1
|
Liu YR, Jiang Y, Bai L. Structural Evolution Study of Titanium-Vanadium-Niobium Nanoparticles from Single to Multicomponent Systems. ACS OMEGA 2024; 9:45545-45553. [PMID: 39554399 PMCID: PMC11561758 DOI: 10.1021/acsomega.4c07777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
In this article, the revised basin-hopping with mirror-rotation sampling combined with density functional theory, which was proposed by our previous study, was used to study the structural property of Ti n (n = 3m, m = 1-7), V n (n = 3m, m = 1-7), Nb n (n = 3m, m = 1-7), and Ti n V n Nb n (n = 1-7) systems. We found that equiatomic Ti n V n Nb n (n = 1-7) systems do not change their lowest energy structures relative to the same size Ti n (n = 3m, m = 1-7), V n (n = 3m, m = 1-7), and Nb n (n = 3m, m = 1-7) systems, and this indicates that the nanoparticles composed of titanium, vanadium, or niobium elements may have similar energy morphologies when the atomic number is the same. Based on the low-energy structural similarity of titanium-vanadium-niobium systems between single and multicomponent, we used the element space position replacement (ESPR) method to reconstruct the low-energy structure of Ti n V n Nb n (n = 1-7) systems. For the Ti7V7Nb7 system, the average sampling step of 10 separate searches of the BH-MRS method is 1226 more than that of the ESPR method to find the lowest energy structure (six-ring layered structure). The electronic property calculation shows that using equiatomic vanadium and niobium elements to replace titanium element in the Ti n (n = 3m, m = 1-7) system may not change its stability, and the Ti n (n = 3m, m = 1-7) system has better electron trapping ability than V n (n = 3m, m = 1-7), Nb n (n = 3m, m = 1-7), and Ti n V n Nb n (n = 1-7) systems. Our method and results can be helpful for the design of nanostructures of transition metals with better catalytic properties.
Collapse
Affiliation(s)
- Yi-Rong Liu
- Public
Experimental Teaching Center, Panzhihua
University, Panzhihua, Sichuan 61700, China
| | - Yan Jiang
- School
of Vanadium and Titanium, Panzhihua University, Panzhihua, Sichuan 61700, China
| | - Lang Bai
- Public
Experimental Teaching Center, Panzhihua
University, Panzhihua, Sichuan 61700, China
| |
Collapse
|
2
|
Nasiri Mahd Z, Kokabi A, Fallahzadeh M, Naghibi Z. Exploring nonlinear correlations among transition metal nanocluster properties using deep learning: a comparative analysis with LOO-CV method and cosine similarity. NANOTECHNOLOGY 2024; 36:045701. [PMID: 39433057 DOI: 10.1088/1361-6528/ad892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
A novel approach is introduced for the rapid and accurate correlation analysis of nonlinear properties in Transition Metal (TM) clusters utilizing the Deep Leave-One-Out Cross-Validation technique. This investigation demonstrates that the Deep Neural Network (DNN)-based approach offers a more efficient predictive method for various properties of fourth-row TM nanoclusters compared to conventional Density Functional Theory methods, which are computationally intensive and time-consuming. The feature space, also known as descriptors, is established based on a broad spectrum of electronic and physical characteristics. Leveraging the similarities among these clusters, the DNN-based model is employed to explore the correlations among TM cluster properties. The proposed method, in conjunction with cosine similarity, achieves remarkable accuracy up to 10-9 for predicting total energy, lowest vibrational mode, binding energy, and HOMO-LUMO energy gap of TM2, TM3, and TM4nanoclusters. By analyzing correlation errors, the most closely coupled TM clusters are identified. Notably, Mn and Ni clusters exhibit the highest and lowest levels of energy coupling with other TMs, respectively. Generally, energy prediction for TM2, TM3, and TM4clusters exhibit similar trends, while an alternating behavior is observed for vibrational modes and binding energies. Furthermore, Ti, V, and Co demonstrate the highest binding energy correlations with TM2, TM3, and TM4sets, respectively. Regarding energy gap predictions, Ni exhibits the strongest correlation in the smallest TM2clusters, while Cr shows the highest dependence in TM3and TM4sets. Lastly, Zn displays the largest error in HOMO-LUMO energy gap across all sets, indicating distinctive independent energy gap characteristics.
Collapse
Affiliation(s)
- Zahra Nasiri Mahd
- Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Alireza Kokabi
- Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Maryam Fallahzadeh
- Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Zohreh Naghibi
- Department of Computer Engineering, Hamedan University of Technology, Hamedan, Iran
| |
Collapse
|
3
|
Felix JC, da Silva GR, Nagurniak GR, C Dias A, P Orenha R, Rêgo CRC, Parreira RLT, Guedes-Sobrinho D, Piotrowski MJ. Investigating Molecular Adsorption on Graphene-Supported Platinum Subnanoclusters: Insights from DFT + D3 Calculations. ACS OMEGA 2024; 9:41067-41083. [PMID: 39372006 PMCID: PMC11447868 DOI: 10.1021/acsomega.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Platinum (Pt) subnanoclusters have become pivotal in nanocatalysis, yet their molecular adsorption mechanisms, particularly on supported versus unsupported systems, remain poorly understood. Our study employs detailed density functional theory (DFT) calculations with D3 corrections to investigate molecular adsorption on Pt subnanoclusters, focusing on CO, NO, N2, and O2 species. Gas-phase and graphene-supported scenarios are systematically characterized to elucidate adsorption mechanisms and catalytic potential. Gas-phase Pt n clusters are first analyzed to identify stable configurations and assess size-dependent reactivity. Transitioning to graphene-supported Pt n clusters, both periodic and nonperiodic models are employed to study interactions with graphene substrates. Strong adsorbate interactions predominantly occur at single top sites, revealing distinct adsorption geometries and stabilization effects for specific molecules on Pt6 clusters. Energy decomposition analysis highlights the paramount role of graphene substrates in enhancing stability and modulating cluster-adsorbate interactions. The interaction energy emerges as a critical criterion within the Sabatier principle, crucial for distinguishing between physisorption and chemisorption. Hybridization indices and charge density flow tendencies establish direct relationships with stabilization processes, underscoring graphene's influence in stabilizing highly reactive subnanoclusters. This comprehensive investigation provides critical insights into molecular adsorption mechanisms and the catalytic potential of graphene-supported Pt nanoclusters. Our findings contribute to a deeper understanding of nanocatalysis, emphasizing the essential role of substrates in optimizing catalytic performance for industrial applications.
Collapse
Affiliation(s)
- João
Paulo Cerqueira Felix
- Institute
of Physics “Armando Dias Tavares”, Rio de Janeiro State University, 20550-900 Rio de Janeiro, RJ, Brazil
| | | | - Glaucio R. Nagurniak
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, 89036-004 Blumenau, SC, Brazil
| | - Alexandre C Dias
- Institute
of Physics and International Center of Physics, University of Brasília, 70919-970 Brasília, DF, Brazil
| | - Renato P Orenha
- Núcleo
de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600 Franca, SP, Brazil
| | - Celso R. C. Rêgo
- Institute
of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Renato L. T. Parreira
- Núcleo
de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600 Franca, SP, Brazil
| | | | - Maurício J. Piotrowski
- Department
of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
4
|
Yang WH, Yu FQ, Guo ZW, Huang R, Chen JR, Gao FQ, Shao GF, Liu TD, Wen YH. Hierarchical structures and magnetism of Co clusters: a perspective from integration of deep learning and a hybrid differential evolution algorithm. NANOSCALE 2024; 16:17537-17548. [PMID: 39225229 DOI: 10.1039/d4nr02431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Theoretically determining the lowest-energy structure of a cluster has been a persistent challenge due to the inherent difficulty in accurate description of its potential energy surface (PES) and the exponentially increasing number of local minima on the PES with the cluster size. In this work, density-functional theory (DFT) calculations of Co clusters were performed to construct a dataset for training deep neural networks to deduce a deep potential (DP) model with near-DFT accuracy while significantly reducing computational consumption comparable to classic empirical potentials. Leveraging the DP model, a high-efficiency hybrid differential evolution (HDE) algorithm was employed to search for the lowest-energy structures of CoN (N = 11-50) clusters. Our results revealed 38 of these clusters superior to those recorded in the Cambridge Cluster Database and identified diverse architectures of the clusters, evolving from layered structures for N = 11-27 to Marks decahedron-like structures for N = 28-42 and to icosahedron-like structures for N = 43-50. Subsequent analyses of the atomic arrangement, structural similarity, and growth pattern further verified their hierarchical structures. Meanwhile, several highly stable clusters, i.e., Co13, Co19, Co22, Co39, and Co43, were discovered by the energetic analyses. Furthermore, the magnetic stability of the clusters was verified, and a competition between the coordination number and bond length in affecting the magnetic moment was observed. Our study provides high-accuracy and high-efficiency prediction of the optimal structures of clusters and sheds light on the growth trend of Co clusters containing tens of atoms, contributing to advancing the global optimization algorithms for effective determination of cluster structures.
Collapse
Affiliation(s)
- Wei-Hua Yang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Fang-Qi Yu
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Zi-Wen Guo
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Rao Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Jun-Ren Chen
- Xiamen University Tan Kah Kee College, Zhangzhou, 363105, China
| | - Feng-Qiang Gao
- Xiamen University Tan Kah Kee College, Zhangzhou, 363105, China
| | - Gui-Fang Shao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Tun-Dong Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yu-Hua Wen
- Department of Physics, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Li HF, Wang HQ, Zhang YK. Exploring the Structural and Electronic Properties of Niobium Carbide Clusters: A Density Functional Theory Study. Molecules 2024; 29:3238. [PMID: 38999190 PMCID: PMC11243446 DOI: 10.3390/molecules29133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
This paper systematically investigates the structure, stability, and electronic properties of niobium carbide clusters, NbmCn (m = 5, 6; n = 1-7), using density functional theory. Nb5C2 and Nb5C6 possess higher dissociation energies and second-order difference energies, indicating that they have higher thermodynamic stability. Moreover, ab initio molecular dynamics (AIMD) simulations are used to demonstrate the thermal stability of these structures. The analysis of the density of states indicates that the molecular orbitals of NbmCn (m = 5, 6; n = 1-7) are primarily contributed by niobium atoms, with carbon atoms having a smaller contribution. The composition of the frontier molecular orbitals reveals that niobium atoms contribute approximately 73.1% to 99.8% to NbmCn clusters, while carbon atoms contribute about 0.2% to 26.9%.
Collapse
Affiliation(s)
- Hui-Fang Li
- College of Engineering, Huaqiao University, Quanzhou 362021, China
| | - Huai-Qian Wang
- College of Engineering, Huaqiao University, Quanzhou 362021, China
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu-Kun Zhang
- College of Engineering, Huaqiao University, Quanzhou 362021, China
| |
Collapse
|
6
|
Zheng H, Zhou Y, Yan B, Zhou G, Cheng X, Lin S, Duan M, Li J, Wang L, Fan C, Chen J, Shen J. DNA Framework-Guided Self-Limiting Aggregation for Highly Luminescent Metal Cluster Nanoaggregates. J Am Chem Soc 2024; 146:17094-17102. [PMID: 38867462 DOI: 10.1021/jacs.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingjie Yan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoang Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sicheng Lin
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulin Duan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Piotrowski MJ, Palheta JMT, Fournier R. Cage doping of Ti, Zr, and Hf-based 13-atom nanoclusters: two sides of the same coin. Phys Chem Chem Phys 2024; 26:13172-13181. [PMID: 38630106 DOI: 10.1039/d4cp00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Transition metal nanoclusters can exhibit unique and tunable properties which result not only from their chemical composition but also from their atomic packing and quantized electronic structures. Here, we introduce a promising family of bimetallic TM@Ti12, TM@Zr12, and TM@Hf12 nanoclusters with icosahedral geometry, where TM represents an atom from groups 3 to 12. Density functional theory calculations show that their stability can be explained with familiar concepts of metal cluster electronic and atomic shell structures. The magnetic properties of these quasispherical clusters are entirely consistent with superatom electronic shells and Hund's rules, and can be tuned by the choice of the TM dopant. The computed cluster atomization energies were analyzed in terms of the elements' cohesive energy, Ecoh, and contributions from geometric distortion, Edis, surface energy, Es, and ionic bonding, Ei. Some clusters have anomalous stability relative to Ecoh + Edis + Es + Ei. We attribute this to superatomic character associated with a favorable atomic and electronic shell structure. This raises the possibility of designing stable superatoms and materials with tailored electronic and magnetic properties.
Collapse
Affiliation(s)
- Maurício J Piotrowski
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil.
| | - João Marcos T Palheta
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil.
| | - René Fournier
- Department of Chemistry, York University, Toronto, ON, Canada M3J 1P3.
| |
Collapse
|
8
|
Wu T, Fang Z, Song J, Liu L, Song J. Magnetism and electronic properties of Co nMoP (n = 1 ~ 5) cluster: a DFT study. J Mol Model 2024; 30:142. [PMID: 38642186 DOI: 10.1007/s00894-024-05938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
CONTEXT Hydrogen has emerged as a promising clean energy carrier, underscoring the imperative need to comprehend its adsorption mechanisms. This study delves into the magnetic and electronic properties of Co-Mo-P clusters, aiming to unveil their catalytic potential in hydrogen production. Employing density functional theory (DFT), we optimized cluster configurations and scrutinized their magnetic behaviors. Our investigation unveiled 16 stable configurations of the ConMoP (n = 1 ~ 5) cluster, predominantly in steric forms. The magnetic attributes were primarily ascribed to the d orbitals of Co metal atoms, with Co3MoP exhibiting exceptional magnetic characteristics. Analysis of density of state diagrams revealed the prevalence of spin-up α-electrons in d orbitals, while spin-down β-electrons attenuated overall magnetic properties. Localized orbital (LOL) analysis highlighted stable covalent bonds within the clusters, affirming their catalytic potential. Orbital delocalization index (ODI) analysis revealed diverse spatial distribution ranges for orbitals across different configurations, suggesting a progressive attenuation of off-domain properties with increasing cluster size. Furthermore, infrared spectroscopy unveiled distinct vibrational peaks in various configurations, indicative of unique infrared activities. These findings contribute to a nuanced theoretical understanding of Co-Mo-P clusters and pave the path for future research aimed at augmenting their catalytic efficiency in hydrogen production. This study underscores the viability of Co-Mo-P clusters as alternatives to conventional Pt catalysts, offering insights into the design of novel materials for sustainable energy applications. Further research is warranted to explore the behavior of the Co-Mo-P system under diverse reaction conditions, fostering advancements in materials and energy science. METHODS In this study, we harnessed the ConMoP (n = 1 ~ 5) cluster as a simulation platform for probing the local structure of the material. Our aim was to scrutinize the magnetism, electronic characteristics influenced by the varying metal atoms within these clusters. A systematic exploration involved incrementing the number of metal atoms and expanding the cluster size to elucidate the corresponding property variations. Density functional theory (DFT) calculations were pivotal to our methodology, employing the B3LYP hybrid functional implemented in the Gaussian 16 software package. The ConMoP (n = 1 ~ 5) cluster underwent optimization calculations and vibrational analysis at the def2-tzvp quantization level, yielding optimized configurations with diverse spin multiplet degrees. To comprehensively characterize and visually represent the stability, electronic features, and catalytic attributes of these configurations, we employed a suite of computational tools. Specifically, quantum chemistry software GaussView and wave function analysis software Multiwfn played integral roles. Through the integrated use of these computational tools, we acquired valuable insights into the magnetism, electronic characteristics of the ConMoP (n = 1 ~ 5) cluster, shedding light on their dependency on distinct metal atoms.
Collapse
Affiliation(s)
- Tinghui Wu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Zhigang Fang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
| | - Jingli Song
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Li'e Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Jia Song
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| |
Collapse
|
9
|
Wang K, Wang C, Guo J, Zhao J, Liu L, Chen J, Liu Z, Wang Y. Determination of Ground State Structures of Sn x - (x=21-35) Clusters. Chemphyschem 2024; 25:e202300800. [PMID: 38083816 DOI: 10.1002/cphc.202300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Indexed: 01/11/2024]
Abstract
In this work, an unbiased global search with a homemade genetic algorithm was performed to investigate the structural evolution and electronic properties of Snx - (x=21-35) clusters with density functional theory (DFT) calculations. All the ground-state structures for all these Snx - (x=21-35) clusters have been confirmed by the comparison of the experimental and simulated photoelectron spectra (PESs). It has been revealed that all Snx - (x=21-35) clusters are tricapped trigonal prism (TTP)-based structures consisting of two (for sizes x=21-28) or three (for x=29-35) TTP units, with the remaining atoms adsorbed on the surface or inserted between TTP units. The gradually decreasing HOMO-LUMO gaps indicate that these clusters are undergoing semiconductor-to-metal transformation. The average binding energies show that the structural stabilities of Snx - clusters are not as good as that of silicon and germanium clusters. It found that sizes x=23, 25, 29, 33 show high relative stability.
Collapse
Affiliation(s)
- Kai Wang
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Chaoyong Wang
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junji Guo
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jun Zhao
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Le Liu
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jiaye Chen
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhiqing Liu
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yarui Wang
- Henan Engineering Research Centre of Building-Photovoltaics, School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
10
|
Muman V, Tennyson-Davies A, Allegret O, Addicoat MA. Reactions of N 2O and CO on neutral Rh 10O n clusters: a density functional study. Phys Chem Chem Phys 2024; 26:2218-2227. [PMID: 38165015 DOI: 10.1039/d3cp04929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Density functional theory calculations were performed to identify product, reactant and intermediate dissociative/associative structures for the oxygen abstraction and addition reactions: Rh10On + CO → Rh10On-1 + CO2, n = 1-5 and Rh10On + N2O → Rh10On+1 + N2, n = 0-4 reactions. In the case of the oxygen abstraction reactions, the energetics of the reaction path were very similar in energy regardless of the number of oxygen atoms on the Rh10On cluster, whereas for the addition of oxygen to the Rh10On cluster, the reaction was found to become significantly less exothermic with each successive addition of oxygen.
Collapse
Affiliation(s)
- Vikram Muman
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Alex Tennyson-Davies
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Oihan Allegret
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- Univ Limoges, IRCER, UMR CNRS 7315, F-87068 Limoges, France
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
11
|
Jiang Y, Liu YR. New Multicomponent Optimization Scheme for Equiatomic Vanadium-Titanium Nanoparticle Study. J Chem Theory Comput 2023. [PMID: 37983680 DOI: 10.1021/acs.jctc.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We present a new multicomponent structure prediction method named MRS-Swap searching, which is inspired by space symmetry and swap of different atomic species. For the pure titanium cluster, a new ground-state structure of the Ti20 cluster with higher symmetry relative to a previous study was found by our method. Based on the structural analysis of Tin (n = 2k, k = 2-11), Vn (n = 2k, k = 2-11), and TinVm (n = m = 2-11) systems, we found that the lowest energy structures of these three systems are very similar, which indicates that equiatomic vanadium-titanium-mixed clusters do not change their ground-state structure relative to the same size pure vanadium and titanium cluster. According to the structure-activity relationship, we conclude that the yield strength (σ) of macro vanadium-titanium alloy is between pure titanium and pure vanadium metal, and this can be expressed through σ(Ti) > σ(TiV) > σ(V). The X-ray diffraction results show that the V2Nb, TiVNb, and Ti2Nb alloys also have the same BCC structure, which may be related to their microstructure. Our method and results can be helpful for future multicomponent alloy design.
Collapse
Affiliation(s)
- Yan Jiang
- School of Vanadium and Titanium, Panzhihua University, Panzhihua, Sichuan 61700, China
| | - Yi-Rong Liu
- Public Experimental Teaching Center, Panzhihua University, Panzhihua, Sichuan 61700, China
| |
Collapse
|
12
|
Wu T, Fang Z, Wang Z, Liu L, Song J, Song J. Stability, electronic and catalytic properties of Co nMoP(n = 1 ~ 5) clusters: A DFT study. J Mol Model 2023; 29:269. [PMID: 37528281 DOI: 10.1007/s00894-023-05675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
CONTEXT The investigation of the stability, electronic properties, and catalytic activity of clusters ConMoP holds significant applications and implications in catalyst design, materials science, energy conversion and storage, and environmental protection. The study aims to delve into the unique features of the clusters ConMoP(n = 1 ~ 5), aiming to drive advancements in these related fields. The results obtained from the analysis revealed the stable configurations of the ten clusters, primarily characterized by steric structures. Furthermore, the energy of the clusters was found to increase continuously during growth, as indicated by calculations of atomic fragmentation energy and atomic binding energy. The researchers conducted an analysis of the Natural Population Analysis(NPA) charge, which revealed that Co atoms acted as electron donors, while P and Mo atoms acted as electron acceptors within the clusters. Additionally, an examination of the electrostatic potential indicated that Co and Mo atoms displayed nucleophilic tendencies, while P atoms exhibited electrophilic characteristics. Moreover, the density of states curves, HOMO and LUMO orbitals, and Kooperman's theorem were applied to the clusters ConMoP(n = 1 ~ 5).Through this study, a deeper understanding of the properties and behavior of clusters ConMoP has been achieved, shedding light on their potential as catalysts. The findings contribute to the existing knowledge of these clusters and provide a basis for further research and exploration in this field. METHODS In this study, we employed the clusters ConMoP(n = 1 ~ 5) to simulate the local structure of the material, enabling us to investigate the stability, electronic properties, and catalytic properties influenced by the metal atoms. By systematically increasing the number of metal atoms and expanding the cluster size, we explored the variations in these properties. Density functional theory (DFT) calculations were performed using the B3LYP hybrid functional implemented in the Gaussian09 software package. The clusters ConMoP(n = 1 ~ 5) underwent optimization calculations and vibrational analysis at the def2-tzvp quantization level, resulting in optimized configurations with different spin multiplet degrees. For data characterization and graphical representation of the stability, electronic properties, and catalytic properties of the optimized configurations, we utilized a range of computational tools. Specifically, the quantum chemistry software GaussView, wave function analysis software Multiwfn were employed. Through the comprehensive utilization of these computational tools, we gained valuable insights into the stability, electronic properties, and catalytic properties of the clusters ConMoP(n = 1 ~ 5) and their dependence on different metal atoms.
Collapse
Affiliation(s)
- Tinghui Wu
- School of Chemical Engineering, Liaoning University of Science and Technology, Anshan, 114051, Liaoning, China
| | - Zhigang Fang
- School of Chemical Engineering, Liaoning University of Science and Technology, Anshan, 114051, Liaoning, China.
| | - Zhiyao Wang
- School of Chemical Engineering, Liaoning University of Science and Technology, Anshan, 114051, Liaoning, China
| | - Li'e Liu
- School of Chemical Engineering, Liaoning University of Science and Technology, Anshan, 114051, Liaoning, China
| | - Jingli Song
- School of Chemical Engineering, Liaoning University of Science and Technology, Anshan, 114051, Liaoning, China
| | - Jia Song
- School of Chemical Engineering, Liaoning University of Science and Technology, Anshan, 114051, Liaoning, China
| |
Collapse
|
13
|
Antoine R, Broyer M, Dugourd P. Metal nanoclusters: from fundamental aspects to electronic properties and optical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2222546. [PMID: 37363801 PMCID: PMC10286677 DOI: 10.1080/14686996.2023.2222546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Monolayer-protected noble metal clusters, also called nanoclusters, can be produced with the atomic precision and in large-scale quantity and are playing an increasingly important role in the field of nanoscience. To outline the origin and the perspectives of this new field, we overview the main results obtained on free metal clusters produced in gas phase including mainly electronic properties, the giant atom concept, the optical properties, briefly the role of the metal atom (alkali, divalent, noble metal) and finally the atomic structure of clusters. We also discuss the limitations of the free clusters. Then, we describe the field of monolayer-protected metal clusters, the main results, the new offered perspectives, the added complexity, and the role of the ligand beyond the superatom concept.
Collapse
Affiliation(s)
- Rodophe Antoine
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Michel Broyer
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Philippe Dugourd
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| |
Collapse
|
14
|
Felix JPCS, Batista KEA, Morais WO, Nagurniak GR, Orenha RP, Rêgo CRC, Guedes-Sobrinho D, Parreira RLT, Ferrer MM, Piotrowski MJ. Molecular adsorption on coinage metal subnanoclusters: A DFT+D3 investigation. J Comput Chem 2023; 44:1040-1051. [PMID: 36576316 DOI: 10.1002/jcc.27063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Gold and silver subnanoclusters with few atoms are prominent candidates for catalysis-related applications, primarily because of the large fraction of lower-coordinated atoms exposed and ready to interact with external chemical species. However, an in-depth energetic analysis is necessary to characterize the relevant terms within the molecular adsorption process that can frame the interactions within the Sabatier principle. Herein, we investigate the interaction between Agn and Aun subnanoclusters (clu, n = 2-7) and N2 , NO, CO, and O2 molecules, using scalar-relativistic density functional theory calculations within van der Waals D3 corrections. The onefold top site is preferred for all chemisorption cases, with a predominance of linear (≈180°) and bent (≈120°) molecular geometries. A larger magnitude of adsorption energy is correlated with smaller distances between molecules and clusters and with the weakening of the adsorbates bond strength represented by the increase of the equilibrium distances and decrease of molecular stretching frequencies. From the energetic decomposition, the interaction energy term was established as an excellent descriptor to classify subnanoclusters in the adsorption/desorption process concomitant with the Sabatier principle. The limiting cases: (i) weak molecular adsorption on the subnanoclusters, which may compromise the reaction activation, where an interaction energy magnitude close to 0 eV is observed (e.g., physisorption in N2 /Ag6 ); and (ii) strong molecular interactions with the subnanoclusters, given the interaction energy magnitude is larger than at least one of the individual fragment binding energies (e.g., strong chemisorption in CO/Au4 and NO/Au4 ), conferring a decrease in the desorption rate and an increase in the possible poisoning rate. However, the intermediate cases are promising by involving interaction energy magnitudes between zero and fragment binding energies. Following the molecular closed-shell (open-shell) electronic configuration, we find a predominant electrostatic (covalent) nature of the physical interactions for N2 ⋯clu and CO ⋯clu (O2 ⋯clu and NO⋯clu), except in the physisorption case (N2 /Ag6 ) where dispersive interaction is dominant. Our results clarify questions about the molecular adsorption on subnanoclusters as a relevant mechanistic step present in nanocatalytic reactions.
Collapse
Affiliation(s)
- João P C S Felix
- Department of Physics, Federal University of Pelotas, Pelotas, Brazil
| | - Krys E A Batista
- Coordenadoria Regional de Ensino, Secretaria de Estado de Educação e Desporto, Tefé, Brazil
| | - Wesley O Morais
- Department of Physics, Federal University of Pelotas, Pelotas, Brazil
| | - Glaucio R Nagurniak
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Renato P Orenha
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, Brazil.,Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Celso R C Rêgo
- Institute of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Renato L T Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Mateus M Ferrer
- Center of Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | | |
Collapse
|
15
|
Garg S, Kaur N, Goel N, Molayem M, Grigoryan VG, Springborg M. Properties of Naked Silver Clusters with Up to 100 Atoms as Found with Embedded-Atom and Density-Functional Calculations. Molecules 2023; 28:molecules28073266. [PMID: 37050029 PMCID: PMC10096883 DOI: 10.3390/molecules28073266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
The structural and energetic properties of small silver clusters Agn with n = 2-100 atoms are reported. For n = 2-100 the embedded atom model for the calculation of the total energy of a given structure in combination with the basin-hopping search strategy for an unbiased structure optimization has been used to identify the energies and structures of the three energetically lowest-lying isomers. These optimized structures for n = 2-11 were subsequently studied further through density-functional-theory calculations. These calculations provide additional information on the electronic properties of the clusters that is lacking in the embedded-atom calculations. Thereby, also quantities related to the catalytic performance of the clusters are studied. The calculated properties in comparison to other available theoretical and experimental data show a good agreement. Previously unidentified magic (i.e., particularly stable) clusters have been found for n>80. In order to obtain a more detailed understanding of the structural properties of the clusters, various descriptors are used. Thereby, the silver clusters are compared to other noble metals and show some similarities to both copper and nickel systems, and also growth patterns have been identified. All vibrational frequencies of all the clusters have been calculated for the first time, and here we focus on the highest and lowest frequencies. Structural effects on the calculated frequencies were considered.
Collapse
Affiliation(s)
- Shivangi Garg
- Theoretical and Computational Chemistry Group, Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Navjot Kaur
- Department of Chemistry, Faculty of Science, SGT University, Gurugram 122505, India
| | - Neetu Goel
- Theoretical and Computational Chemistry Group, Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Mohammad Molayem
- Physical and Theoretical Chemistry, Department of Chemistry, University of Saarland, 66123 Saarbrücken, Germany
| | - Valeri G Grigoryan
- Physical and Theoretical Chemistry, Department of Chemistry, University of Saarland, 66123 Saarbrücken, Germany
| | - Michael Springborg
- Laboratory of Theoretical Chemistry, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
16
|
Liu Y, Cui T, Li D. Emerging d- d orbital coupling between non- d-block main-group elements Mg and I at high pressure. iScience 2023; 26:106113. [PMID: 36879798 PMCID: PMC9984552 DOI: 10.1016/j.isci.2023.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
d-d orbital coupling, which increases anisotropic and directional bonding, commonly occurs between d-block transition metals. Here, we report an unexpected d-d orbital coupling in the non-d-block main-group element compound Mg2I based on first-principles calculations. The unfilled d orbitals of Mg and I atoms under ambient conditions become part of the valence orbitals and couple with each other under high pressures, resulting in the formation of highly symmetric I-Mg-I covalent bonding in Mg2I, which forces the valence electrons of Mg atoms into the lattice voids to form interstitial quasi-atoms (ISQs). In turn, the ISQs highly interact with the crystal lattice, contributing to lattice stability. This study greatly enriches the fundamental understanding of chemical bonding between non-d-block main-group elements at high pressures.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Da Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
17
|
Yang Q, Jiang GD, He SG. Enhancing the Performance of Global Optimization of Platinum Cluster Structures by Transfer Learning in a Deep Neural Network. J Chem Theory Comput 2023; 19:1922-1930. [PMID: 36917066 DOI: 10.1021/acs.jctc.2c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The global optimization of metal cluster structures is an important research field. The traditional deep neural network (T-DNN) global optimization method is a good way to find out the global minimum (GM) of metal cluster structures, but a large number of samples are required. We developed a new global optimization method which is the combination of the DNN and transfer learning (DNN-TL). The DNN-TL method transfers the DNN parameters of the small-sized cluster to the DNN of the large-sized cluster to greatly reduce the number of samples. For the global optimization of Pt9 and Pt13 clusters in this research, the T-DNN method requires about 3-10 times more samples than the DNN-TL method, and the DNN-TL method saves about 70-80% of time. We also found that the average amplitude of parameter changes in the T-DNN training is about 2 times larger than that in the DNN-TL training, which rationalizes the effectiveness of transfer learning. The average fitting errors of the DNN trained by the DNN-TL method can be even smaller than those by the T-DNN method because of the reliability of transfer learning. Finally, we successfully obtained the GM structures of Ptn (n = 8-14) clusters by the DNN-TL method.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, PR China
| | - Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, PR China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, PR China
| |
Collapse
|
18
|
Maldonado AS, Faccio R, Ramos SB. Structure and size-dependent vibrational and thermal properties of Ni clusters: A systematic ab initio approach. J Mol Graph Model 2023; 121:108445. [PMID: 36907014 DOI: 10.1016/j.jmgm.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
There is scarce information on the vibrational and thermal properties of small Ni clusters. Here, the outcomes of ab initio spin-polarized density functional theory calculations on the size and geometry effects upon the vibrational and thermal properties of Nin (n = 13 and 55) clusters, are discussed. For theses clusters a comparison is presented between the closed shell symmetric octahedral (Oh) and the icosahedral (Ih) geometries. The results indicate that the Ih isomers are lower in energy. Besides, ab initio molecular dynamics runs at T = 300K show that Ni13 and Ni55 clusters transform from their initial Oh geometries towards the corresponding Ih ones. For Ni13, we also consider the lowest energy less symmetric layered 1-3-6-3 structure, and the cuboid, recently observed experimentally for Pt13, which is competitive in energy but is unstable, as phonon analysis reveals. We calculate their vibrational density of states (νDOS) and heat capacity, and compare with the Ni FCC bulk counterpart. The characteristic features of the νDOS curves of these clusters are interpreted in terms of the clusters' sizes, the interatomic distance contractions, the bond order values as well as the internal pressure and strains of the clusters. We find that the softest possible frequency of the clusters is size and structure-dependent, being the smallest for the Oh ones. We identify mostly shear, tangential type displacements involving mainly surface atoms for the lowest frequency of the spectra of both Ih and Oh isomers. For the maximum frequencies of these clusters the central atom shows anti-phase movements against groups of nearest neighbor atoms. An excess of heat capacity at low temperatures with respect to the bulk is found, while at high temperatures a constant limiting value, close but lower to the Dulong and Petit value, is determined.
Collapse
Affiliation(s)
- A S Maldonado
- Dpto. de Física, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas - CONICET - UNCo, Buenos Aires 1400, 8300, Neuquén, Argentina
| | - R Faccio
- Área Física & Centro NanoMat, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, CC 1157, CP 11800, Montevideo, Uruguay
| | - S B Ramos
- Dpto. de Física, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas - CONICET - UNCo, Buenos Aires 1400, 8300, Neuquén, Argentina.
| |
Collapse
|
19
|
Aikens CM, Jarrold CC. Virtual Issue on Experiment-Theory Synergies in the Study of Metal and Metal-Containing Clusters. J Phys Chem A 2023; 127:3-5. [PMID: 36632723 DOI: 10.1021/acs.jpca.2c08524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine M Aikens
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr. North, Manhattan, Kansas 66506, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Huang B, Zhang H, Geng L, Luo Z. An Open-Shell Superatom Cluster Ta 10- with Enhanced Stability by United d-d π Bonds and d-Orbital Superatomic States. J Phys Chem Lett 2022; 13:9711-9717. [PMID: 36220259 DOI: 10.1021/acs.jpclett.2c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We carried out a comprehensive study on the gas-phase reactions of Tan- (n = 5-27) with nitrogen using a customized reflection time-of-flight mass spectrometer coupled with a velocity map imaging apparatus (Re-TOFMS-VMI). Among the studied tantalum clusters, Ta10- exhibits prominent mass abundance indicative of its unique inertness. DFT calculation results revealed a D4d bipyramidal prolate structure of the most stable Ta10-, which was verified by photoelectron spectroscopy experiments. The calculations also unveiled that Ta10- has the largest HOMO-LUMO gap and second-order difference of binding energy among the studied clusters. This is associated with its well-organized superatomic orbitals, which consist of both 6s and 5d orbitals of tantalum atoms, allowing for splitting of superatomic 1D and 2P orbitals and an enlarged gap between the singly occupied molecular orbital (SOMO) and unoccupied β counterpart, which brings forth stabilization energy pertaining to Jahn-Teller distortion. Also, the SOMO exhibits a united d-d π orbital pattern that embraces the central Ta8- moiety.
Collapse
Affiliation(s)
- Benben Huang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Transition metal atom anchored by defective WSSe monolayer as bifunctional single atom catalyst for ORR and OER. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kazak L, Meiwes-Broer KH, Tiggesbäumker J. Ionization potentials of Mg N ( N = 7-56) clusters formed by spontaneous collapse of magnesium foam in helium nanodroplets. Phys Chem Chem Phys 2022; 24:23350-23356. [PMID: 36134466 DOI: 10.1039/d2cp03075f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ionization potentials of magnesium clusters (MgN, N = 7-56) are determined by doping ultracold helium nanodroplets (HeM, M ≈ 52 000) with Mg atoms. Inspecting the particle size distributions resulting from non-resonant, short-wavelength, single-photon ionization gives evidence that beyond a certain ensemble size, the developing foam structure undergoes a spontaneous collapse on the way to the laser interaction region. As a result, hot Mg clusters form in the relaxation process. The spontaneous collapse manifests in a substantial change in the size distributions, when recording mass spectra at wavelengths shorter than 272 nm. Tracing individual MgN signals as a function of laser photon energy allows extraction of size-specific ionization potentials, which for small clusters show a good agreement with results obtained from density functional theory simulations. The further development is compared to calculations based on the liquid drop model. However, even when quantum effects are included, the simple scaling law is not able to reproduce the development of the ionization potentials. The results suggest that small neutral magnesium clusters behave as non-metallic. The comparison to electron affinities and band gaps obtained from photoemission experiments on MgN- provides information on the charge state dependence of the non-metal-to-metal transition and properties like the Mulliken electron negativity.
Collapse
Affiliation(s)
- Lev Kazak
- Institute of Physics, University of Rostock, 18059, Rostock, Germany.
| | - Karl-Heinz Meiwes-Broer
- Institute of Physics, University of Rostock, 18059, Rostock, Germany. .,Department "Life, Light and Matter", University of Rostock, 18059, Rostock, Germany
| | - Josef Tiggesbäumker
- Institute of Physics, University of Rostock, 18059, Rostock, Germany. .,Department "Life, Light and Matter", University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
23
|
Wang X, Wang H, Luo Q, Yang J. Structural and electro-catalytic properties of copper clusters: a study via deep learning and first principles . J Chem Phys 2022; 157:074304. [DOI: 10.1063/5.0100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the atomic structure of clusters has been a long-term challenge in theoretical calculations due to the high computational cost of density-functional theory (DFT). Deep learning potential (DP), as an alternative way, has been demonstrated to be able to conduct cluster simulations with close-to DFT accuracy but at a much lower computational cost. In this work, we update 34 structures of the 41 Cu clusters with atomic numbers ranging from 10 to 50 by combining global optimization and the DP model. The calculations show that the configuration of small Cu n clusters ( n = 10 −15) tends to be oblate and it gradually transforms into a cage-like configuration as the size increases ( n > 15). Based on the updated structures, their relative stability and electronic properties are extensively studied. Besides, we select 3 different clusters (Cu13, Cu38, and Cu49) to study their electrocatalytic ability of CO2 reduction. The simulation indicates that the main product is CO for these three clusters, while the selectivity of hydrocarbons is inhibited. This work is expected to clarify the ground-state structures and fundamental properties of Cu n clusters, and to guide experiments for the design of Cu-based catalysts.
Collapse
Affiliation(s)
- Xiaoning Wang
- University of Science and Technology of China, China
| | | | | | - Jinlong Yang
- Dept.of Chem. Phys., University of Science and Technology of China, China
| |
Collapse
|
24
|
Ab initio DFT simulation of electronic and magnetic properties of Ti n+1 and FeTi n clusters. J Mol Model 2022; 28:56. [PMID: 35132467 DOI: 10.1007/s00894-022-05041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
We report a computational investigation of the electronic and magnetic properties of neutral Tin+1 and FeTin (n = 1-10) clusters using ab initio calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA). The best structures for Tin+1 and FeTin clusters are planar for size n < 5, while from n = 5, they showed a compact three-dimensional cage structure. For the best structures of the FeTin clusters, the Fe atoms favor the peripheral position with the highest coordination with the neighboring Ti atoms. The evolution as a function of the size of the average binding energies (Eb/atom) and HOMO-LUMO gaps of Tin+1 and FeTin (n = 1-10) clusters are studied. The stability results show that the Tin+1 clusters have relatively higher stability than the FeTin cluster with the same size. In addition, the vertical ionization potentials and electron affinities, chemical hardness, and atomic magnetic moment of Tin+1 and FeTin (n = 1-10) clusters are also investigated.
Collapse
|
25
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
26
|
Chen L, Wang L. Unbiased fuzzy global optimization of Morse clusters with short-range potential for N ≤ 400. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liping Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Rodríguez‐Kessler PL, Rodríguez‐Domínguez AR, Muñoz‐Castro A. Structural Evolution and Electronic Properties of Intermediate Sized Ti
n
(n=33--60) Clusters. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peter L. Rodríguez‐Kessler
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux, 2810 Santiago Chile
| | | | - Alvaro Muñoz‐Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux, 2810 Santiago Chile
| |
Collapse
|
28
|
Bezerra RC, Mendonça JPAD, Mendes PCD, Passos RR, Da Silva JLF. Role of the OH-group in the adsorption properties of methanol, ethanol, and ethylene glycol on 15-atom 3d, 4d, and 5d transition-metal clusters. Phys Chem Chem Phys 2021; 23:17553-17566. [PMID: 34369523 DOI: 10.1039/d1cp01806j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of alcohols on transition-metal (TM) substrates has received the attention of many researchers due to the applications of alcohols in several technological fields. However, our atomic-level understanding is still far from satisfactory, in particular for the interaction of alcohols with finite-size TM clusters, where new effects can arise due to the presence of quantum-size effects. In this work, we report a theoretical investigation of the adsorption properties of methanol, ethanol, and ethylene glycol on 12 different 3d, 4d, and 5d TM15 clusters based on density functional theory calculations within the semi-empirical D3 van der Waals corrections. From the correlation analysis of all the lowest- and high-energy configurations, we identified the adsorption modes of methanol, ethanol, and ethylene glycol on the TM15 clusters, in which the OH group binds to the cationic TM sites via the O-TM and H-TM interactions. Due to the relatively weak alcohol-TM15 interaction, the changes induced on the TM15 clusters are small, except for Au15 and Ru15, where the bare cluster changes its structure to a nearby minimum in the potential energy surface. The adsorption energy for the alcohol/TM15 systems is correlated to the combination of several parameters, in which the main contribution is connected with the O-TM interaction and the HOTM angles. Furthermore, the TM electronegativity is an important descriptor for the methanol and ethanol adsorption energies, while charge transfer is important for ethylene glycol.
Collapse
Affiliation(s)
- Raquel C Bezerra
- Department of Chemistry, Federal University of Amazonas, Av. General Rodrigo Octávio, 6200, Coroado I, 69080-900, Manaus, AM, Brazil
| | | | | | | | | |
Collapse
|
29
|
Orlando Morais F, Andriani KF, Da Silva JLF. Investigation of the Stability Mechanisms of Eight-Atom Binary Metal Clusters Using DFT Calculations and k-means Clustering Algorithm. J Chem Inf Model 2021; 61:3411-3420. [PMID: 34161078 DOI: 10.1021/acs.jcim.1c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures.
Collapse
Affiliation(s)
- Felipe Orlando Morais
- São Carlos Institute of Physics, University of São Paulo, P.O. Box 400, 13566-590 São Carlos, SP, Brazil
| | - Karla F Andriani
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
30
|
Touchton AJ, Wu G, Hayton TW. [Ni 8(CN tBu) 12][Cl]: A nickel isocyanide nanocluster with a folded nanosheet structure. J Chem Phys 2021; 154:211102. [PMID: 34240994 DOI: 10.1063/5.0054231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The reaction of 1.75 equiv of tBuNC with Ni(1,5-COD)2, followed by crystallization from benzene/pentane, resulted in the isolation of [Ni8(CNtBu)12][Cl] (2) in low yields. Similarly, the reaction of Ni(1,5-COD)2 with 0.6 equiv of [Ni(CNtBu)4], followed by addition of 0.08 equiv of I2, resulted in the formation of [Ni8(CNtBu)12][I] (3), which could be isolated in 52% yield after work-up. Both 2 and 3 adopt folded nanosheet structures in the solid state, characterized by two symmetry-related planar Ni4 arrays, six terminally bound tBuNC ligands, and six tBuNC ligands that adopt bridging coordination modes. The metrical parameters of the six bridging tBuNC ligands suggest that they have been reduced to their [tBuNC]2- form. In contrast to the nanosheet structures observed for 2 and 3, gas phase Ni8 is predicted to feature a compact bisdisphenoid ground state structure. The strikingly different structural outcomes reveal the profound structural changes that can occur upon addition of ligands to bare metal clusters. Ultimately, the characterization of 2 and 3 will enable more accurate structural predictions of ligand-protected nanoclusters in the future.
Collapse
Affiliation(s)
- Alexander J Touchton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, USA
| |
Collapse
|
31
|
Yonezawa AF, Nagurniak GR, Orenha RP, Silva EHD, Parreira RLT, Piotrowski MJ. Stability Changes in Iridium Nanoclusters via Monoxide Adsorption: A DFT Study within the van der Waals Corrections. J Phys Chem A 2021; 125:4805-4818. [PMID: 34048257 DOI: 10.1021/acs.jpca.1c02694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small iridium nanoclusters are prominent subnanometric systems for catalysis-related applications, mainly because of a large surface-to-volume ratio, noncoalescence feature, and tunable properties, which are completely influenced by the number of atoms, geometry, and molecular interaction with the chemical environment. Herein, we investigate the interaction between Irn nanoclusters (n = 2-7) and polluting molecules, CO, NO, and SO, using van der Waals D3 corrected density functional theory calculations. Starting from a representative structural set, we determine the growth pattern of the lowest energy unprotected Irn nanoclusters, which is based on open structural motifs, and from the adsorption of a XO (X = C, N, and S) molecule, the preferred high-symmetric adsorption sites were determined, dominated by the onefold top site. For protected systems, 4XO/Ir4 and 6XO/Ir6, we found a reduction in the total magnetic moment, while the equilibrium bonds of the nanoclusters expanded (contracted) due to mCO and mNO (mSO) adsorption, with exceptions for systems with large structural distortions (4SO/Ir4 and 6NO/Ir6). Meanwhile, the C-O and N-O (S-O) bond strength decreases (increases) following an increase (decrease) in the C-O and N-O (S-O) distances upon adsorption. We show, through energetic analysis, that for the different chemical environments, relative stability changes occur from the most stable unprotected nanoclusters, planar square (Ir4), and prism (Ir6) to higher energy isomers. The change in the stability order between the two competing protected systems is feasible if the balance between the interaction energy (additive term) and distortion energies (nonadditive terms) compensates for the relative total energies of the unprotected configurations. For all systems, the interaction energy is the main reason responsible for stability alterations, except for 4SO/Ir4, where the main contribution is from a small penalty due to Ir4 distortions upon adsorption, and for 4NO/Ir4, where the energetic effects from the adsorption do not overcome the difference between the binding energies of the unprotected nanoclusters. Finally, from energy decomposition and Hirshfeld charge analysis, we find a predominant covalent nature of the physical contributions in mOX···Irn interactions with a cationic core (Irn) and an anionic shell (XO coverage).
Collapse
Affiliation(s)
- Alex F Yonezawa
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil
| | - Glaucio R Nagurniak
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-004 Blumenau, SC, Brazil
| | - Renato P Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600 Franca, SP, Brazil
| | - Eder H da Silva
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600 Franca, SP, Brazil
| | - Renato L T Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600 Franca, SP, Brazil
| | - Maurício J Piotrowski
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
32
|
Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. J Chem Inf Model 2021; 61:2294-2301. [PMID: 33939914 DOI: 10.1021/acs.jcim.1c00097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our atomistic understanding of the physical-chemical parameters that drives the changes in the relative stability of clusters induced by adsorbed molecules is far from satisfactory. In this work, we employed density functional theory calculations to address this problem using CO adsorption on 13-atom transition-metal clusters, TM13, namely, nCO/TM13, where TM = Ru, Rh, Pd, and Ag, and n = 1-6. Unexpectedly, changes in the relative stability take place for all systems at a lower coverage, namely, at n = 3 (Ru13), 4 (Rh13, Ag13), and 2 (Pd13). To address the effects that lead to changes in the stability, we proposed an energy decomposition scheme for the binding energy of the nCO/TM13 systems, which yields that the change in relative stability is dominated by the interaction energy and cluster distortion energy upon adsorption, where the interaction energy is higher for high-energy unprotected clusters. Furthermore, we characterized all adsorption parameters, which helps us to complement our atomistic understanding.
Collapse
Affiliation(s)
- Krys E A Batista
- Department of Physics, Federal University of Pelotas, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Marinalva D Soares
- Department of Science and Technology, Federal University of São Paulo, 12231-280 São José dos Campos, SP, Brazil
| | - Marcos G Quiles
- Department of Science and Technology, Federal University of São Paulo, 12231-280 São José dos Campos, SP, Brazil
| | - Maurício J Piotrowski
- Department of Physics, Federal University of Pelotas, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
33
|
|
34
|
Decrypting the Structural, Electronic and Spectroscopic Properties of GeMgn+(n = 2–12) Clusters: A DFT Study. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02039-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Salcedo A, Irigoyen B. DFT insights into structural effects of Ni-Cu/CeO 2 catalysts for CO selective reaction towards water-gas shift. Phys Chem Chem Phys 2021; 23:3826-3836. [PMID: 33533765 DOI: 10.1039/d0cp05613h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-gas shift (WGS) reaction is a key step in hydrogen production, particularly to meet the high-purity H2 requirement of PEM fuel cells. The catalysts currently employed in large-scale WGS plants require a two-step process to overcome thermodynamic and kinetic limitations. Ni-Cu/CeO2 solids are promising catalysts for the one-step process required for small-scale applications, as the addition of Cu hinders undesired methanation reactions occurring on Ni/CeO2. In this work, we performed calculations on Ni4-xCux/CeO2(111) systems to evaluate the influence of cluster conformation on the selectivity towards water-gas shift. The structure and miscibility of CeO2-supported Ni4-xCux clusters were investigated and compared with those of gas-phase clusters to understand the effect of metal-support interactions. The adsorption of CO onto apical Ni and Cu atoms of Ni4-xCux/CeO2(111) systems was studied, and changes in the C-O bond strength were confirmed at the electronic level by investigating shifts in the 3σ and 1π orbitals. The selectivity towards WGS was evaluated using Brønsted-Evans-Polanyi relations for the C-O activation energy. Overall, a strengthening of the C-O bond and an increase in CO dissociation energy were verified on Cu-containing clusters, explaining the improvement in selectivity of Ni4-xCux/CeO2(111) systems.
Collapse
Affiliation(s)
- Agustín Salcedo
- Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Ingeniería Química, Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina. and CONICET - Universidad de Buenos Aires, Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES), Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Beatriz Irigoyen
- Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Ingeniería Química, Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina. and CONICET - Universidad de Buenos Aires, Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES), Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
36
|
Zhang H, Zhang M, Jia Y, Geng L, Yin B, Li S, Luo Z, Pan F. Vanadium Cluster Neutrals Reacting with Water: Superatomic Features and Hydrogen Evolution in a Fishing Mode. J Phys Chem Lett 2021; 12:1593-1600. [PMID: 33545005 DOI: 10.1021/acs.jpclett.0c03809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen evolution reaction (HER) is known as the heart of various energy storage and conversation systems of renewable energy sources. Here we observe the cluster reactions of a light transition metal, vanadium, with water in a gas-phase flow tube reactor. While HER products of V1 and V2 were not observed, the effective HER of water on neutral Vn (n ≥ 3) clusters reveals reasonable and size-dependent reactivity of the vanadium clusters. Superatomic features and reaction dynamics of V10, V13, and V16 are highlighted. Among the three typical superatoms, V10 and V16 exhibit an abnormal superatomic orbital energy level order, 1S|2S|1P|1D..., where the energy-reduced 2S orbital helps to accommodate the geometric structure and hence reinforce the cluster stability. In comparison, V13 bears a less symmetrical structure and reacts readily with water, allowing for recombination of a hydroxyl atom with an adsorbed hydrogen atom, akin to a fishing-mode HER process. The joint experimental and theoretical study on neutral Vn clusters clarifies the availability of superatom chemistry for transition metals and appeals further development of cluster theory based on electronic cloud/orbital analysis instead of simply counting the valence electrons. Also, we provide insights into the HER mechanism of metal clusters and propose a strategy to design new materials for portable fuel cells of hydrogen energy.
Collapse
Affiliation(s)
- Hanyu Zhang
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingzheng Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yuhan Jia
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lijun Geng
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baoqi Yin
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shunning Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory of Molecular sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| |
Collapse
|
37
|
Lei X, Zhang H, Jia Y, Luo Z. Gas-phase preparation and the stability of superatomic Nb 11O 15. Phys Chem Chem Phys 2021; 23:15766-15773. [PMID: 34286767 DOI: 10.1039/d1cp02128a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a study of the reactions of pure metal clusters Nbn- with dioxygen in the gas phase. It is found that the presence of low-concentration dioxygen reactants results in oxygen-addition products, whereas sufficient high-concentration dioxygen enables oxygen-etching reactions giving rise to molecular niobium oxides. Interestingly, in the presence of a suitable gas flow rate of an intermediate dioxygen concentration, a highly selective product Nb11O15- shows up in the mass spectra. Utilizing density functional theory (DFT) calculations, we have discussed the reactivities of Nbn- (3 ≤ n ≤ 14) clusters with oxygen, and unveiled the reasonable stability of Nb11O15- pertaining to its unique geometric structure with a D5h Nb@Nb10 core fully protected by 15 bridge-oxygen atoms. The oxygen-passivated Nb@Nb10O15- cluster exhibits a large HOMO-LUMO gap (1.46 eV) and effective multicenter bonds with remarkable superatom orbitals for all the 26 valence electrons of the Nb@Nb10 core corresponding to well-staggered energy levels. We illustrate the superatomic features in the Nb@Nb10 metallic core for which the adaptive natural density partitioning (AdNDP) analysis unveils thirteen 11c-2e bonds. Among them, one of the 11c-2e bonds accounts for the superatomic S orbital, three bonds correspond to superatomic P orbitals, another five display vivid D orbital characteristics, and the remaining four 11c-2e bonds are assigned to F orbital features. In addition, the net atomic charge of the center Nb atom is as high as -0.804 |e| rendering core-shell electrostatic interactions and the shielding effect of the Nb10O15 shell.
Collapse
Affiliation(s)
- Xin Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Hanyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yuhan Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Limon P, Miralrio A, Gomez-Balderas R, Castro M. Carbon Monoxide Activation on Small Iron Magnetic Cluster Surfaces, Fe nCO, n = 1-20. A Theoretical Approach. J Phys Chem A 2020; 124:9951-9962. [PMID: 33207867 DOI: 10.1021/acs.jpca.0c07042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical activation of the carbon monoxide (CO) molecule on the surface of iron clusters Fen (n = 1-20) is studied in this work. By means of density functional theory (DFT) all-electron calculations, we have found that the adsorption of CO over the bare magnetic Fen (n = 1-20) clusters is thermochemically favorable. The Fen-CO interaction increases the C-O bond length, from 1.128 ± 0.014 Å, for isolated CO, up to 1.251 Å, for Fe9CO. Also, the calculated wavenumbers associated with the stretching modes νCO are decreased, or red-shifted, as another indicator of the CO bond weakening, passing from 2099 ± 4 to 1438 cm-1. Markedly, wavenumbers of vibrational modes νCO agree admirably well in comparison with experimental results reported for FenCO (n = 1, 18-20), getting small errors below 2.6%. The C-O bond is enlarged on the FenCO (n = 1-20) composed systems, as the CO molecule increases its bonding, charge transference, and coordination with the iron cluster. Therefore, small bare iron particles Fen (n = 1-20) can be proposed to promote the CO dissociation, especially Fe9CO, which has been proven to obtain the most prominent activation of the strong C-O bond by means of the charge transference from the metal core.
Collapse
Affiliation(s)
- Patricio Limon
- Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, C.P. 54700, Estado de México, México
| | - Alan Miralrio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, México
| | - Rodolfo Gomez-Balderas
- Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, C.P. 54700, Estado de México, México
| | - Miguel Castro
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
39
|
Affiliation(s)
- Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Qiuying Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Vijay Kumar
- Center for Informatics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar 201314, U. P., India
- Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon 122001, Haryana, India
| |
Collapse
|
40
|
Marín P, Alonso JA, Germán E, López MJ. Nanoalloys of Metals Which Do Not Form Bulk Alloys: The Case of Ag-Co. J Phys Chem A 2020; 124:6468-6477. [PMID: 32668160 DOI: 10.1021/acs.jpca.0c02991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ag and Co metals do not form macroscopic solid or liquid alloys. However, AgmCon clusters have been produced in dual-target dual-laser vaporization experiments, and the same occurs for other pairs of immiscible metals. We have performed density functional calculations to shed light on this phenomenon. The main result, obtained for clusters with sizes m + n not larger than 11, is that the cohesive energies justify that those clusters can be formed starting from free Ag and Co atoms, which is the case in the vaporization experiments. At the same time, mixing of Ag and Co is difficult even at the nanoscale. This is revealed by the application of several miscibility criteria. Those two features become, nevertheless, compatible in the clusters. Even if the cluster sizes considered are small, the emerging trend becomes clear: Co atoms form a core in the inner part, surrounded by a shell of Ag atoms on the surface. A consequence is that core-shell clusters can be formed from pairs of metals that do not form macroscopic alloys. The magnetic moments μ of the AgmCon clusters are due mainly to the Co atoms, and the presence of Ag induces a reduction in the magnitude of μ.
Collapse
Affiliation(s)
- Pelayo Marín
- Departamento de Fı́sica Teórica, Atómica y Óptica, University of Valladolid, 47011 Valladolid, Spain
| | - Julio A Alonso
- Departamento de Fı́sica Teórica, Atómica y Óptica, University of Valladolid, 47011 Valladolid, Spain.,Donostia International Physics Center, 20018 San Sebastián, Spain
| | - Estefanía Germán
- Departamento de Fı́sica Teórica, Atómica y Óptica, University of Valladolid, 47011 Valladolid, Spain
| | - María J López
- Departamento de Fı́sica Teórica, Atómica y Óptica, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
41
|
Deshpande SS, Potekar DB, Shelke PB, Deshpande MD. Theoretical study of interaction of Fe 13O 8@Zn 48O 48 cluster with dopamine: Magnetic and optical properties. J Mol Graph Model 2020; 99:107640. [PMID: 32599508 DOI: 10.1016/j.jmgm.2020.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
In this study, we modelled the interaction of Fe13O8 and Fe13O8@Zn48O48 (core@shell) cluster with a biologically active dopamine molecule using density functional theory. First, the electronic, magnetic and optical properties of core@shell, Fe13O8@Zn48O48 cluster investigated and compared with isolated Fe13O8 and Zn48O48 clusters. Fe13O8@Zn48O48 cluster is found to be energetically stable. For Fe13O8 and Fe13O8@Zn48O48 clusters have the net magnetic moment 42 μB. The decrease in HOMO-LUMO gap of core@shell cluster as compared to that of isolated clusters reflects the higher reactivity. The results of the site dependent interaction of Fe13O8 and Fe13O8@Zn48O48 clusters with dopamine molecule are presented. The interaction strength is determined in terms of the cluster-dopamine complex binding energy and found to be enhanced for core@shell cluster than the Fe13O8. Furthermore, the calculated results predict that in presence of dopamine, the magnetic moment of Fe13O8 and Fe13O8@Zn48O48 cluster remains unaffected. The analysis of optical spectra of core@shell indicates the obvious red shift compared to Zn48O48 clusters. The optical spectra of Fe13O8@Zn48O48-dopamine shows the higher oscillator strength as compared to that of Fe13O8-dopamine complex. Fe13O8-dopamine complex gives rise to more quenched oscillator strengths as compared to that of bare iron oxide cluster. These results indicate interesting magneto-optical behaviour, which can be useful for biomedical applications.
Collapse
Affiliation(s)
- Swapnil S Deshpande
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India
| | - Dipali B Potekar
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India; Department of Physics, Ahmednagar College, Ahmednagar, 414001, Maharashtra, India
| | - Pradip B Shelke
- Department of Physics, Ahmednagar College, Ahmednagar, 414001, Maharashtra, India
| | - Mrinalini D Deshpande
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India.
| |
Collapse
|
42
|
Chen Z, Fan X, Shen Z, Ruan X, Wang L, Zeng H, Wang J, An Y, Hu Y. Cu Anchored Ti
2
NO
2
as High Performance Electrocatalyst for Oxygen Evolution Reaction: A Density Functional Theory Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiguo Chen
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Xiaoli Fan
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Zihan Shen
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Xiaopeng Ruan
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Lan Wang
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Hanghang Zeng
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Jiahui Wang
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Yurong An
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| | - Yan Hu
- State Key Laboratory of Solidification Processing Centre of Advanced Lubrication and Seal Materials School of Material Science and Engineering Northwestern Polytechnical University 127 YouYi Western Road Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
43
|
Mendes PCD, Ocampo-Restrepo VK, Da Silva JLF. Ab initio investigation of quantum size effects on the adsorption of CO 2, CO, H 2O, and H 2 on transition-metal particles. Phys Chem Chem Phys 2020; 22:8998-9008. [PMID: 32293626 DOI: 10.1039/d0cp00880j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorption is a crucial preliminary step for the conversion of CO2 into higher-value chemicals, nonetheless, the atomistic understanding of how substrate particle size affects this step is still incomplete. In this study, we employed density functional theory to investigate the effects of particle size on the adsorption of model molecules involved in the CO2 transformations (CO2, CO, H2O and H2) on Con, Nin and Cun particles with different sizes (n = 13, 55, 147) and on the respective close-packed surfaces. We found significant size-dependence of the adsorption properties for physisorbed (linear) and chemisorbed (bent) CO2 on the substrates and distinct (symmetric or asymmetric) stretching of the C-O bonds, which can play a crucial role to understand the CO2 dissociation pathways. For CO and H2, some properties showed small oscillations, due to size effects that induced alternation of the adsorption site preference for different particle sizes; for H2O, the adsorption properties were almost independent of particle size. The presence of low-coordinated adsorption sites resulted in a trend for stronger adsorption and greater charge transfer for smaller clusters. Fixing the size-independent factors (e.g., type of metal), our results show that CO2 adsorption on transition-metal clusters is significantly affected by particle size, suggesting that substrate particle size could be a key factor to understand and control the catalytic transformations of CO2.
Collapse
Affiliation(s)
- Paulo C D Mendes
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | - Vivianne K Ocampo-Restrepo
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| |
Collapse
|
44
|
Anumula R, Xiao P, Cui C, Wu H, Cui G, Fang WH, Luo Z, Yao J. A small bimetallic Ag 3Cu 2 nanocluster with dual emissions within and against Kasha's rule. NANOSCALE 2020; 12:7864-7869. [PMID: 32227024 DOI: 10.1039/d0nr00471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single crystals of a small bimetallic Ag3Cu2 nanocluster protected by six ligands of 2,4-dimethylbenzene thiol are synthesized by a one-pot procedure of wet chemistry. This Ag3Cu2 nanocluster bears a trigonal bipyramid metallic core with two copper atoms located on both sides of a triangular Ag3. Interestingly, the six Cu-Ag side edges of the trigonal bipyramid are fully protected by the six ligands giving rise to reinforced stability and high chemical purity. More interestingly, this Ag3Cu2 cluster shows strong dual fluorescence emissions in both ultraviolet visible (UV-vis) and near infrared (NIR) regions. Theoretical calculations reproduce the absorption and fluorescence spectra where the NIR emission at 824 nm is assigned to the S1→ S0 transition, while the simultaneous emission in the visible band is due to the radiation of highly excited states and is against Kasha's rule.
Collapse
Affiliation(s)
- Rajini Anumula
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang F, Zhang H, Xin W, Chen P, Hu Y, Zhang X, Zhao Y. Probing the structural evolution and electronic properties of divalent metal Be 2Mg n clusters from small to medium-size. Sci Rep 2020; 10:6052. [PMID: 32269297 PMCID: PMC7142069 DOI: 10.1038/s41598-020-63237-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
Abstract
Bimetallic clusters have aroused increased attention because of the ability to tune their own properties by changing size, shape, and doping. In present work, a structural search of the global minimum for divalent bimetal Be2Mgn (n = 1-20) clusters are performed by utilizing CALYPSO structural searching method with subsequent DFT optimization. We investigate the evolution of geometries, electronic properties, and nature of bonding from small to medium-sized clusters. It is found that the structural transition from hollow 3D structures to filled cage-like frameworks emerges at n = 10 for Be2Mgn clusters, which is obviously earlier than that of Mgn clusters. The Be atoms prefer the surface sites in small cluster size, then one Be atom tend to embed itself inside the magnesium motif. At the number of Mg larger than eighteen, two Be atoms have been completely encapsulated by caged magnesium frameworks. In all Be2Mgn clusters, the partial charge transfer from Mg to Be takes place. An increase in the occupations of the Be-2p and Mg-3p orbitals reveals the increasing metallic behavior of Be2Mgn clusters. The analysis of stability shows that the cluster stability can be enhanced by Be atoms doping and the Be2Mg8 cluster possesses robust stability across the cluster size range of n = 1-20. There is s-p hybridization between the Be and Mg atoms leading to stronger Be-Mg bonds in Be2Mg8 cluster. This finding is supported by the multi-center bonds and Mayer bond order analysis.
Collapse
Affiliation(s)
- Feige Zhang
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Hairong Zhang
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Wang Xin
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Peng Chen
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yanfei Hu
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Xiaoyi Zhang
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yaru Zhao
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China.
| |
Collapse
|
46
|
Mokkath JH. Size and chemical order dependence of magnetic-ordering temperature and spin structure in Fe@Ni and Ni@Fe core-shell nanoparticles. Phys Chem Chem Phys 2020; 22:6275-6281. [PMID: 32129368 DOI: 10.1039/c9cp06905d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of particle size and chemical order on the temperature-dependent magnetic properties of Fe@Ni and Ni@Fe core-shell nanoparticles is studied in the framework of a classical spin Hamiltonian and Monte Carlo simulations. We found that the mean temperature-dependent magnetization and magnetic-ordering temperature are strongly affected by both the particle size (in size range of 4 to 16 nm) and core-shell chemical order. As a main result, we report the depression of the magnetic ordering-temperature with decreasing size of the elemental Fe and Ni nanoparticles. More specifically, in the case of Fe and Ni nanoparticles, the magnetic-ordering temperature is lowered by 40 (195 K) to 300 (175 K) compared to the bulk value for nanoparticle diameters ranging from 16 to 4 nm, respectively, consistent with previous theoretical data. We further provide a comprehensive insight into the magnetic properties of Fe@Ni and Ni@Fe nanoparticles, unveiling a rich and distinct magnetic-ordering temperature and spin structure that emphatically depends on the core/shell ratio.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, 7th Ring Road, P.O. Box 27235, Kuwait
| |
Collapse
|
47
|
Fernandes GFS, Machado FBC, Ferrão LFA. Identification of Magic Numbers in Homonuclear Clusters: The ε 3 Stability Ranking Function. J Phys Chem A 2020; 124:454-463. [PMID: 31851825 DOI: 10.1021/acs.jpca.9b11264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the rise of cluster-assembled materials, an index that is able to rank and identify stable clusters or molecules is of great interest in materials sciences and engineering. In the present work, we applied a stability ranking function (ε3) in nanoclusters formed by simple metals (Na, Mg), main group elements (Al), or transition metals (Ti, Cu). The ε3 function parameters are molecular properties derived from the wave function. These parameters can be divided into kinetic and thermodynamic descriptors, in which the kinetic descriptors are the ionization potential and electronic excitation energy, while the atomization free Gibbs energy is the thermodynamic one. This simple ε3 function was able to identify the possible magic numbers of the studied clusters across the periodic table in a good agreement with previous experimental and theoretical works.
Collapse
Affiliation(s)
- Gabriel F S Fernandes
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| | - Francisco B C Machado
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| | - Luiz F A Ferrão
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| |
Collapse
|
48
|
Cui M, Huang X, Zhang X, Xie Q, Yang D. Ultra-small iridium nanoparticles as active catalysts for the selective and efficient reduction of nitroarenes. NEW J CHEM 2020. [DOI: 10.1039/d0nj03621h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ultra-small noble metal iridium nanoparticles (IrNPs) possessing super catalytic activity can be applied in the efficient and selective catalytic reduction of nitroarenes under mild reaction conditions for the first time.
Collapse
Affiliation(s)
- Malin Cui
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Xiaojing Huang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Xiaoyan Zhang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Qingfan Xie
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| |
Collapse
|
49
|
Peraça CST, Nagurniak GR, Orenha RP, Parreira RLT, Piotrowski MJ. A theoretical indicator of transition-metal nanoclusters applied in the carbon nanotube nucleation process: a DFT study. Dalton Trans 2020; 49:492-503. [DOI: 10.1039/c9dt04272e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The center of gravity of the occupied d-states for nanoclusters is obtained as a good indicator to reveal the best candidates to the interaction with the carbon nanotubes.
Collapse
Affiliation(s)
| | | | - Renato P. Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | | |
Collapse
|
50
|
de Amorim RV, Batista KEA, Nagurniak GR, Orenha RP, Parreira RLT, Piotrowski MJ. CO, NO, and SO adsorption on Ni nanoclusters: a DFT investigation. Dalton Trans 2020; 49:6407-6417. [PMID: 32352455 DOI: 10.1039/d0dt00288g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel nanoclusters are very promising for catalysis-related applications, especially involving chemical reactions with polluting molecules, such as carbon, nitrogen, and sulfur monoxides, which are directly or indirectly involved in serious environmental pollution problems. Therefore, it is of utmost importance to improve the understanding of the interaction between Ni nanoclusters and diatomic molecules, such as CO, NO, and SO, to provide insights into real subnano catalysts. Thus, here, we report an ab initio investigation based on density functional theory calculations within van der Waals D3 corrections to investigate the adsorption properties of CO, NO, and SO on Ni nanoclusters. From energetic and electronic criteria applied to Nin nanoclusters (n = 2-15), we selected Ni6 (octahedron) and Ni10 (triangular pyramid) nanoclusters as supports. According to our analyses, the molecular adsorption increases the stability of Ni nanoclusters, especially for Ni6 systems. The interaction intensity is larger for SO than for NO and CO in adsorbed systems, and the strong OS-Ni interaction is responsible for the well-known sulfur poisoning on transition-metal systems. The lowest energy adsorption sites are onefold for CO/Ni6, NO/Ni6, and CO/Ni10; twofold for NO/Ni10; and threefold for SO/Ni6 and CO/Ni10, where CO and NO molecules sustain linear and perpendicular geometries, while SO geometry changes to a bent configuration resulting from a sideways adsorption. The equilibrium bond lengths of the molecules expand upon adsorption, from 0.9% (NO/Ni6/10) to 11.3% (SO/Ni6/10), consequently, the internal molecular bond strengths decrease, since there is a reduction in the molecular stretching frequencies. This result occurs most strongly for SO followed by NO and CO systems, which was confirmed by an estimation of the energetic contribution of the distortion after the adsorption process. Thus, the strong S-Ni interaction, given by SO chemisorption on hollow sites with a sideways interaction, implies an energetic decrease and, consequently, a part of the energy gained from the SO-Ni interaction is from the SO and nanocluster distortions. Ultimately, using the energy decomposition analysis (from SAPT0) for XO/Ni6 systems, we improved the understanding of the CO and NO (SO) singlet (doublet) spin multiplicities' interaction with Ni6 nanoclusters.
Collapse
Affiliation(s)
- Rairisson V de Amorim
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900, Pelotas, RS, Brazil
| | - Krys E A Batista
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900, Pelotas, RS, Brazil
| | - Glaucio R Nagurniak
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-004, Blumenau, SC, Brazil
| | - Renato P Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Renato L T Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Maurício J Piotrowski
- Department of Physics, Federal University of Pelotas, PO Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|