhCH2Br gave the Pt(IV) complexes [PtMeBr(CH2Ph)(C^N)(PPh2Me)] (C^N = ppy; 2b; C^N = bhq, 2c), in which the phosphine and benzyl ligands are trans. Multinuclear NMR spectroscopy ruled out other isomers. Attempts to grow crystals of the cycloplatinated(IV) complex 2b yielded a previously reported Pt(II) complex [PtBr(ppy)(PPh2Me)], 3b, presumably from reductive elimination of ethylbenzene. UV-vis spectroscopy was used to study the kinetics of reaction of Pt(II) complexes 1a-1c with benzyl bromide. The data are consistent with a second-order SN2 mechanism and the first order in both the Pt complex and PhCH2Br. The rate of reaction decreases along the series 1a ≫ 1c > 1b. Density functional theory calculations were carried out to support experimental findings and understand the formation of isomers.
Collapse
Affiliation(s)
- Marzieh Bavi
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | | | - Fatemeh Niknam
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Peyman Hamidizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Jafar Hoseini
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Fatemeh Raoof
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Anderson CM, Coffey B, Morales L, Greenberg MW, Norman M, Weinstein M, Brown G, Tanski JM. Platinum Complexes from C-H Activation of Sterically Hindered [C^N] Donor Benzothiophene Imine Ligands: Synthesis and Photophysical Properties. ACS OMEGA 2020; 5:26855-26863. [PMID: 33111011 PMCID: PMC7581249 DOI: 10.1021/acsomega.0c03993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 05/22/2023]
Abstract
Primary amines and benzothiophene-3-carboxaldehyde were reacted to give four large, bulky imine ligands. These imine ligands were reacted with a tetramethyl platinum dimer and by heteroatom-assisted C-H activation, both monometalated compounds and bismetalated compounds were synthesized. In all cases, five-membered platinacycles were formed. The compounds were characterized by NMR spectroscopy, and one bismetalated compound was characterized by single-crystal X-ray diffraction. The UV-vis absorption and emission spectra and the excited-state lifetimes were recorded for these complexes. Density functional theory (DFT) and time-dependent-DFT calculations were performed to aid in the assignment of the absorption and emission spectra of the newly synthesized complexes.
Collapse
Affiliation(s)
- Craig M. Anderson
- Department
of Chemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Belle Coffey
- Department
of Chemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Leslie Morales
- Department
of Chemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Matthew W. Greenberg
- Department
of Chemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Matthew Norman
- Department
of Chemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Michael Weinstein
- Department
of Chemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Garrett Brown
- Department
of Chemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| |
Collapse
|
26
|
Noori M, Shafaatian B, Notash B. New organoplatinum complexes containing di-2-pyridyl ketone; single crystal structure determination, solvatochromism and kinetic investigations. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Mokolokolo PP, Brink A, Roodt A, Schutte-Smith M. Subtle variation of stereo-electronic effects in rhodium(I) carbonyl Schiff base complexes and their iodomethane oxidative addition kinetics. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1809657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pennie P. Mokolokolo
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Alice Brink
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Andreas Roodt
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
28
|
The history of organoplatinum chemistry in Iran: 40-year research. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01892-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Khattib D, Ishan M, Karmakar S, Kostrhunova H, Brabec V, Gibson D. Oxidation of cis-Diamminediacetato Pt II with Hydrogen Peroxide Can Give Rise to Two Isomeric Pt IV Products. Chemistry 2020; 26:9475-9480. [PMID: 32428256 DOI: 10.1002/chem.202001472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Indexed: 11/12/2022]
Abstract
The oxidation of cis-[Pt(NH3 )2 (OAc)2 ] with H2 O2 yields a mixture of two isomers: ctc-[Pt(NH3 )2 (OH)2 (OAc)2 ] and ctc-[Pt(NH3 )2 (OH)(OAc)(OH)(OAc)]. Following modification with 4-phenylbutyric (PhB) anhydride, two isomers were separated and characterized; the symmetric ctc-[Pt(NH3 )2 (PhB)2 (OAc)2 ] (1) and the nonsymmetric ctc-[Pt(NH3 )2 (PhB)(OAc)(PhB)(OAc)] (2). They differ in their log P values and despite having similar cellular uptake and similar DNA platination levels, the symmetric ctc-[Pt(NH3 )2 (OH)2 (OAc)2 ] is more than 4-fold more potent than the nonsymmetric isomer in a panel of 4 cancer cell lines.
Collapse
Affiliation(s)
- D Khattib
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - M Ishan
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - S Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - H Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - V Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - D Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| |
Collapse
|
30
|
Bauer S, Záliš S, Fiedler J, Ringenberg MR, Kaim W. Oxidation State Assignments in the Organoplatinum One‐Electron Redox Series [(N
^
N)PtMes
2
]
n
,
n
= +,0, –,2‐. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sonja Bauer
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry The Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Jan Fiedler
- J. Heyrovský Institute of Physical Chemistry The Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Mark R. Ringenberg
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Wolfgang Kaim
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
31
|
Fard MA, Puddephatt RJ. Oxidative addition of halogens to a Cycloneophylplatinum(II) complex and evidence for C–H bond activation at Platinum(IV). J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Sarmah BJ, Guha AK, Nath J, Saikia L. Synthesis, characterization and DFT studies of electron-rich iridium(I) carbonyl complexes of an unsymmetrical phosphine–phosphine monoselenide ligand and their reactivity towards alkyl halides. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Joy J, Stuyver T, Shaik S. Oriented External Electric Fields and Ionic Additives Elicit Catalysis and Mechanistic Crossover in Oxidative Addition Reactions. J Am Chem Soc 2020; 142:3836-3850. [DOI: 10.1021/jacs.9b11507] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jyothish Joy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thijs Stuyver
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
34
|
Kalkman ED, Mormino MG, Hartwig JF. Unusual Electronic Effects of Ancillary Ligands on the Perfluoroalkylation of Aryl Iodides and Bromides Mediated by Copper(I) Pentafluoroethyl Complexes of Substituted Bipyridines. J Am Chem Soc 2019; 141:19458-19465. [PMID: 31722521 PMCID: PMC11620760 DOI: 10.1021/jacs.9b10540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several perfluoroalkylcopper compounds have been reported previously that serve as reagents or catalysts for the perfluoroalkylation of aryl halides. However, the relationships between the reactivity of such complexes and the electronic properties of the ancillary ligands are unknown, and such relationships are not well-known in general for copper complexes that mediate or catalyze cross coupling. We report the synthesis and characterization of a series of pentafluoroethylcopper(I) complexes ligated by bipyridine ligands possessing varied electronic properties. In contrast to the limited existing data on the reactivity of L2Cu(I)-X complexes bearing amine and pyridine-type ligands in Ullmann-type aminations with aryl halides, the reactions of aryl halides with pentafluoroethylcopper(I) complexes bearing systematically varied bipyridine ligands were faster for complexes bearing less electron-donating bipyridines than for complexes bearing more electron-donating bipyridines. Analysis of the rates of reaction and the relative populations of the neutral complexes [(R2bpy)CuC2F5] and ionic complexes [(R2bpy)2Cu][Cu(C2F5)2] formed by these reagents in solution suggests that this effect of electronics on the reaction rate results from an unusual trend of faster oxidative addition of aryl halides to [(R2bpy)CuC2F5] complexes containing less electron-donating R2bpy ligands than to those containing more electron-donating R2bpy ligands.
Collapse
Affiliation(s)
- Eric D. Kalkman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michael G. Mormino
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Wilkins LC, Kim Y, Litle ED, Gabbaï FP. Stabilized Carbenium Ions as Latent, Z‐type Ligands. Angew Chem Int Ed Engl 2019; 58:18266-18270. [DOI: 10.1002/anie.201911662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Lewis C. Wilkins
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - Youngmin Kim
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - Elishua D. Litle
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - François P. Gabbaï
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| |
Collapse
|
36
|
Behnia A, Fard MA, Puddephatt RJ. Stereochemistry of oxidative addition of methyl iodide and hydrogen peroxide to organoplatinum(II) complexes having an appended phenol group and the supramolecular chemistry of the platinum(IV) products. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Wilkins LC, Kim Y, Litle ED, Gabbaï FP. Stabilized Carbenium Ions as Latent, Z‐type Ligands. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lewis C. Wilkins
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - Youngmin Kim
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - Elishua D. Litle
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - François P. Gabbaï
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| |
Collapse
|
38
|
Stereoselective C-X and regioselective C-H activation to, and selective C(sp)-C(sp) reductive elimination from, platinum compounds with thiophene-derived ligands. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Casas JM, Diosdado BE, Forniés J, García-Monforte MÁ, Laporta R, Martín A, Tomás M. Synthesis and characterization of binuclear Pt(IV) complexes and tetranuclear mixed valence complexes of Platinum(II)-Platinum(IV). J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Stereochemistry of oxidative addition reactions of cycloneophyl complexes of Platinum(II): A methylene insertion reaction from dichloromethane. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Sadri N, Hoseini SJ. Oxidative addition of 1,4-dichloro-2-butyne to an organoplatinum complex: A new precursor for synthesis of ultrasmall Pt nanoparticles thin film at liquid/liquid interface as the electrocatalyst in methanol oxidation reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nazanin Sadri
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
| | - S. Jafar Hoseini
- Department of Chemistry, Faculty of Sciences; Yasouj University; Yasouj 7591874831 Iran
- Prof. Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences; Shiraz University; Shiraz 7146713565 Iran
| |
Collapse
|
42
|
Altus KM, Bowes EG, Beattie DD, Love JA. Intermolecular Oxidative Addition of Aryl Halides to Platinum(II) Alkyl Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristof M. Altus
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eric G. Bowes
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - D. Dawson Beattie
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jennifer A. Love
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
43
|
Taullaj F, Armstrong D, Datta S, Lough AJ, Fekl U. 2‐Adamantyl Complexes of Platinum. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fioralba Taullaj
- Department of Chemical and Physical Sciences University of Toronto Mississauga 3359 Mississauga Rd. L5L 1C6 Mississauga ON Canada
- Department of Chemistry University of Toronto 80 St George St. M5S 3H6 Toronto ON Canada
| | - David Armstrong
- Department of Chemical and Physical Sciences University of Toronto Mississauga 3359 Mississauga Rd. L5L 1C6 Mississauga ON Canada
- Department of Chemistry University of Toronto 80 St George St. M5S 3H6 Toronto ON Canada
| | - Shaishav Datta
- Department of Chemical and Physical Sciences University of Toronto Mississauga 3359 Mississauga Rd. L5L 1C6 Mississauga ON Canada
| | - Alan J. Lough
- Department of Chemistry University of Toronto 80 St George St. M5S 3H6 Toronto ON Canada
| | - Ulrich Fekl
- Department of Chemical and Physical Sciences University of Toronto Mississauga 3359 Mississauga Rd. L5L 1C6 Mississauga ON Canada
- Department of Chemistry University of Toronto 80 St George St. M5S 3H6 Toronto ON Canada
| |
Collapse
|
44
|
Desulfination versus decarboxylation as a means of generating three- and five-coordinate organopalladium complexes [(phen)nPd(C6H5)]+ (n = 1 and 2) to study their fundamental bimolecular reactivity. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Momeni BZ, Fathi N, Moghadasi M, Biglari A, Janczak J. New insight into the reactions of organoplatinum(II) complexes with diorganotin dichloride and diisothiocyanate: Oxidative addition, reductive elimination and α-elimination. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Hamidizadeh P, Nabavizadeh SM, Hoseini SJ. Effects of the number of cyclometalated rings and ancillary ligands on the rate of MeI oxidative addition to platinum(ii)–pincer complexes. Dalton Trans 2019; 48:3422-3432. [DOI: 10.1039/c9dt00205g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of new organoplatinum(ii)–pincer complexes in their oxidative addition reactions with MeI is related to the ancillary ligand and the number of cyclometalated rings present in the coordination sphere of the Pt centre.
Collapse
Affiliation(s)
- Peyman Hamidizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz
| | - S. Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz
| |
Collapse
|
47
|
|
48
|
Chamyani S, Shahsavari HR, Abedanzadeh S, Golbon Haghighi M, Shabani S, Notash B. Carbon-iodide bond activation by cyclometalated Pt (II) complexes bearing tricyclohexylphosphine ligand: A comparative kinetic study and theoretical elucidation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Samira Chamyani
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Hamid R. Shahsavari
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Sedigheh Abedanzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
| | | | - Sepideh Shabani
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Behrouz Notash
- Department of Chemistry; Shahid Beheshti University; Evin Tehran 19839-69411 Iran
| |
Collapse
|
49
|
Lázaro A, Serra O, Rodríguez L, Crespo M, Font-Bardia M. Luminescence studies of new [C,N,N′] cyclometallated platinum(ii) and platinum(iv) compounds. NEW J CHEM 2019. [DOI: 10.1039/c8nj05492d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New [C,N,N′]-cyclometallated platinum(ii) and platinum(iv) complexes are prepared and their emission properties are reported.
Collapse
Affiliation(s)
- Ariadna Lázaro
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Facultat de Química
- Universitat de Barcelona
- 08028-Barcelona
| | - Oriol Serra
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Facultat de Química
- Universitat de Barcelona
- 08028-Barcelona
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Facultat de Química
- Universitat de Barcelona
- 08028-Barcelona
| | - Margarita Crespo
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Facultat de Química
- Universitat de Barcelona
- 08028-Barcelona
| | - Mercè Font-Bardia
- Unitat de Difracció de RX
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB)
- Universitat de Barcelona
- 08028-Barcelona
- Spain
| |
Collapse
|
50
|
Cyclometalated Iridium(III) Complexes Containing Benzoxazole Derivatives and Different Ancillary Ligands for Catalytic Oxidation of Toluene. INORGANICS 2018. [DOI: 10.3390/inorganics6040118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A series of cyclometalated iridium(III) complexes that have the general formula [(C^N)2Ir(NR)(X)] (C^N = monoanionic bidentate cyclometalating ligands; NR = pyridine derivatives; X = Cl− or I−) are designed, prepared, and applied for the transformation of toluene to benzaldehyde using a clean, highly efficient, and environmentally-friendly process. The activation energies that are needed for the catalytic oxidation of toluene when using these complexes as catalysts are quite low: between 22.9 and 30.8 kcal mol−1. The catalytic frequencies (TOF) are fairly high (up to 7.0 × 102 h−1) with excellent reliability, and the turnover number (TON) can reach 4.2 × 103 after 6 h of processing time. Catalytic tests, X-ray absorption near-edge structure (XANES), and kinetic modeling are used to derive detailed insights into the characteristics of the catalysts and their effects on the reactions that are featured in the catalytic oxidation of toluene.
Collapse
|