1
|
Zheng Z, Zhang C, Li J, Fang D, Tan P, Fang Q, Chen G. Density functional theory-based screening of Ti 4C 3O 2-loaded single atoms for efficient selective catalytic oxidation of formaldehyde. CHEMOSPHERE 2024; 356:142024. [PMID: 38614396 DOI: 10.1016/j.chemosphere.2024.142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Indoor formaldehyde (HCHO) pollution poses a major risk to human health. Low-temperature catalytic oxidation is an effective method for HCHO removal. The high activity and selectivity of single atomic catalysts provide a possibility for the development of efficient non-precious metal catalysts. In this study, the most stable single-atom catalyst Ti-Ti4C3O2 was screened by density functional theory among many single atomic catalysts with two-dimensional (2D) monolayer Ti4C3O2 as the support. The computational results show that Ti-Ti4C3O2 is highly selective to HCHO and O2 in complex environments. The HCHO oxidation reaction pathways are proposed based on the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. According to the reaction energy and energy span models, the E-R mechanism has a lower maximum energy barrier and higher catalytic efficiency than the L-H mechanism. In addition, the stability of the Ti-Ti4C3O2 structure and active center was verified by diffusion energy barrier and ab initio molecular dynamics simulations. The above results indicate that Ti-Ti4C3O2 is a promising non-precious metal catalyst. The present study provides detailed theoretical insights into the catalytic oxidation of HCHO by Ti-Ti4C3O2, as well as an idea for the development of efficient non-precious metal catalysts based on 2D materials.
Collapse
Affiliation(s)
- Zhao Zheng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| | - Junchen Li
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Dingli Fang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
2
|
Fang Z, Xu H, Xu Q, Meng L, Lu N, Li R, Müller-Buschbaum P, Zhong Q. High Efficiency of Formaldehyde Removal and Anti-bacterial Capability Realized by a Multi-Scale Micro-Nano Channel Structure in Hybrid Hydrogel Coating Cross-Linked on Microfiber-Based Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37429826 DOI: 10.1021/acsami.3c07210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inspired by the transpiration in the tree stem having a vertical and porous channel structure, high efficiency of formaldehyde removal is realized by the multi-scale micro-nano channel structure in a hybrid P(AAm/DA)-Ag/MgO hydrogel coating cross-linked on microfiber-based polyurethane. The present multi-scale channel structure is formed by a joint effect of directional freezing and redox polymerization as well as nanoparticles-induced porosity. Due to the large number of vertically aligned channels of micrometer size and an embedded porous structure of nanometer size, the specific surface area is significantly increased. Therefore, formaldehyde from solution can be rapidly adsorbed by the amine group in the hydrogels and efficiently degraded by the Ag/MgO nanoparticles. By only immersing in formaldehyde solution (0.2 mg mL-1) for 12 h, 83.8% formaldehyde is removed by the hybrid hydrogels with a multi-scale channel structure, which is 60.8% faster than that observed in hydrogels without any channel structure. After cross-linking the hybrid hydrogels with a multi-scale channel structure to microfiber-based polyurethane and exposing to the formaldehyde vapor atmosphere, 79.2% formaldehyde is removed in 12 h, which is again 11.2% higher than that observed in hydrogels without any channel structure. Unlike the traditional approaches to remove formaldehyde by the light catalyst, no external conditions are required in our present hybrid hydrogel coating, which is very suitable for indoor use. In addition, due to the formation of free radicals by the Ag/MgO nanoparticles, the cross-linked hybrid hydrogel coating on polyurethane synthetic leather also shows good anti-bacterial capability. 99.99% of Staphylococcus aureus can be killed on the surface. Based on the good ability to remove formaldehyde and to kill bacteria, the obtained microfiber-based polyurethane cross-linked with a hybrid hydrogel coating containing a multi-scale channel structure can be used in a broad field of applications, such as furniture and car interior parts, to simultaneously solve the indoor air pollution and hygiene problems.
Collapse
Affiliation(s)
- Zheng Fang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
| | - Huawei Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Qiang Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - LiuBang Meng
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Nan Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| |
Collapse
|
3
|
Lu X, Geletii YV, Cheng T, Hill CL. Role of Multiple Vanadium Centers on Redox Buffering and Rates of Polyvanadomolybdate-Cu(II)-Catalyzed Aerobic Oxidations. Inorg Chem 2023; 62:5822-5830. [PMID: 36977374 PMCID: PMC10091476 DOI: 10.1021/acs.inorgchem.3c00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A recent report established that the tetrabutylammonium (TBA) salt of hexavanadopolymolybdate TBA4H5[PMo6V6O40] (PV6Mo6) serves as the redox buffer with Cu(II) as a co-catalyst for aerobic deodorization of thiols in acetonitrile. Here, we document the profound impact of vanadium atom number (x = 0-4 and 6) in TBA salts of PVxMo12-xO40(3+x)- (PVMo) on this multicomponent catalytic system. The PVMo cyclic voltammetric peaks from 0 to -2000 mV vs Fc/Fc+ under catalytic conditions (acetonitrile, ambient T) are assigned and clarify that the redox buffering capability of the PVMo/Cu catalytic system derives from the number of steps, the number of electrons transferred each step, and the potential ranges of each step. All PVMo are reduced by varying numbers of electrons, from 1 to 6, in different reaction conditions. Significantly, PVMo with x ≤ 3 not only has much lower activity than when x > 3 (for example, the turnover frequencies (TOF) of PV3Mo9 and PV4Mo8 are 8.9 and 48 s-1, respectively) but also, unlike the latter, cannot maintain steady reduction states when the Mo atoms in these polyoxometalate (POMs) are also reduced. Stopped-flow kinetics measurements reveal that Mo atoms in Keggin PVMo exhibit much slower electron transfer rates than V atoms. There are two kinetic arguments: (a) In acetonitrile, the first formal potential of PMo12 is more positive than that of PVMo11 (-236 and -405 mV vs Fc/Fc+); however, the initial reduction rates are 1.06 × 10-4 s-1 and 0.036 s-1 for PMo12 and PVMo11, respectively. (b) In aqueous sulfate buffer (pH = 2), a two-step kinetics is observed for PVMo11 and PV2Mo10, where the first and second steps are assigned to reduction of the V and Mo centers, respectively. Since fast and reversible electron transfers are key for the redox buffering behavior, the slower electron transfer kinetics of Mo preclude these centers functioning in redox buffering that maintains the solution potential. We conclude that PVMo with more vanadium atoms allows the POM to undergo more and faster redox changes, which enables the POM to function as a redox buffer dictating far higher catalytic activity.
Collapse
Affiliation(s)
- Xinlin Lu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V Geletii
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Craig L Hill
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Polyoxometalate-Encapsulated Metal-Organic Frameworks with Diverse Cages for the C–H Bond Oxidation of Alkylbenzenes. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Guo Z, Zhao X, Chen G, Zhao W, Liu T, Hu R, Jiang X. Controllable synthesis of magic cube-like Ce-MOF-derived Pt/CeO 2 catalysts for formaldehyde oxidation. NANOSCALE 2022; 14:12713-12721. [PMID: 35996893 DOI: 10.1039/d2nr03050k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controllable synthesis of MOFs with desired structures is of great significance to deepen the understanding of the crystal nucleation-growth mechanism and deliver unique structural features to their derived metal oxides with target catalytic applications. In this study, NH2-Ce-BDC with morphology similar to a second-order magic cube (mc) is facile synthesized via H+ mediation in nucleation and growth stages. The pertinent variables that can greatly influence the formation of magic cube-like structures (MCS) were investigated, in which the concentric diffusion field was found to be one of the key factors. Upon calcination, the derived CeO2 inherits unique gullies and grooves located on the pristine MOFs surface, which is quite useful for atomic layer deposition (ALD) of platinum (Pt) nanoparticles because of strong interaction with MOF-derived CeO2 (mc-CeO2). XPS, H2-TPR, Raman, and in situ DRIFTS characterization results show that there is a stronger interaction between Pt and mc-CeO2 in mc-Pt/CeO2 compared with c-Pt/CeO2 that is derived from the well-developed cubic Ce-MOFs. Furthermore, Pt2+ ions, hydroxyl oxygen, and oxygen defects in mc-Pt/CeO2 account highly for exemplary catalytic activity toward HCHO oxidation.
Collapse
Affiliation(s)
- Zeyi Guo
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Xiuxian Zhao
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Wei Zhao
- Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Shandong Institute and Laboratory of Geological Sciences, Jinan 250013, P.R. China
| | - Tongyao Liu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Riming Hu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
- School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, P.R. China
| |
Collapse
|
6
|
An B, Li Z, Wang Z, Zeng X, Han X, Cheng Y, Sheveleva AM, Zhang Z, Tuna F, McInnes EJL, Frogley MD, Ramirez-Cuesta AJ, S Natrajan L, Wang C, Lin W, Yang S, Schröder M. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. NATURE MATERIALS 2022; 21:932-938. [PMID: 35773491 DOI: 10.1038/s41563-022-01279-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l-1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l-1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C-H bond in CH4 (439 kJ mol-1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal-organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat-1 h-1 (versus 5.05 mmol gcat-1 h-1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe-OH···CH4] intermediate, thus lowering the barrier for C-H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C-H bond activation in CH4 to drive the direct photosynthesis of CH3OH.
Collapse
Affiliation(s)
- Bing An
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Zhe Li
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, China
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Zi Wang
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Xiangdi Zeng
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alena M Sheveleva
- Department of Chemistry, University of Manchester, Manchester, UK
- Photon Science Institute, University of Manchester, Manchester, UK
| | - Zhongyue Zhang
- Department of Chemistry, Nagoya University, Nagoya, Japan
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester, UK
- Photon Science Institute, University of Manchester, Manchester, UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester, UK
- Photon Science Institute, University of Manchester, Manchester, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Didcot, UK
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Cheng Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
8
|
Raja D, Philips A, Sundaramurthy D, Chandru Senadi G. Sustainable Synthesis of 2-Hydroxymethylbenzimidazoles using D-Fructose as a C 2 Synthon. Chem Asian J 2021; 16:3754-3759. [PMID: 34549532 DOI: 10.1002/asia.202100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Indexed: 12/11/2022]
Abstract
D-fructose, a biomass-derived carbohydrate has been identified as an environmentally benign C2 synthon in the preparation of synthetically useful 2-hydroxymethylbenzimidazole derivatives by coupling with 1,2-phenylenediamines. Proof of concept was established by synthesizing 23 examples using BF3 .OEt2 (20 mol%), TBHP (5.5 M, decane) (1.0 equiv.) in CH3 CN at 90 °C for 1 h. The pivotal features of this method include metal-free conditions, short time, good functional group tolerance, gram scale feasibility and the synthesis of benzimidazole fused 1,4-oxazine. Control studies with conventional C2 synthons did not produce the desired product, thus suggesting a new reaction pathway from D-fructose.
Collapse
Affiliation(s)
- Dineshkumar Raja
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| | - Abigail Philips
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| | - Devikala Sundaramurthy
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| | - Gopal Chandru Senadi
- SRMIST: SRM Institute of Science and Technology, Department of Chemistry, Mahatma Gandhi Rd, Potheri, SRM Nagar, 603203, Kattankulathur, India
| |
Collapse
|
9
|
Gao Y, Tian M, Jia Y, Wang X, Yang L. Polyoxometalates as catalysts for fluorescence amplification in rapid and sensitive detection of artemisinin. Anal Chim Acta 2021; 1143:101-108. [DOI: 10.1016/j.aca.2020.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/20/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023]
|
10
|
Dang TY, Li RH, Tian HR, Wang Q, Lu Y, Liu SX. Tandem-like vanadium cluster chains in a polyoxovanadate-based metal–organic framework for efficient catalytic oxidation of sulfides. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00799h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vanadium cluster chain in V-Ni-MOF can efficiently catalyze the oxidation of sulfides with hydrogen peroxide as the oxidant, achieving the complete conversion from sulfides to sulfones within 1 hour at 40 °C.
Collapse
Affiliation(s)
- Tian-Yi Dang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Run-Han Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Hong-Rui Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Qian Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
11
|
Xu P, Zhang L, Jia X, Wen H, Wang X, Yang S, Hui J. A novel heterogeneous catalyst NH 2-MIL-88/PMo 10V 2 for the photocatalytic activity enhancement of benzene hydroxylation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01056e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, heterogeneous catalyst NH2-MIL-88/PMo10V2-3 has shown the high hydroxylation activity of benzene under visible light (a 5 W LED), which mainly attributed to the production of hydroxyl radical(˙OH) and V5+/V4+ redox pair in the existence of electron (e−).
Collapse
Affiliation(s)
- PanPan Xu
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Liuxue Zhang
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Xu Jia
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Hao Wen
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Xiulian Wang
- School of Energy and Environment, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Suqing Yang
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Juxian Hui
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| |
Collapse
|
12
|
Flame synthesis of NiO nanoparticles on carbon cloth: An efficient non-enzymatic sensor for glucose and formaldehyde. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Wang Y, Zhong X, Huo D, Zhao Y, Geng X, Fa H, Luo X, Yang M, Hou C. Fast recognition of trace volatile compounds with a nanoporous dyes-based colorimetric sensor array. Talanta 2019; 192:407-417. [DOI: 10.1016/j.talanta.2018.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/03/2018] [Accepted: 09/09/2018] [Indexed: 01/02/2023]
|
14
|
Bulushev DA, Ross JR. Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2018. [DOI: 10.1080/01614940.2018.1476806] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Dmitri A. Bulushev
- Laboratory of Catalytic Methods of Transformation of Solar Energy, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Laboratory of Carbon Nanomaterials, Novosibirsk State University, Novosibirsk, Russia
| | - Julian R.H. Ross
- Chemical & Environmental Sciences Department, University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Weinstock IA, Schreiber RE, Neumann R. Dioxygen in Polyoxometalate Mediated Reactions. Chem Rev 2017; 118:2680-2717. [DOI: 10.1021/acs.chemrev.7b00444] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ira A. Weinstock
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Roy E. Schreiber
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Wen X, Xi J, Long M, Tan L, Wang J, Yan P, Zhong L, Liu Y, Tang A. Ni(OH)2/Ni based on TiO2 nanotube arrays binder-free electrochemical sensor for formaldehyde accelerated detection. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
An H, Hou Y, Wang L, Zhang Y, Yang W, Chang S. Evans–Showell-Type Polyoxometalates Constructing High-Dimensional Inorganic–Organic Hybrid Compounds with Copper–Organic Coordination Complexes: Synthesis and Oxidation Catalysis. Inorg Chem 2017; 56:11619-11632. [DOI: 10.1021/acs.inorgchem.7b01564] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiyan An
- College of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yujiao Hou
- College of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lin Wang
- College of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yumeng Zhang
- College of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - Wei Yang
- College of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| | - ShenZhen Chang
- College of Chemistry, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
18
|
Gao Y, Eghtesadi S, Liu T. Supramolecular Structures Formation of Polyoxometalates in Solution Driven by Counterion–Macroion Interaction. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ghiasi Moaser A, Khoshnavazi R. Facile synthesis and characterization of Fe3O4@MgAl-LDH@STPOM nanocomposites for highly enhanced and selective degradation of methylene blue. NEW J CHEM 2017. [DOI: 10.1039/c7nj00792b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel layered and cauliflower-like Fe3O4@MgAl-LDH@Ce3W18 nanocomposite has been synthesized by the selective ion-exchange method.
Collapse
|
20
|
Buvailo HI, Makhankova VG, Kokozay VN, Zatovsky IV, Omelchenko IV, Shishkina SV, Zabierowski P, Matoga D, Jezierska J. Diversity of Polyoxometalate‐Based Copper Compounds Obtained from the Same Reaction System. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Halyna I. Buvailo
- Department of Chemistry Taras Shevchenko National University of Kyiv Volodymyrska 64/13 01601 Kyiv Ukraine
| | - Valeriya G. Makhankova
- Department of Chemistry Taras Shevchenko National University of Kyiv Volodymyrska 64/13 01601 Kyiv Ukraine
| | - Vladimir N. Kokozay
- Department of Chemistry Taras Shevchenko National University of Kyiv Volodymyrska 64/13 01601 Kyiv Ukraine
| | - Igor V. Zatovsky
- Department of Chemistry Taras Shevchenko National University of Kyiv Volodymyrska 64/13 01601 Kyiv Ukraine
- College of Physics Jilin University 130012 Changchun P.R. China
| | - Irina V. Omelchenko
- SSI “Institute for Single Crystals” National Academy of Sciences of Ukraine Nauky Ave 60 61072 Kharkiv Ukraine
| | - Svitlana V. Shishkina
- SSI “Institute for Single Crystals” National Academy of Sciences of Ukraine Nauky Ave 60 61072 Kharkiv Ukraine
| | - Piotr Zabierowski
- Faculty of Chemistry Jagiellonian University Ingardena 3 30‐060 Kraków Poland
| | - Dariusz Matoga
- Faculty of Chemistry Jagiellonian University Ingardena 3 30‐060 Kraków Poland
| | - Julia Jezierska
- Faculty of Chemistry University of Wroclaw F. Joliot‐Curie 14 50‐383 Wroclaw Poland
| |
Collapse
|
21
|
Guo W, Bacsa J, van Leusen J, Sullivan KP, Lv H, Kögerler P, Hill CL. A Layered Manganese(IV)-Containing Heteropolyvanadate with a 1:14 Stoichiometry. Inorg Chem 2015; 54:10604-9. [PMID: 26496425 DOI: 10.1021/acs.inorgchem.5b01387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel manganese(IV)-containing symmetrical heteropolyvanadate was prepared by the transformation of K7[MnV13O38]·18H2O (K7MnV13) to K4Li2[MnV14O40]·21H2O (1) at pH 4. The heteropolyanion [MnV14O40](6-) (MnV14) is composed of a MnO6 octahedron surrounded by 14 edge-sharing VO6 octahedra. The simplified representation of MnV14 has a new topology termed jba1 with a total point symbol of {3(10)}2{3(14).4(7)}4{3(18).4(10)}8{3(44).4(46).5}. In the crystal lattice of 1, MnV14 packs with potassium ions, forming a 2D layered K2[MnV14O40](4-) network (ABABAB...). Four K(+) ions cap the four square O4 faces of MnV14, apparently stabilizing the heteropolyanion. Compound 1 catalyzes the t-BuOOH-based oxidation of 2-chloroethyl ethyl sulfide (a mustard gas simulant). The magnetic and catalytic properties of 1 are discussed.
Collapse
Affiliation(s)
| | | | - Jan van Leusen
- Institut für Anorganische Chemie, RWTH Aachen University , D-52074, Aachen, Germany
| | | | | | - Paul Kögerler
- Institut für Anorganische Chemie, RWTH Aachen University , D-52074, Aachen, Germany
| | | |
Collapse
|
22
|
Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation. Sci Rep 2015; 5:12950. [PMID: 26263506 PMCID: PMC4531785 DOI: 10.1038/srep12950] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/14/2015] [Indexed: 12/19/2022] Open
Abstract
Ag-based catalysts with different supports (TiO2, Al2O3 and CeO2) were prepared by impregnation method and subsequently tested for the catalytic oxidation of formaldehyde (HCHO) at low temperature. The Ag/TiO2 catalyst showed the distinctive catalytic performance, achieving the complete HCHO conversion at around 95 °C. In contrast, the Ag/Al2O3 and Ag/CeO2 catalysts displayed much lower activity and the 100% conversion was reached at 110 °C and higher than 125 °C, respectively. The Ag-based catalysts were next characterized by several methods. The characterization results revealed that supports have the dramatic influence on the Ag particle sizes and dispersion. Kinetic tests showed that the Ag based catalyst on the TiO2, Al2O3 or CeO2 supports have the similar apparent activation energy of 65 kJ mol−1, indicating that the catalytic mechanism keep immutability over these three catalysts. Therefore, Ag particle size and dispersion was confirmed to be the main factor affecting the catalytic performance for HCHO oxidation. The Ag/TiO2 catalyst has the highest Ag dispersion and the smallest Ag particle size, accordingly presenting the best catalytic performance for HCHO oxidation.
Collapse
|
23
|
Affiliation(s)
- Sa-Sa Wang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Guo-Yu Yang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- MOE
Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Kastner K, Forster J, Ida H, Newton GN, Oshio H, Streb C. Controlled Reactivity Tuning of Metal-Functionalized Vanadium Oxide Clusters. Chemistry 2015; 21:7686-9. [DOI: 10.1002/chem.201501049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/10/2022]
|
25
|
Wang Y, Sun MH, Li FY, Sun ZX, Xu L. Assembly of cyanometalate-functionalized phosphotungstates with magnetic properties and bifunctional electrocatalytic activities. Dalton Trans 2015; 44:4504-11. [DOI: 10.1039/c4dt03447c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two cyanometalate-functionalized Dawson type phosphotungstates with a “Netherlands windmills” shape have been prepared under conventional reaction conditions. Their magnetic properties and electrocatalytic activity were investigated.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- PR China
| | - Ming-Hui Sun
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- PR China
| | - Feng-Yan Li
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- PR China
| | - Zhi-Xia Sun
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- PR China
| | - Lin Xu
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- PR China
| |
Collapse
|
26
|
Wu HL, Zhang ZM, Li YG, Wang EB. Design and construction of a thermotropic liquid crystal material based on high-nuclear transition-metal cluster-containing polyoxometalates. RSC Adv 2014. [DOI: 10.1039/c4ra07525k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DODA+ was used as a surfactant to react with polyoxoanion [Ni9(OH)3(H2O)6(HPO4)2(PW9O34)3]16−, resulting in an organic–inorganic hybrid complex SEP-1, the first liquid crystal materials based on high-nuclear transition-metal cluster-substituted polyoxoanions.
Collapse
Affiliation(s)
- Hong-Li Wu
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Zhi-Ming Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - En-Bo Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| |
Collapse
|
27
|
Lan Q, Zhang ZM, Li YG, Lu Y, Wang EB. Synthesis of a poly-pendant 1-D chain based on ‘trans-vanadium’ bicapped, Keggin-type vanadtungstate and its photocatalytic properties. Dalton Trans 2014; 43:16265-9. [DOI: 10.1039/c4dt01575d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A vanadtungstate cluster-based organic–inorganic hybrid material [NiL4VIVWVI10WV2O40(VIVO)2] was synthesized, which not only serves as an active photocatalyst for the degradation of dye molecules, but also exhibits selective photocatalytic degradation of cationic dyes in aqueous solution.
Collapse
Affiliation(s)
- Qing Lan
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Zhi-Ming Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - En-Bo Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| |
Collapse
|