1
|
Jin Y, Cheng H, Wang Q, Liu X, Mo S, Zhou B, Peng Y, Wang Y, Si W, Li J. Insights into in situ surface reconstruction in cobalt perovskite oxides for enhanced catalytic activity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135113. [PMID: 38996683 DOI: 10.1016/j.jhazmat.2024.135113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
An depth understanding of the fundamental interactions between surface termination and catalytic activity is crucial to prompt the properties of functional perovskite materials. The elastic energy due to size mismatch and electrostatic attraction of the charged Sr dopant by positively charged oxygen vacancies induced inert A-site surface enrichment rearrangement for perovskites. Lower temperatures could reduce A-site enrichment, but it is difficult to form perovskite crystals. La0.8Sr0.2CoO3-δ (LSCO) as a model perovskite oxide was modified with additive urea to reduce the crystallization temperature, and suppress Sr segregation. The LSCO catalysts with 600 °C annealing temperature (LSCO-600) exhibited a 19.4-fold reaction reactivity of toluene oxidation than that with 800 °C annealing temperature (LSCO-800). Combined surface-sensitive and depth-resolved techniques for surface and sub-surface analysis, surface Sr enrichment was effectively suppressed due to decreased oxygen vacancy concentration and smaller electrostatic driving force. DFT calculations and in-situ DRIFTs spectra well revealed that tuning the surface composition/termination affected the intrinsic reactivity. The catalyst surface with lower Sr enrichment could easily adsorb toluene, cleave, and decompose benzene rings, thus contributing to toluene degradation to CO2. This work demonstrates a green and efficient way to control surface composition and termination at the atomic scale for higher catalytic activity.
Collapse
Affiliation(s)
- Yanyu Jin
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing 100084, China
| | - Hongjun Cheng
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Qibao Wang
- School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing 100084, China
| | - Xiaoqing Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Shengpeng Mo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Natesakhawat S, Popczun EJ, Baltrus JP, Wang K, Serna P, Liu S, Meyer R, Lekse JW. Investigation of AFeO 3 (A=Ba, Sr) Perovskites for the Oxidative Dehydrogenation of Light Alkanes under Chemical Looping Conditions. Chempluschem 2024; 89:e202300596. [PMID: 38300225 DOI: 10.1002/cplu.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Oxidative dehydrogenation (ODH) of light alkanes to produce C2-C3 olefins is a promising alternative to conventional steam cracking. Perovskite oxides are emerging as efficient catalysts for this process due to their unique properties such as high oxygen storage capacity (OSC), reversible redox behavior, and tunability. Here, we explore AFeO3 (A=Ba, Sr) bulk perovskites for the ODH of ethane and propane under chemical looping conditions (CL-ODH). The higher OSC and oxygen mobility of SrFeO3 perovskite contributed to its higher activity but lower olefin selectivity than its Ba counterpart. However, SrFeO3 perovskite is superior in terms of cyclic stability over multiple redox cycles. Transformations of the perovskite to reduced phases including brownmillerite A2Fe2O5 were identified by X-ray diffraction (XRD) as a cause of performance degradation, which was fully reversible upon air regeneration. A pre-desorption step was utilized to selectively tune the amount of lattice oxygen as a function of temperature and dwell time to enhance olefin selectivity while suppressing CO2 formation from the deep oxidation of propane. Overall, SrFeO3 exhibits promising potential for the CL-ODH of light alkanes, and optimization through surface and structural modifications may further engineer well-regulated lattice oxygen for maximizing olefin yield.
Collapse
Affiliation(s)
- Sittichai Natesakhawat
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
- NETL Support Contractor, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - Eric J Popczun
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
- NETL Support Contractor, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - John P Baltrus
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - Kun Wang
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
- Present address: Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Sophie Liu
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Randall Meyer
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Jonathan W Lekse
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Feng X, Cheng R, Yin L, Wen Y, Jiang J, He J. Two-Dimensional Oxide Crystals for Device Applications: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304708. [PMID: 37452605 DOI: 10.1002/adma.202304708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Atomically thin two-dimensional (2D) oxide crystals have garnered considerable attention because of their remarkable physical properties and potential for versatile applications. In recent years, significant advancements have been made in the design, preparation, and application of ultrathin 2D oxides, providing many opportunities for new-generation advanced technologies. This review focuses on the controllable preparation of 2D oxide crystals and their applications in electronic and optoelectronic devices. Based on their bonding nature, the various types of 2D oxide crystals are first summarized, including both layered and nonlayered crystals, as well as their current top-down and bottom-up synthetic approaches. Subsequently, in terms of the unique physical and electrical properties of 2D oxides, recent advances in device applications are emphasized, including photodetectors, field-effect transistors, dielectric layers, magnetic and ferroelectric devices, memories, and gas sensors. Finally, conclusions and future prospects of 2D oxide crystals are presented. It is hoped that this review will provide comprehensive and insightful guidance for the development of 2D oxide crystals and their device applications.
Collapse
Affiliation(s)
- Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
4
|
Lesafi FJ, Pogrebnaya T, King'ondu CK. Mesoporous SnO 2-MoO 3 catalyst for diesel oxidative desulfurization: Impact of the SnO 2/MoO 3 ratio on catalytic efficiency. Heliyon 2023; 9:e19202. [PMID: 37654448 PMCID: PMC10465874 DOI: 10.1016/j.heliyon.2023.e19202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Vehicular SOx emissions have a huge detrimental impact on public health, catalytic converters, and the environment. Developing strategies to remove sulfur from diesel and thus safeguard the above is imperative. A series of SnO2-MoO3 mixed oxides and mono oxides MoO3 and SnO2 were prepared by soft template method, calcined at 450 °C and successfully tested in model diesel oxidative desulfurisation (ODS). The impact of the SnO2/MoO3 mole ratio (hereinafter denoted as Sn/Mo) on catalytic efficiency was investigated, among other catalytic parameters. The obtained samples were analyzed using X-ray diffraction (XRD), Raman spectrocscopy, scanning electron microscopy (SEM), N2-physisorption and titration method for acidic properties. The study demonstrates that mixing SnO2 and MoO3 improves acidic sites, crystallinity, and morphological properties of pure SnO2. The addition of MoO3 increased oxygen vacancies and the surface area of SnO2. High acidic site densities of 49.3, 47.4, and 46.7 mEqg-1 were observed for the catalysts with 2:1, 1:1, and 1:2 Sn/Mo mole ratio, respectively. The catalytic efficiency increased with an increase in Sn content with the highest catalytic efficiency of 99.8% for the dibenzothiophene (DBT) oxidation achieved in 30 min for Sn/Mo (2:1) catalyst compared to 92 and 70% for Sn/Mo 1:1 and 1:2 catalysts, respectively. The rate constant for the reaction was 0.057 min-1, which is eight times that of MoO3; 0.007 min-1 and three times that of SnO2; 0.017 min-1. The ODS mechanism utilizing the SnO2-MoO3 catalyst was proposed. The prepared SnO2-MoO3 catalyst demonstrated a high potential for industrial desulfurisation applications.
Collapse
Affiliation(s)
- Fina J. Lesafi
- Department of Materials Science and Engineering (MaSE), School of Materials, Energy, Water and Environmental Sciences (MEWES), Nelson Mandela African Institution of Science and Technology, P.O Box 447, Arusha, Tanzania
| | - Tatiana Pogrebnaya
- Department of Materials Science and Engineering (MaSE), School of Materials, Energy, Water and Environmental Sciences (MEWES), Nelson Mandela African Institution of Science and Technology, P.O Box 447, Arusha, Tanzania
| | - Cecil K. King'ondu
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
5
|
Bohre A, Jadhao PR, Tripathi K, Pant KK, Likozar B, Saha B. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. CHEMSUSCHEM 2023:e202300142. [PMID: 36972065 DOI: 10.1002/cssc.202300142] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/28/2023]
Abstract
Polyethylene terephthalate (PET) is a non-degradable single-use plastic and a major component of plastic waste in landfills. Chemical recycling is one of the most widely adopted methods to transform post-consumer PET into PET's building block chemicals. Non-catalytic depolymerization of PET is very slow and requires high temperatures and/or pressures. Recent advancements in the field of material science and catalysis have delivered several innovative strategies to promote PET depolymerization under mild reaction conditions. Particularly, heterogeneous catalysts assisted depolymerization of post-consumer PET to monomers and other value-added chemicals is the most industrially compatible method. This review includes current progresses on the heterogeneously catalyzed chemical recycling of PET. It describes four key pathways for PET depolymerization including, glycolysis, pyrolysis, alcoholysis, and reductive depolymerization. The catalyst function, active sites and structure-activity correlations are briefly outlined in each section. An outlook for future development is also presented.
Collapse
Affiliation(s)
- Ashish Bohre
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
- Biomass and Energy Management Division, Sardar Swaran Singh National Institute of Bio-energy Kapurthala, Punjab, 1440603, India
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Prashant Ram Jadhao
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - Komal Tripathi
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Basudeb Saha
- RiKarbon, Inc., 550 S. College Ave, Newark, Delaware, DE 19716, USA
| |
Collapse
|
6
|
Katzbaer RR, Dos Santos Vieira FM, Dabo I, Mao Z, Schaak RE. Band Gap Narrowing in a High-Entropy Spinel Oxide Semiconductor for Enhanced Oxygen Evolution Catalysis. J Am Chem Soc 2023; 145:6753-6761. [PMID: 36920866 DOI: 10.1021/jacs.2c12887] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
High-entropy oxides (HEOs), which contain five or more metal cations that are generally thought to be randomly mixed in a crystalline oxide lattice, can exhibit unique and enhanced properties, including improved catalytic performance, due to synergistic effects. Here, we show that band gap narrowing emerges in a high-entropy aluminate spinel oxide, (Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)Al2O4 (A5Al2O4). The 0.9 eV band gap of A5Al2O4 is narrower than the band gaps of all parent spinel oxides. First-principles calculations for multicomponent AAl2O4 spinels indicate that the band gap narrowing arises from the broadening of the energy distribution of the 3d states due to variations in the electronegativities and crystal field splitting across the 3d transition-metal series. As a catalyst for the oxygen evolution reaction in an alkaline electrolyte, A5Al2O4 reaches a current density of 10 mA/cm2 at an overpotential of 400 mV, outperforming all of the single-metal end members at an applied potential of 1.7 V vs RHE. Catalyst deactivation occurs after 5 h at 10 mA/cm2 and is attributed, based on elemental analysis and grazing-incidence X-ray diffraction, to the formation of a passivating layer that blocks the high-entropy oxide surface. This result helps to validate that the HEO is the active catalyst. The observation of band gap narrowing in A5Al2O4 expands the scope of synergistic properties exhibited by high-entropy materials and offers insight into the question of how the electronic structure of multicomponent oxide materials can be engineered via a high-entropy approach to achieve enhanced catalytic properties.
Collapse
Affiliation(s)
- Rowan R Katzbaer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | - Ismaila Dabo
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E Schaak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Chen J, Wang F, Wen Y, Tang W, Peng L. Emerging Applications of 17O Solid-State NMR Spectroscopy for Catalytic Oxides. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiping Tang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, China
- Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
8
|
Lal Bose A, Agarwal V. Oxygen Healing and CO 2 /H 2 /Anisole Dissociation on Reduced Molybdenum Oxide Surfaces Studied by Density Functional Theory. Chemphyschem 2022; 23:e202200510. [PMID: 35983612 DOI: 10.1002/cphc.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Indexed: 01/05/2023]
Abstract
Reduced molybdenum oxides are versatile catalysts for deoxygenation and hydrodeoxygenation reactions. In this work, we have performed spin-polarized DFT calculations to investigate oxygen healing energies on reduced molybdenum oxides (reduced α-MoO3 , γ-Mo4 O11 and MoO2 ). We find that Mo+4 on MoO2 (100) is the most active for abstracting an oxygen from the oxygenated compounds. We further explored CO2 adsorption and dissociation on reduced α-MoO3 (010) and MoO2 (100). In comparison to reduced α-MoO3 (010), CO2 adsorbs more strongly on MoO2 (100). We find that CO2 dissociates on MoO2 (100) via a two-step process, the overall barrier for which is 0.6 eV. This barrier is 1.7 eV lower than that on reduced α-MoO3 (010), suggesting a much higher activity for deoxygenation of CO2 to CO. As H2 dissociation is shown to be the rate-limiting step for hydrodeoxygenation reactions, we also studied activation barriers for H2 chemisorption on MoO2 (100). We find that the chemisorption barriers are 0.7 eV lower than that reported on reduced α-MoO3 (010). Finally, we have studied the dissociation (C-O cleavage) of anisole (a lignin-based biofuel model compound) on MoO2 (100). We find that anisole binds very strongly on MoO2 (100) with an adsorption energy of -1.47 eV. According to Sabatier's principle, strongly adsorbing reactants poison the catalyst surface, which may explain the low activity of MoO2 observed during experiments for hydrodeoxygenation of anisole.
Collapse
Affiliation(s)
- Abir Lal Bose
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Vishal Agarwal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
9
|
Hydrogenation of carbon dioxide to formic acid over Pd doped thermally activated Ni/Al layered double hydroxide. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Zhou M, Wang H, Zhang L, Li C, Kumbhar A, Abruña HD, Fang J. Facet Impact of CuMn 2O 4 Spinel Nanocatalysts on Enhancement of the Oxygen Reduction Reaction in Alkaline Media. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14853, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| | - Amar Kumbhar
- Chapel Hill Analytical and Nanofabrication Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| |
Collapse
|
11
|
Zhao C, Zhu A, Gao S, Wang L, Wan X, Wang A, Wang WH, Xue T, Yang S, Sun D, Wang W. Phonon Resonance Catalysis in NO Oxidation on Mn-Based Mullite. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunning Zhao
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ao Zhu
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Gao
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lijing Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiang Wan
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ansheng Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Wei-Hua Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Tao Xue
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, P. R. China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Deyan Sun
- Department of Physics, East China Normal University, Shanghai 200062, P. R. China
| | - Weichao Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
12
|
Wachs IE. Progress in Catalysis by Mixed Oxides: From Confusion to Catalysis Science. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Shirangi HS, Moradi AV, Golsefidi MA, Hossaini Z, Jalilian HR. Green synthesis and investigation of antioxidant and antimicrobial activity of new schiff base of pyrimidoazepine derivatives: application of Fe 3O 4/CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst. Mol Divers 2022; 26:3003-3019. [PMID: 35445960 DOI: 10.1007/s11030-021-10349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
In this study, we synthesized schiff base of pyrimidoazepine derivatives in high yields using multicomponent reactions of isatins, alkyl bromides, activated acetylenic compounds, guanidine and aldehydes in the presence of Fe3O4/CuO/ZnO@ Multi Walled Carbon Nanotubes (MWCNT) as a high performance catalyst in water at room temperature. The Fe3O4/CuO/ZnO@MWCNT synthesizes using Petasites hybridus rhizome water extract as a green media and moderate base. As well Fe3O4/CuO/ZnO@MWCNT magnetic nanocomposites show a good improvement in the yield of the product and displayed significant reusable activity. Investigation of antioxidant ability of synthesized compounds using radical trapping of diphenyl-picrylhydrazine and ferric reduction power experiment is another purpose in this research. Also, the antimicrobial activity of some synthesized compounds proved by employing the disk diffusion test on Gram-positive and Gram-negative bacteria. This procedure has some benefits such as short reaction time, product with excellent yields, simple catalyst and products separation.
Collapse
Affiliation(s)
| | - Ali Varasteh Moradi
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
| | | | | | - Hamid Reza Jalilian
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| |
Collapse
|
14
|
Zhao W, Shi J, Lin M, Sun L, Su H, Sun X, Murayama T, Qi C. Praseodymia–titania mixed oxide supported gold as efficient water gas shift catalyst: modulated by the mixing ratio of oxides. RSC Adv 2022; 12:5374-5385. [PMID: 35425532 PMCID: PMC8981221 DOI: 10.1039/d1ra08572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Modulating the active sites for controllable tuning of the catalytic activity has been the goal of much research, however, this remains challenging. The O vacancy is well known as an active site in reducible oxides. To modify the activity of O vacancies in praseodymia, we synthesized a series of praseodymia–titania mixed oxides. Varying the Pr : Ti mole ratio (2 : 1, 1 : 2, 1 : 1, 1 : 4) allows us to control the electronic interactions between Au, Pr and Ti cations and the local chemical environment of the O vacancies. These effects have been studied study by X-ray photoelectron spectroscopy (XPS), CO diffuse reflectance Fourier transform infrared spectroscopy (CO-DRIFTS) and temperature-programmed reduction (CO-TPR, H2-TPR). The water gas shift reaction (WGSR) was used as a benchmark reaction to test the catalytic performance of different praseodymia–titania supported Au. Among them, Au/Pr1Ti2Ox was identified to exhibit the highest activity, with a CO conversion of 75% at 300 °C, which is about 3.7 times that of Au/TiO2 and Au/PrOx. The Au/Pr1Ti2Ox also exhibited excellent stability, with the conversion after 40 h time-on-stream at 300 °C still being 67%. An optimal ratio of Pr content (Pr : Ti 1 : 2) is necessary for improving the surface oxygen mobility and oxygen exchange capability, a higher Pr content leads to more O vacancies, however with lower activity. This study presents a new route for modulating the active defect sites in mixed oxides which could also be extended to other heterogeneous catalysis systems. Schematic illustration of H2O activation on the Pr-TiOx support and the following reaction with CO in the Au–oxide interface.![]()
Collapse
Affiliation(s)
- Weixuan Zhao
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Shi
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Mingyue Lin
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Libo Sun
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huijuan Su
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xun Sun
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Toru Murayama
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Research Center for Gold Chemistry, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
- Research Center for Hydrogen Energy-based Society, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Caixia Qi
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
15
|
Pudge GJF, Hutchings GJ, Kondrat SA, Morrison K, Perkins EF, Rushby AV, Bartley JK. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00699e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron molybdate catalysts were prepared using a sol gel route with malonic acid and oxalic acid and their performance for the selective oxidation of methanol to formaldehyde was evaluated.
Collapse
Affiliation(s)
- Geoffrey J. F. Pudge
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Graham J. Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Simon A. Kondrat
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Kate Morrison
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Eleanor F. Perkins
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Alice V. Rushby
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Jonathan K. Bartley
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
16
|
Najafishirtari S, Friedel Ortega K, Douthwaite M, Pattisson S, Hutchings GJ, Bondue CJ, Tschulik K, Waffel D, Peng B, Deitermann M, Busser GW, Muhler M, Behrens M. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry 2021; 27:16809-16833. [PMID: 34596294 PMCID: PMC9292687 DOI: 10.1002/chem.202102868] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure-performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.
Collapse
Affiliation(s)
- Sharif Najafishirtari
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| | - Mark Douthwaite
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | - Samuel Pattisson
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | | | - Christoph J. Bondue
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Kristina Tschulik
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Daniel Waffel
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Baoxiang Peng
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Michel Deitermann
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - G. Wilma Busser
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Martin Muhler
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
17
|
Kiani D, Sourav S, Wachs IE, Baltrusaitis J. A combined computational and experimental study of methane activation during oxidative coupling of methane (OCM) by surface metal oxide catalysts. Chem Sci 2021; 12:14143-14158. [PMID: 34760199 PMCID: PMC8565385 DOI: 10.1039/d1sc02174e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO4 catalytic active sites resulting in surface WO5 sites with retarded kinetics for C-H scission. On the other hand, dimeric Mn2O5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH4 than the poisoned surface WO5 sites or the original WO4 sites. However, the surface reaction intermediates formed from CH4 activation over the Mn2O5 surface sites are more stable than those formed over the Na2WO4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to CO x , in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na2WO4 surface sites towards CH4 activation but can yield MnO x surface sites that activate CH4 faster than Na2WO4 surface sites, but unselectively.
Collapse
Affiliation(s)
- Daniyal Kiani
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| | - Sagar Sourav
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| | - Israel E Wachs
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| |
Collapse
|
18
|
A Review and Experimental Revisit of Alternative Catalysts for Selective Oxidation of Methanol to Formaldehyde. Catalysts 2021. [DOI: 10.3390/catal11111329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The selective oxidation of methanol to formaldehyde is a growing million-dollar industry, and has been commercial for close to a century. The Formox process, which is the largest production process today, utilizes an iron molybdate catalyst, which is highly selective, but has a short lifetime of 6 months due to volatilization of the active molybdenum oxide. Improvements of the process’s lifetime is, thus, desirable. This paper provides an overview of the efforts reported in the scientific literature to find alternative catalysts for the Formox process and critically assess these alternatives for their industrial potential. The catalysts can be grouped into three main categories: Mo containing, V containing, and those not containing Mo or V. Furthermore, selected interesting catalysts were synthesized, tested for their performance in the title reaction, and the results critically compared with previously published results. Lastly, an outlook on the progress for finding new catalytic materials is provided as well as suggestions for the future focus of Formox catalyst research.
Collapse
|
19
|
Wexler RB, Gautam GS, Stechel EB, Carter EA. Factors Governing Oxygen Vacancy Formation in Oxide Perovskites. J Am Chem Soc 2021; 143:13212-13227. [PMID: 34428909 DOI: 10.1021/jacs.1c05570] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.
Collapse
Affiliation(s)
- Robert B Wexler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Gopalakrishnan Sai Gautam
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Ellen B Stechel
- ASU LightWorks and the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-5402, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States.,Office of the Chancellor and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
20
|
Egle T, O'Connor CR, Friend CM. Regeneration of Active Surface Alloys during Cyclic Oxidation and Reduction: Oxidation of H 2 on Pd/Ag(111). J Phys Chem Lett 2021; 12:6752-6759. [PMID: 34264673 DOI: 10.1021/acs.jpclett.1c01367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The surface morphology and composition of a catalyst during excursions between oxidizing and reducing conditions can change substantially, especially in bimetallic alloys. Both thermodynamic and kinetic factors play a role in determining the properties of alloy surfaces where the active phase may be a metastable state. Previously, Ag oxide reduction was shown to be dramatically enhanced when Pd is on the surface; however, Pd is more stable when dissolved in Ag, raising the question as to whether a highly active Pd surface state will persist over multiple reaction cycles, a requirement for catalytic function. Experiments herein demonstrate that the enhanced chemical functionality due to the presence of Pd on the surface is retained, based on the enhanced rate of silver oxide reduction over multiple oxidation/reduction cycles for a Pd/Ag(111) model. Repeated oxidation and reduction promote PdAg alloying, and reversible structural and compositional changes are detected using X-ray photoelectron spectroscopy. This study establishes that metastable phases can persist in reactive processes on surfaces, indicating their potential in heterogeneous catalysis.
Collapse
|
21
|
Methanol to Formaldehyde: An Overview of Surface Studies and Performance of an Iron Molybdate Catalyst. Catalysts 2021. [DOI: 10.3390/catal11080893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde is a primary chemical in the manufacturing of various consumer products. It is synthesized via partial oxidation of methanol using a mixed oxide iron molybdate catalyst (Fe2(MoO4)3–MoO3). This is one of the standard energy-efficient processes. The mixed oxide iron molybdate catalyst is an attractive commercial catalyst for converting methanol to formaldehyde. However, a detailed phase analysis of each oxide phase and a complete understanding of the catalyst formulation and deactivation studies is required. It is crucial to correctly formulate each oxide phase and influence the synthesis methods precisely. A better tradeoff between support and catalyst and oxygen revival on the catalyst surface is vital to enhance the catalyst’s selectivity, stability, and lifetime. This review presents recent advances on iron molybdate’s catalytic behaviour for formaldehyde production—a deep recognition of the catalyst and its critical role in the processes are highlighted. Finally, the conclusion and prospects are presented at the end.
Collapse
|
22
|
Hayes M, Bellabarba R, Baucherel X, Tabatabaei J. Methanol as a Probe Molecule for Metal Oxides: An Indicator for Industrial Catalyst Performance? Top Catal 2021. [DOI: 10.1007/s11244-021-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Bankar BD, Advani JH, Biradar AV. Cubic CuxZrO100-x as an efficient and selective catalyst for the oxidation of aromatics active methyl, alcohol, and amine groups. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Bartley JK, Dimitratos N, Edwards JK, Kiely CJ, Taylor SH. A Career in Catalysis: Graham J. Hutchings. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan K. Bartley
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry, Alma Mater Studiorum-University of Bologna, Viale Risorgimento, 40136, Bologna, Italy
| | - Jennifer K. Edwards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| | - Christopher J. Kiely
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Stuart H. Taylor
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| |
Collapse
|
25
|
Bankar BD, Advani JH, Biradar AV. Exceptional Catalytic Activity of Cu−Zn/ZrO
2
Mixed Metal Oxide towards the Oxidation Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Balasaheb D. Bankar
- Inorganic Materials and Catalysis Division CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg Bhavnagar 364002, Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, Uttar Pradesh India
| | - Jacky H. Advani
- Inorganic Materials and Catalysis Division CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg Bhavnagar 364002, Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, Uttar Pradesh India
| | - Ankush V. Biradar
- Inorganic Materials and Catalysis Division CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg Bhavnagar 364002, Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, Uttar Pradesh India
| |
Collapse
|
26
|
Kiani D, Baltrusaitis J. Immobilization and activation of cobalt-amine catalyst on NH4OH-treated activated carbon for ethylene dimerization. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Sprenger P, Stehle M, Gaur A, Weiß J, Brueckner D, Zhang Y, Garrevoet J, Suuronen J, Thomann M, Fischer A, Grunwaldt J, Sheppard TL. Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems. ChemCatChem 2021. [DOI: 10.1002/cctc.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Paul Sprenger
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Karlsruhe 76131 Germany
| | - Matthias Stehle
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Karlsruhe 76131 Germany
| | - Abhijeet Gaur
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Karlsruhe 76131 Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen 76344 Germany
| | - Jana Weiß
- Leibniz Institute for Catalysis (LIKAT) Rostock 18059 Germany
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY Hamburg 22607 Germany
- Faculty of Chemistry and Biochemistry Ruhr University Bochum Bochum 44801 Germany
- Department Physik Universität Hamburg Hamburg 22761 Germany
| | - Yi Zhang
- Deutsches Elektronen-Synchrotron DESY Hamburg 22607 Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY Hamburg 22607 Germany
| | - Jussi‐Petteri Suuronen
- ESRF - The European Synchrotron Grenoble 38000 France
- Current Address: Xploraytion GmbH Berlin 10625 Germany
| | | | | | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Karlsruhe 76131 Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen 76344 Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Karlsruhe 76131 Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen 76344 Germany
| |
Collapse
|
28
|
Sun Y, Xu J, Xi R, Zhang H, Liu L, Xu X, Fang X, Wang X. Unraveling the Intrinsic Reasons Promoting the Reactivity of ZnAl2O4 Spinel by Fe and Co for CO Oxidation. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09324-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Najari S, Saeidi S, Concepcion P, Dionysiou DD, Bhargava SK, Lee AF, Wilson K. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chem Soc Rev 2021; 50:4564-4605. [DOI: 10.1039/d0cs01518k] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethane oxidative dehydrogenation (ODH) is an attractive, low energy, alternative route to reduce the carbon footprint for ethene production, however, the commercial implementation of ODH processes requires catalysts with improved selectivity.
Collapse
Affiliation(s)
- Sara Najari
- Department of Energy Engineering
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Samrand Saeidi
- Institute of Energy and Process Systems Engineering
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Patricia Concepcion
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Valencia
- Spain
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science Program
- Department of Chemical and Environmental Engineering
- University of Cincinnati
- Cincinnati
- USA
| | - Suresh K. Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| | - Adam F. Lee
- Centre for Applied Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| | - Karen Wilson
- Centre for Applied Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
30
|
Effect of Cu substitution on the structure and reactivity of CuxCo3-xO4 spinel catalysts for direct NOx decomposition. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Nguyen-Phu H, Do LT, Shin EW. Investigation of glycerolysis of urea over various ZnMeO (Me = Co, Cr, and Fe) mixed oxide catalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Characterization of Sulfated SnO2-ZrO2 Catalysts and Their Catalytic Performance on the Tert-Butylation of Phenol. Catalysts 2020. [DOI: 10.3390/catal10070726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Understanding the catalytic behavior of sulfated metal oxides has been the topic of several research studies in the past few decades. Their apparent super-acidic behavior has been correlated with the molecular structure of the surface sulfate species. Herein, we couple FTIR and Raman spectroscopies to study the molecular structural evolution of surface sulfate species on mixed metal hydroxides as well as calcined oxides. We show that on the surface of hydroxides, monodentate and possibly bidentate species are dominant, while for SnO2-rich samples, clusters of polymeric sulfate species may also be present. After calcination, sulfate species bind strongly on the surface of mixed oxides, and different configurations can be seen with a range of S=O functionalities of varying strength. Through comparison of the catalytic performance of all sulfate oxides in the tert-butylation of phenol, it was found that SnO2-rich samples show high TBA conversion, with monoalkylated phenols as the primary product.
Collapse
|
33
|
O'Connor CR, van Spronsen MA, Egle T, Xu F, Kersell HR, Oliver-Meseguer J, Karatok M, Salmeron M, Madix RJ, Friend CM. Hydrogen migration at restructuring palladium-silver oxide boundaries dramatically enhances reduction rate of silver oxide. Nat Commun 2020; 11:1844. [PMID: 32296065 PMCID: PMC7160204 DOI: 10.1038/s41467-020-15536-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Heterogeneous catalysts are complex materials with multiple interfaces. A critical proposition in exploiting bifunctionality in alloy catalysts is to achieve surface migration across interfaces separating functionally dissimilar regions. Herein, we demonstrate the enhancement of more than 104 in the rate of molecular hydrogen reduction of a silver surface oxide in the presence of palladium oxide compared to pure silver oxide resulting from the transfer of atomic hydrogen from palladium oxide islands onto the surrounding surface formed from oxidation of a palladium-silver alloy. The palladium-silver interface also dynamically restructures during reduction, resulting in silver-palladium intermixing. This study clearly demonstrates the migration of reaction intermediates and catalyst material across surface interfacial boundaries in alloys with a significant effect on surface reactivity, having broad implications for the catalytic function of bimetallic materials.
Collapse
Affiliation(s)
- Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Matthijs A van Spronsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Tobias Egle
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fang Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Heath R Kersell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Judit Oliver-Meseguer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Mustafa Karatok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Robert J Madix
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
34
|
Abstract
Methane activation chemistry, despite being widely reported in literature, remains to date a subject of debate. The challenges in this reaction are not limited to methane activation but extend to stabilization of the intermediate species. The low C-H dissociation energy of intermediates vs. reactants leads to CO2 formation. For selective oxidation, nature presents methane monooxygenase as a benchmark. This enzyme selectively consumes methane by breaking it down into methanol. To assemble an active site similar to monooxygenase, the literature reports Cu-ZSM-5, Fe-ZSM-5, and Cu-MOR, using zeolites and systems like CeO2/Cu2O/Cu. However, the trade-off between methane activation and methanol selectivity remains a challenge. Density functional theory (DFT) calculations and spectroscopic studies indicate catalyst reducibility, oxygen mobility, and water as co-feed as primary factors that can assist in enabling higher selectivity. The use of chemical looping can further improve selectivity. However, in all systems, improvements in productivity per cycle are required in order to meet the economical/industrial standards.
Collapse
|
35
|
Alkali Earth Metal Molybdates as Catalysts for the Selective Oxidation of Methanol to Formaldehyde—Selectivity, Activity, and Stability. Catalysts 2020. [DOI: 10.3390/catal10010082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alkali earth metal molybdates (MMoO4, M = Mg, Ca, Sr, and Ba) were investigated as catalysts for the selective oxidation of methanol to formaldehyde in the search for more stable alternatives to the current industrial iron molybdate catalyst. The catalysts were prepared by either sol-gel synthesis or co-precipitation with both stoichiometric ratio (Mo:M = 1.0) and 10 mol% to 20 mol% excess Mo (Mo:M = 1.1 to 1.2). The catalysts were characterized by X-ray diffraction (XRD), nitrogen physisorption, Raman spectroscopy, temperature programmed desorption of CO2 (CO2-TPD), and inductively coupled plasma (ICP). The catalytic performance of the catalysts was measured in a lab-scale, packed bed reactor setup by continuous operation for up to 100 h on stream at 400 °C. Initial selectivities towards formaldehyde of above 97% were achieved for all samples with excess molybdenum oxide at MeOH conversions between 5% and 75%. Dimethyl ether (DME) and dimethoxymethane (DMM) were the main byproducts, but CO (0.1%–2.1%) and CO2 (0.1%–0.4%) were also detected. It was found that excess molybdenum oxide evaporated from all the catalysts under operating conditions within 10 to 100 h on stream. No molybdenum evaporation past the point of stoichiometry was detected.
Collapse
|
36
|
Bhaskaruni SV, Maddila S, Gangu KK, Jonnalagadda SB. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
37
|
Ozório MS, Da Silva ACH, Da Silva JLF. A Hybrid Density Functional Theory Investigation of the $$({\text {CeO}}_2)_{6}$$ Clusters in the Cationic, Neutral, and Anionic States. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01728-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Hirakawa T, Shimokawa Y, Tokuzumi W, Sato T, Tsushida M, Yoshida H, Hinokuma S, Ohyama J, Machida M. Multicomponent Spinel Oxide Solid Solutions: A Possible Alternative to Platinum Group Metal Three-Way Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Hiroshi Yoshida
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| | - Satoshi Hinokuma
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| | - Junya Ohyama
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| | - Masato Machida
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| |
Collapse
|
39
|
Alamdari A, Karimzadeh R, Abbasizadeh S. Present state of the art of and outlook on oxidative dehydrogenation of ethane: catalysts and mechanisms. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Oxidative dehydrogenation of alkanes is a more appropriate approach than other conventional methods of light olefin production. Recently, several researchers have focused on more economical and cleaner processes because of the high demand for olefins and environmental problems. This paper reviews a series of catalysts for the oxidative dehydrogenation of ethane, including transition-metal oxides, rare earth metal oxides, calcium oxide, supported alkali chlorides, molecular sieves, as well as monolithic, perovskite, and carbon catalysts. Also, a detailed literature review is presented for the comparison of effective parameters such as acid-base property, redox property, oxidant types, and oxygen species. Mechanisms proposed for the oxidative dehydrogenation of ethane are also presented. Recommendations for future researches are also discussed based on catalyst design, promotors, and reaction conditions.
Collapse
Affiliation(s)
- Amin Alamdari
- Department of Chemical Engineering , Tarbiat Modares University (TMU) , Jalal Al Ahmad Highway, PO Box 14155-4838 , Tehran , Iran
| | - Ramin Karimzadeh
- Department of Chemical Engineering , Tarbiat Modares University (TMU) , Jalal Al Ahmad Highway, PO Box 14155-4838 , Tehran , Iran
| | - Saeed Abbasizadeh
- Department of Chemical Engineering , Tarbiat Modares University (TMU) , Jalal Al Ahmad Highway, PO Box 14155-4838 , Tehran , Iran
| |
Collapse
|
40
|
Polo-Garzon F, Bao Z, Zhang X, Huang W, Wu Z. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01097] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felipe Polo-Garzon
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenghong Bao
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xuanyu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Zili Wu
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
41
|
Disordered structure of ZnAl2O4 phase and the formation of a Zn NCO complex in ZnAl mixed oxide catalysts for glycerol carbonylation with urea. J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
|
43
|
Yusuf S, Neal L, Bao Z, Wu Z, Li F. Effects of Sodium and Tungsten Promoters on Mg6MnO8-Based Core–Shell Redox Catalysts for Chemical Looping—Oxidative Dehydrogenation of Ethane. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00164] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seif Yusuf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| | - Luke Neal
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| | - Zhenghong Bao
- Center for Nanophase Materials Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Center for Nanophase Materials Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Fanxing Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
44
|
Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 2019; 48:2366-2421. [DOI: 10.1039/c8cs00452h] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid catalysts with unique porosity and nanoscale properties play a promising role for efficient valorization of biomass into sustainable advanced fuels and chemicals.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Elise Peeters
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Ekaterina V. Makshina
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Vasile I. Parvulescu
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| |
Collapse
|
45
|
Jian W, Jia R, Wang J, Zhang HX, Bai FQ. Iron oxides with a reverse spinel structure: impact of active sites on molecule adsorption. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00790c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe3O4 and γ-Fe2O3 with the same crystal structure reflect different catalytically active sites leading to different catalyst properties.
Collapse
Affiliation(s)
- Wei Jian
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun
- China
| | - Ran Jia
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun
- China
| | - Jian Wang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun
- China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun
- China
| | - Fu-Quan Bai
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
46
|
Holdren S, Tsyshevsky R, Fears K, Owrutsky J, Wu T, Wang X, Eichhorn BW, Kuklja MM, Zachariah MR. Adsorption and Destruction of the G-Series Nerve Agent Simulant Dimethyl Methylphosphonate on Zinc Oxide. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02999] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Scott Holdren
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Roman Tsyshevsky
- Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742, United States
| | - Kenan Fears
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Jeffrey Owrutsky
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Tao Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xizheng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bryan W. Eichhorn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Maija M. Kuklja
- Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742, United States
| | - Michael R. Zachariah
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
47
|
The effect of varying the metal ratio in a chromium molybdate catalysts for the oxidative dehydrogenation of n-octane. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Portela R, Perez-Ferreras S, Serrano-Lotina A, Bañares MA. Engineering operando methodology: Understanding catalysis in time and space. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1740-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Assembly of ZnO Nanoparticles on SiO2@α-Fe2O3 Nanocomposites for an Efficient Photo-Fenton Reaction. INORGANICS 2018. [DOI: 10.3390/inorganics6030090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The SiO2@α-Fe2O3/ZnO metal oxide nanocomposites employed in this study were obtained using the sol-gel method. Their photocatalytic activities were enhanced by photo-Fenton reactions. The metal oxide composite of ZnO and α-Fe2O3 nanoparticles were deposited on the SiO2 nanospheres intended for visible light photocatalysis. Further, the as-synthesized SiO2@α-Fe2O3/ZnO nanocomposites exhibited a robust crystallinity and a high adsorption of dye molecules when compared to SiO2@ZnO and SiO2@α-Fe2O3 nanocomposites, respectively. The experimental results demonstrated a rapid Methylene Blue (MB) degradation among these catalysts within short intervals of time with the addition of α-Fe2O3/ZnO mixed metal oxide catalysts on the SiO2 nanospheres. Finally, a photo-Fenton reaction was implemented to confirm the presence of the hydroxyl (OH) radicals, which are powerful agents used for the degradation of organic pollutants.
Collapse
|
50
|
Constructing A Rational Kinetic Model of the Selective Propane Oxidation Over A Mixed Metal Oxide Catalyst. Catalysts 2018. [DOI: 10.3390/catal8080330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research presents a kinetic investigation of the selective oxidation of propane to acrylic acid over a MoVTeNb oxide (M1 phase) catalyst. The paper contains both an overview of the related literature, and original results with a focus on kinetic aspects. Two types of kinetic experiments were performed in a plug flow reactor, observing (i) steady-state conditions (partial pressure variations) and (ii) the catalyst evolution as a function of time-on-stream. For this, the catalyst was treated in reducing atmosphere, before re-oxidising it. These observations in long term behaviour were used to distinguish different catalytic routes, namely for the formation of propene, acetic acid, acrylic acid, carbon monoxide and carbon dioxide. A partial carbon balance was introduced, which is a ‘kinetic fingerprint’, that distinguishes one type of active site from another. Furthermore, an ‘active site’ was found to consist of one or more ‘active centres’. A rational mechanism was developed based on the theory of graphs and includes two time scales belonging to (i) the catalytic cycle and (ii) the catalyst evolution. Several different types of active sites exist, at least as many, as kinetically independent product molecules are formed over a catalyst surface.
Collapse
|