1
|
Savarimuthu Selvan C, Veerappan T, Rengan R. Ruthenium-Hydride Complexes Facilitated Sustainable Synthesis of Isoxazolones via Acceptorless Dehydrogenative Annulation of Alcohols. J Org Chem 2025; 90:86-97. [PMID: 39741467 DOI: 10.1021/acs.joc.4c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A streamlined strategy for the one-pot synthesis of isoxazolone analogues has been developed through an acceptorless dehydrogenative annulation (ADA) pathway by employing new Ru(II) hydride complexes as effective catalysts. New Ru(II) complexes (C1-C3) tailored with N̂O chelating carbazolone benzhydrazone ligands were synthesized and their formation was confirmed using analytical and spectral techniques including FT-IR and NMR. The structural configuration of the complexes featuring an octahedral geometry around the Ru(II) ion was precisely determined by single-crystal X-ray diffraction analysis. Further, the catalytic efficacy of the titled complexes has been established for the facile and productive synthesis of isoxazolone derivatives from a diverse range of benzyl alcohols, methyl acetoacetate/ethyl benzoylacetate and hydroxylamine hydrochloride, generating excellent yields of up to 93% under well-suited mild conditions with 1 mol % of catalyst loading. A sequence of time-dependent control experiments unveiled the ADA route, indicating the initial generation of an 4-methoxy benzaldehyde intermediate followed by 3-phenylisoxazol-5(4H)-one, accompanied by the release of water and hydrogen as byproducts. Gram-scale synthesis of the compound indicates the industrial relevance of our synthetic strategy. A short synthesis of medicinally active androgen antagonist illustrates the utility of the present protocol.
Collapse
Affiliation(s)
- Clinton Savarimuthu Selvan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Tamilthendral Veerappan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
2
|
Saha R, Hembram BC, Panda S, Ghosh R, Bagh B. Iron-Catalyzed sp 3 C-H Alkylation of Fluorene with Primary and Secondary Alcohols: A Borrowing Hydrogen Approach. J Org Chem 2024; 89:16223-16241. [PMID: 39175426 DOI: 10.1021/acs.joc.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The utilization of earth-abundant, cheap, and nontoxic transition metals in important catalytic transformations is essential for sustainable development, and iron has gained significant attention as the most abundant transition metal. A mixture of FeCl2 (3 mol %), phenanthroline (6 mol %), and KOtBu (0.4 eqivalent) was used as an effective catalyst for the sp3 C-H alkylation of fluorene using alcohol as a nonhazardous alkylating partner, and eco-friendly water was formed as the only byproduct. The substrate scope includes a wide range of substituted fluorenes and substituted benzyl alcohols. The reaction is equally effective with challenging secondary alcohols and unactivated aliphatic alcohols. Selective mono-C9-alkylation of fluorenes with alcohols yielded the corresponding products in good isolated yields. Various postfunctionalizations of C-9 alkylated fluorene products were performed to establish the practical utility of this catalytic alkylation. Control experiments suggested a homogeneous reaction path involving borrowing hydrogen mechanism with the formation and subsequent reduction of 9-alkylidene fluorene intermediate.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| |
Collapse
|
3
|
Kostera S, Gonsalvi L. Sustainable Hydrogen Production by Glycerol and Monosaccharides Catalytic Acceptorless Dehydrogenation (AD) in Homogeneous Phase. CHEMSUSCHEM 2024:e202400639. [PMID: 39503242 DOI: 10.1002/cssc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/08/2024] [Indexed: 11/28/2024]
Abstract
In the quest for sustainable hydrogen production, the use of biomass-derived feedstock is gaining importance. Acceptorless Dehydrogenation (AD) in the presence of efficient and selective catalysts has been explored worldwide as a suitable method to produce hydrogen from hydrogen-rich simple organic molecules. Among these, glycerol and sugars have the advantage of being inexpensive, abundant, and obtainable from fatty acid basic hydrolysis (biodiesel industry) and from biomass by biochemical and thermochemical processing, respectively. Although heterogeneous catalysts are more widely used for hydrogen production from biomass-based feedstock, the harsh reaction conditions often limit their applicability due to the deactivation of active sites caused by the coking of carbonaceous materials. Moreover, heterogeneous catalysts are more difficult to fine-tune than homogeneous counterparts, and the latter also allow for high process selectivities under milder conditions. The present Concept article summarizes the main features of the most active homogeneous catalysts reported for glycerol and monosaccharides AD. In order to directly compare hydrogen production efficiencies, the choice of literature works was limited to reports where hydrogen was clearly quantified by yields and turnover numbers (TONs). The types of transition metals and ligands are discussed, together with a perspective view on future challenges of homogeneous AD reactions for practical applications.
Collapse
Affiliation(s)
- Sylwia Kostera
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Florence), Italy
| | - Luca Gonsalvi
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
4
|
Saha R, Hembram BC, Panda S, Jana NC, Bagh B. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols. Org Biomol Chem 2024; 22:6321-6330. [PMID: 39039931 DOI: 10.1039/d4ob00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The utilization of economical and environmentally benign transition metals in crucial catalytic processes is pivotal for sustainable advancement in synthetic organic chemistry. Iron, as the most abundant transition metal in the Earth's crust, has gained significant attention for this purpose. A combination of FeCl2 (5 mol%) in the presence of phenanthroline (10 mol%) and NaOtBu (1.5 equivalent) proved effective for the C(α)-alkylation of oxindole, employing challenging secondary alcohol as a non-hazardous alkylating agent. The C(α)-alkylation of oxindole was optimized in green solvent or under neat conditions. The substrate scope encompasses a broad array of substituted oxindoles with various secondary alcohols. Further post-functionalization of the C(α)-alkylated oxindole products demonstrated the practical utility of this catalytic alkylation. One-pot C-H hydroxylation of alkylated oxindoles yielded 3-alkyl-3-hydroxy-2-oxindoles using air as the most sustainable oxidant. Low E-factors (3.61 to 4.19) and good Eco-scale scores (74 to 76) of these sustainable catalytic protocols for the alkylation and one-pot sequential alkylation-hydroxylation of oxindoles demonstrated minimum waste generation. Plausible catalytic paths are proposed on the basis of past reports and control experiments, which suggested that a borrowing hydrogen pathway is involved in this alkylation.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| |
Collapse
|
5
|
Gan L, Ye C, Pi T, Wang L, Li C, Liu L, Huang T, Chen T, Han LB. Ligand-Free Iron-Catalyzed Construction of C-P Bonds via Phosphorylation of Alcohols: Synthesis of Phosphine Oxides and Phosphine Compounds. J Org Chem 2024; 89:7047-7057. [PMID: 38669210 DOI: 10.1021/acs.joc.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
An efficient method for the construction of C-P(V) and C-P(III) bonds via the iron-catalyzed phosphorylation of alcohols under ligand-free conditions is disclosed. This strategy represents a straightforward process to prepare a series of phosphine oxides and phosphine compounds in good to excellent yields from the readily available alcohols and P-H compounds. A plausible mechanism is also proposed. We anticipate that this mode of transforming simple alcohols would apply in chemical synthesis widely.
Collapse
Affiliation(s)
- Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Changxu Ye
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianshu Pi
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Lingling Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Li-Biao Han
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| |
Collapse
|
6
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Mondal S, Chakraborty S, Khanra S, Chakraborty S, Pal S, Brandão P, Paul ND. A Phosphine-Free Air-Stable Mn(II)-Catalyst for Sustainable Synthesis of Quinazolin-4(3 H)-ones, Quinolines, and Quinoxalines in Water. J Org Chem 2024; 89:5250-5265. [PMID: 38554095 DOI: 10.1021/acs.joc.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The synthesis, characterization, and catalytic application of a new phosphine-free, well-defined, water-soluble, and air-stable Mn(II)-catalyst [Mn(L)(H2O)2Cl](Cl) ([1]Cl) featuring a 1,10-phenanthroline based tridentate pincer ligand, 2-(1H-pyrazol-1-yl)-1,10-phenanthroline (L), in dehydrogenative functionalization of alcohols to various N-heterocycles such as quinazolin-4(3H)-ones, quinolines, and quinoxalines are reported here. A wide array of multisubstituted quinazolin-4(3H)-ones were prepared in water under air following two pathways via the dehydrogenative coupling of alcohols with 2-aminobenzamides and 2-aminobenzonitriles, respectively. 2-Aminobenzyl alcohol and ketones bearing active methylene group were used as coupling partners for synthesizing quinoline derivatives, and various quinoxaline derivatives were prepared by coupling vicinal diols and 1,2-diamines. In all cases, the reaction proceeded smoothly using our Mn(II)-catalyst [1]Cl in water under air, affording the desired N-heterocycles in satisfactory yields starting from cheap and readily accessible precursors. Gram-scale synthesis of the compounds indicates the industrial relevance of our synthetic strategy. Control experiments were performed to understand and unveil the plausible reaction mechanism.
Collapse
Affiliation(s)
- Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Shrestha Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Paula Brandão
- Departamento de Química/CICECO, Instituto de Materiais de Aveiro, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| |
Collapse
|
8
|
Al-Romaizan AN, Gangwar MK, Verma A, Bawaked SM, Saleh TS, Al-Ammari RH, Butcher RJ, Siddiqui IR, Mostafa MMM. Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)-NHC Complexes. Molecules 2023; 28:4992. [PMID: 37446653 PMCID: PMC10343575 DOI: 10.3390/molecules28134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
For the creation of adaptable carbonyl compounds in organic synthesis, the oxidation of alcohols is a crucial step. As a sustainable alternative to the harmful traditional oxidation processes, transition-metal catalysts have recently attracted a lot of interest in acceptorless dehydrogenation reactions of alcohols. Here, using well-defined, air-stable palladium(II)-NHC catalysts (A-F), we demonstrate an effective method for the catalytic acceptorless dehydrogenation (CAD) reaction of secondary benzylic alcohols to produce the corresponding ketones and molecular hydrogen (H2). Catalytic acceptorless dehydrogenation (CAD) has been successfully used to convert a variety of alcohols, including electron-rich/electron-poor aromatic secondary alcohols, heteroaromatic secondary alcohols, and aliphatic cyclic alcohols, into their corresponding value-added ketones while only releasing molecular hydrogen as a byproduct.
Collapse
Affiliation(s)
- Abeer Nasser Al-Romaizan
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Manoj Kumar Gangwar
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Ankit Verma
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Salem M. Bawaked
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Tamer S. Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21959, Saudi Arabia
| | - Rahmah H. Al-Ammari
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA;
| | - Ibadur Rahman Siddiqui
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Mohamed Mokhtar M. Mostafa
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| |
Collapse
|
9
|
Yaragorla S, Khan T, Behera A. Oxidative Cleavage of C sp3-C sp2 and C sp3-H Bonds with KO tBu: Highly Robust and Practical Synthesis of Diaryl/(het-Ar) Ketones. J Org Chem 2023; 88:2103-2112. [PMID: 36723458 DOI: 10.1021/acs.joc.2c02519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report an efficient and practical approach for synthesizing diaryl(het) ketones from R-CO-CHR-Ar through a simultaneous oxidative cleavage of C-C and C-H bonds using KOtBu. This method enables synthesizing a variety of unsymmetrical and symmetrical (hetero)aryl ketones in excellent yields, which are otherwise difficult to make. Besides, we synthesized natural products using this method.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Tabassum Khan
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Ahalya Behera
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
10
|
Zhao Z, Yu X, Zhu L, Tan S, Fu W, Wang L, An Y. Synthesis of
α
,
β
‐Unsaturated Ketones with Secondary Alcohols and Aldehydes Catalyzed by Fe(acac)
3. ChemistrySelect 2022. [DOI: 10.1002/slct.202202093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengjia Zhao
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Xiangzhu Yu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Lina Zhu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Shangzhi Tan
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Weiru Fu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Lianyue Wang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| | - Yue An
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China E-mail: anyue
| |
Collapse
|
11
|
Sundarraman B, Rengan R, Semeril D. NNO Pincer Ligand-Supported Palladium(II) Complexes: Direct Synthesis of Quinazolines via Acceptorless Double Dehydrogenative Coupling of Alcohols. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Balaji Sundarraman
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - David Semeril
- Laboratoire de Chimie Inorganique et Catalyse, Institut de Chimie, Universite de Strasbourg, UMR 7177, CNRS, 67000 Strasbourg, France
| |
Collapse
|
12
|
Hou H, Ma X, Ye Y, Wu M, Shi S, Zheng W, Lin M, Sun W, Ke F. Non-metal-mediated N-oxyl radical (TEMPO)-induced acceptorless dehydrogenation of N-heterocycles via electrocatalysis. RSC Adv 2022; 12:5483-5488. [PMID: 35425580 PMCID: PMC8981507 DOI: 10.1039/d1ra08919f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
The development of protocols for direct catalytic acceptorless dehydrogenation of N-heterocycles with metal-free catalysts holds the key to difficulties in green and sustainable chemistry. Herein, an N-oxyl radical (TEMPO) acting as an oxidant in combination with electrochemistry is used as a synthesis system under neutral conditions to produce N-heterocycles such as benzimidazole and quinazolinone. The key feature of this protocol is the utilization of the TEMPO system as an inexpensive and easy to handle radical surrogate that can effectively promote the dehydrogenation reaction. Mechanistic studies also suggest that oxidative TEMPOs redox catalytic cycle participates in the dehydrogenation of 2,3-dihydro heteroarenes.
Collapse
Affiliation(s)
- Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Yaling Ye
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Mei Wu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Sunjie Shi
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Wenhe Zheng
- The First Affiliated Hospital of Fujian Medical University Fuzhou 350004 China
| | - Mei Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| |
Collapse
|
13
|
McConnell DL, Blades AM, Rodrigues DG, Keyes PV, Sonberg JC, Anthony CE, Rachad S, Simone OM, Sullivan CF, Shapiro JD, Williams CC, Schafer BC, Glanzer AM, Hutchinson HL, Thayaparan AB, Krevlin ZA, Bote IC, Haffary YA, Bhandari S, Goodman JA, Majireck MM. Synthesis of Bench-Stable N-Quaternized Ketene N, O-Acetals and Preliminary Evaluation as Reagents in Organic Synthesis. J Org Chem 2021; 86:13025-13040. [PMID: 34498466 DOI: 10.1021/acs.joc.1c01764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
N-Quaternized ketene N,O-acetals are typically an unstable, transient class of compounds most commonly observed as reactive intermediates. In this report, we describe a general synthetic approach to a variety of bench-stable N-quaternized ketene N,O-acetals via treatment of pyridine or aniline bases with acetylenic ethers and an appropriate Brønsted or Lewis acid (triflic acid, triflimide, or scandium(III) triflate). The resulting pyridinium and anilinium salts can be used as reagents or synthetic intermediates in multiple reaction types. For example, N-(1-ethoxyvinyl)pyridinium or anilinium salts can thermally release highly reactive O-ethyl ketenium ions for use in acid catalyst-free electrophilic aromatic substitutions. N-(1-Ethoxyvinyl)-2-halopyridinium salts can be employed in peptide couplings as a derivative of Mukaiyama reagents or react with amines in nucleophilic aromatic substitutions under mild conditions. These preliminary reactions illustrate the broad potential of these currently understudied compounds in organic synthesis.
Collapse
Affiliation(s)
- Danielle L McConnell
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Alisha M Blades
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Danielle Gomes Rodrigues
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Phoebe V Keyes
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Justin C Sonberg
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caitlin E Anthony
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sofia Rachad
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Olivia M Simone
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caroline F Sullivan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jonathan D Shapiro
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Christopher C Williams
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Benjamin C Schafer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Amy M Glanzer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Holly L Hutchinson
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Ashley B Thayaparan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Zoe A Krevlin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Isabella C Bote
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Yasin A Haffary
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sambat Bhandari
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jack A Goodman
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Max M Majireck
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| |
Collapse
|
14
|
Puls F, Linke P, Kataeva O, Knölker HJ. Iron-Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands*. Angew Chem Int Ed Engl 2021; 60:14083-14090. [PMID: 33856090 PMCID: PMC8251641 DOI: 10.1002/anie.202103222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/11/2022]
Abstract
Herein, we describe a convenient and general method for the oxidation of olefins to ketones using either tris(dibenzoylmethanato)iron(III) [Fe(dbm)3 ] or a combination of iron(II) chloride and neocuproine (2,9-dimethyl-1,10-phenanthroline) as catalysts and phenylsilane (PhSiH3 ) as additive. All reactions proceed efficiently at room temperature using air as sole oxidant. This transformation has been applied to a variety of substrates, is operationally simple, proceeds under mild reaction conditions, and shows a high functional-group tolerance. The ketones are formed smoothly in up to 97 % yield and with 100 % regioselectivity, while the corresponding alcohols were observed as by-products. Labeling experiments showed that an incorporated hydrogen atom originates from the phenylsilane. The oxygen atom of the ketone as well as of the alcohol derives from the ambient atmosphere.
Collapse
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, 420088, Russia
| | - Hans-Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
15
|
Puls F, Linke P, Kataeva O, Knölker H. Iron‐Catalyzed Wacker‐type Oxidation of Olefins at Room Temperature with 1,3‐Diketones or Neocuproine as Ligands**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Str. 8 Kazan 420088 Russia
| | - Hans‐Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|
16
|
Chen Z, Kacmaz A, Xiao J. Recent Development in the Synthesis and Catalytic Application of Iridacycles. CHEM REC 2021; 21:1506-1534. [PMID: 33939250 DOI: 10.1002/tcr.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Cyclometallated complexes are well-known and have found many applications. This article provides a short review on the progress made in the synthesis and application to catalysis of cyclometallated half-sandwich Cp*Ir(III) complexes (Cp*: pentamethylcyclopentadienyl) since 2017. Covered in the review are iridacycles featuring conventional C,N chelates and less common metallocene and carbene-derived C,N and C,C ligands. This is followed by an overview of the studies of their applications in catalysis ranging from asymmetric hydrogenation, transfer hydrogenation, hydrosilylation to dehydrogenation.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Aysecik Kacmaz
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.,Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpasa, Avcilar, Istanbul, 34320, Turkey
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
17
|
Hao S, Yang J, Liu P, Xu J, Yang C, Li F. Linear-Organic-Polymer-Supported Iridium Complex as a Recyclable Auto-Tandem Catalyst for the Synthesis of Quinazolinones via Selective Hydration/Acceptorless Dehydrogenative Coupling from o-Aminobenzonitriles. Org Lett 2021; 23:2553-2558. [PMID: 33729807 DOI: 10.1021/acs.orglett.1c00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A linear-organic-polymer-supported iridium complex Cp*Ir@P4VP, which is designed and synthesized by the coordinative immobilization of [Cp*IrCl2]2 on poly(4-vinylpyridine), was proven to be an efficient heterogeneous autotandem catalyst for synthesizing quinazolinones via selective hydration/acceptorless dehydrogenative coupling from o-aminobenzonitriles. Furthermore, the synthesized catalyst was recycled five times without an obvious decrease in the catalytic activity.
Collapse
Affiliation(s)
- Shushu Hao
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jiazhi Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jing Xu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Chenchen Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
18
|
Buil ML, Collado A, Esteruelas MA, Gómez-Gallego M, Izquierdo S, Nicasio AI, Oñate E, Sierra MA. Preparation and Degradation of Rhodium and Iridium Diolefin Catalysts for the Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols. Organometallics 2021; 40:989-1003. [PMID: 35692372 PMCID: PMC9180741 DOI: 10.1021/acs.organomet.1c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/21/2023]
Abstract
![]()
Rhodium
and iridium diolefin catalysts for the acceptorless and
base-free dehydrogenation of secondary alcohols have been prepared,
and their degradation has been investigated, during the study of the
reactivity of the dimers [M(μ-Cl)(η4-C8H12)]2 (M = Rh (1), Ir
(2)) and [M(μ-OH)(η4-C8H12)]2 (M = Rh (3), Ir (4)) with 1,3-bis(6′-methyl-2′-pyridylimino)isoindoline
(HBMePHI). Complex 1 reacts with HBMePHI, in dichloromethane,
to afford equilibrium mixtures of 1, the mononuclear
derivative RhCl(η4-C8H12){κ1-Npy-(HBMePHI)} (5), and the binuclear species [RhCl(η4-C8H12)]2{μ-Npy,Npy-(HBMePHI)} (6). Under
the same conditions, complex 2 affords the iridium counterparts
IrCl(η4-C8H12){κ1-Npy-(HBMePHI)} (7) and [IrCl(η4-C8H12)]2{μ-Npy,Npy-(HBMePHI)} (8). In contrast to chloride,
one of the hydroxide groups of 3 and 4 promotes
the deprotonation of HBMePHI to give [M(η4-C8H12)]2(μ-OH){μ-Npy,Niso-(BMePHI)} (M = Rh
(9), Ir (10)), which are efficient precatalysts
for the acceptorless and base-free dehydrogenation of secondary alcohols.
In the presence of KOtBu, the [BMePHI]− ligand undergoes three different degradations: alcoholysis
of an exocyclic isoindoline-N double bond, alcoholysis of a pyridyl-N
bond, and opening of the five-membered ring of the isoindoline core.
Collapse
Affiliation(s)
- María L. Buil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Alba Collado
- Departamento de Química Orgánica I, Facultad de CC. Químicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Mar Gómez-Gallego
- Departamento de Química Orgánica I, Facultad de CC. Químicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Antonio I. Nicasio
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica I, Facultad de CC. Químicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
Takallou A, Mesgarsaravi N, Beigbaghlou SS, Sakhaee N, Halimehjani AZ. Recent Developments in Dehydrogenative Organic Transformations Catalyzed by Homogeneous Phosphine‐Free Earth‐Abundant Metal Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Takallou
- Faculty of Chemistry Kharazmi University 49 Mofateh St. Tehran 15719-14911 Iran
| | | | | | - Nader Sakhaee
- Roger Adams Lab, School of Chemical Sciences University of Illinois Urbana Champaign Illinois 61801 USA
| | | |
Collapse
|
20
|
Zhuang X, Tao J, Luo Z, Hong C, Liu Z, Li Q, Ren L, Luo Q, Liu T. Silver catalyzed pyridine‐directed acceptorless dehydrogenation of secondary alcohols. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Zhuang
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Jing Tao
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Chuan‐Ming Hong
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Zheng‐Qiang Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Qing‐Hua Li
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Li‐Qing Ren
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Qun‐Li Luo
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Tang‐Lin Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
21
|
Samaraj E, Balaraman E, Manickam S. Functional POM-catalyst for selective oxidative dehydrogenative couplings under aerobic conditions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Huang Y, Wang B, Yuan H, Sun Y, Yang D, Cui X, Shi F. The catalytic dehydrogenation of ethanol by heterogeneous catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02479a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, recent advances in the catalytic dehydrogenation of ethanol to acetaldehytde with the release of hydrogen catalyzed by a heterogeneous catalyst aresummerized and discussed.
Collapse
Affiliation(s)
- Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hangkong Yuan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yubin Sun
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Dongyuan Yang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
23
|
Liu J, Zhang S, Luan Z, Liu Y, Ke Z. Ruthenium Catalyzed Selective Acceptorless Dehydrogenation of Allylic Alcohols to α, β-Unsaturated Carbonyls. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Hao Z, Liu K, Feng Q, Dong Q, Ma D, Han Z, Lu G, Lin J. Ruthenium(
II
) Complexes Bearing Schiff Base Ligands for Efficient Acceptorless Dehydrogenation of Secondary Alcohols
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhiqiang Hao
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University Shijiazhuang Hebei 050024 China
| | - Kang Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University Shijiazhuang Hebei 050024 China
| | - Qi Feng
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University Shijiazhuang Hebei 050024 China
| | - Qing Dong
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University Shijiazhuang Hebei 050024 China
| | - Dongzhu Ma
- Department of Environment and Chemical Engineering, Hebei College of Industry and Technology Shijiazhuang Hebei 050091 China
| | - Zhangang Han
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University Shijiazhuang Hebei 050024 China
| | - Guo‐Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Jin Lin
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University Shijiazhuang Hebei 050024 China
| |
Collapse
|
25
|
Yuan X, Wan Z, Ning J, Zhang Q, Luo J. One‐pot oxidant‐free dehydrogenation‐Knoevenagel tandem reaction catalyzed by a recyclable magnetic base‐metal bifunctional catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofeng Yuan
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Zijuan Wan
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Jinfeng Ning
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry, Biology and Material Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Jun Luo
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| |
Collapse
|
26
|
Jayaprakash H, Guo L, Wang S, Bruneau C, Fischmeister C. Acceptorless and Base-Free Dehydrogenation of Alcohols Mediated by a Dipyridylamine-Iridium(III) Catalyst. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Harikrishnan Jayaprakash
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Liwei Guo
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Shengdong Wang
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Christian Bruneau
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Cédric Fischmeister
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| |
Collapse
|
27
|
Chen H, Liu L, Huang T, Chen J, Chen T. Direct Dehydrogenation for the Synthesis of α,β‐Unsaturated Carbonyl Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hong Chen
- Haikou Hospital affiliated to Xiangya School of MedicineCentral South University Haikou 570100 People's Republic of China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island ResourcesHainan Provincial Key Lab of Fine ChemHainan University Haikou 570228 People's Republic of China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island ResourcesHainan Provincial Key Lab of Fine ChemHainan University Haikou 570228 People's Republic of China
| | - Jing Chen
- Haikou Hospital affiliated to Xiangya School of MedicineCentral South University Haikou 570100 People's Republic of China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island ResourcesHainan Provincial Key Lab of Fine ChemHainan University Haikou 570228 People's Republic of China
| |
Collapse
|
28
|
Buil ML, Esteruelas MA, Izquierdo S, Nicasio AI, Oñate E. N–H and C–H Bond Activations of an Isoindoline Promoted by Iridium- and Osmium-Polyhydride Complexes: A Noninnocent Bridge Ligand for Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- María L. Buil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Susana Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Antonio I. Nicasio
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Nejad MJ, Salamatmanesh A, Heydari A. Copper (II) immobilized on magnetically separable l-arginine-β-cyclodextrin ligand system as a robust and green catalyst for direct oxidation of primary alcohols and benzyl halides to acids in neat conditions. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Tinnermann H, Sung S, Cala BA, Gill HJ, Young RD. Catalytic Deoxygenation of Amine and Pyridine N-Oxides Using Rhodium PCcarbeneP Pincer Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hendrik Tinnermann
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Simon Sung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Beatrice A. Cala
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Hashir J. Gill
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Rowan D. Young
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
31
|
Farnetti E, Crotti C, Zangrando E. Iron complexes with polydentate phosphines as unusual catalysts for alcohol oxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Fuse H, Mitsunuma H, Kanai M. Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols. J Am Chem Soc 2020; 142:4493-4499. [DOI: 10.1021/jacs.0c00123] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiromu Fuse
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Metal Nanoparticles for Redox Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Borah D, Saha B, Sarma B, Das P. A cyclometalated Ir(III)-NHC complex as a recyclable catalyst for acceptorless dehydrogenation of alcohols to carboxylic acids. Dalton Trans 2020; 49:16866-16876. [PMID: 33179681 DOI: 10.1039/d0dt02341h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we have synthesized two new [C, C] cyclometalated Ir(iii)-NHC complexes, [IrCp*(C∧C:NHC)Br](1a,b), [Cp* = pentamethylcyclopentadienyl; NHC = (2-flurobenzyl)-1-(4-methoxyphenyl)-1H-imidazoline-2-ylidene (a); (2-flurobenzyl)-1-(4-formylphenyl)-1H-imidazoline-2-ylidene (b)] via intramolecular C-H bond activation. The molecular structure of complex 1a was determined by X-ray single crystal analysis. The catalytic potentials of the complexes were explored for acceptorless dehydrogenation of alcohols to carboxylic acids with concomitant hydrogen gas evolution. Under similar experimental conditions, complex 1a was found to be slightly more efficient than complex 1b. Using 0.1 mol% of complex 1a, good-to-excellent yields of carboxylic acids/carboxylates have been obtained for a wide range of alcohols, both aliphatic and aromatic, including those involving heterocycles, in a short reaction time with a low loading of catalyst. Remarkably, our method can produce benzoic acid from benzyl alcohol on a gram scale with a catalyst-to-substrate ratio as low as 1 : 5000 and exhibit a TON of 4550. Furthermore, the catalyst could be recycled at least three times without losing its activity. A mechanism has been proposed based on controlled experiments and in situ NMR study.
Collapse
Affiliation(s)
- Dhrubajit Borah
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | | | | | | |
Collapse
|
35
|
Li Y, Liu J, Huang X, Qu LB, Zhao C, Langer R, Ke Z. Lewis Acid Transition-Metal-Catalyzed Hydrogen Activation: Structures, Mechanisms, and Reactivities. Chemistry 2019; 25:13785-13798. [PMID: 31390099 DOI: 10.1002/chem.201903193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/20/2022]
Abstract
As a new type of bifunctional catalyst, the Lewis acid transition-metal (LA-TM) catalysts have been widely applied for hydrogen activation. This study presents a mechanistic framework to understand the LA-TM-catalyzed H2 activation through DFT studies. The mer(trans)-homolytic cleavage, the fac(cis)-homolytic cleavage, the synergetic heterolytic cleavage, and the dissociative heterolytic cleavage should be taken as general mechanisms for the field of LA-TM catalysis. Four typical LA-TM catalysts, the Z-type κ4 -L3 B-Rh complex tri(azaindolyl)borane-Rh, the X-type κ3 -L2 B-Co complex bis-phosphino-boryl (PBP)-Co, the η2 -BC-type κ3 -L2 B-Pd complex diphosphine-borane (DPB)-Pd, and the Z-type κ2 -LB-Pt complex (boryl)iminomethane (BIM)-Pt are selected as representative models to systematically illustrate their mechanistic features and explore the influencing factors on mechanistic variations. Our results indicate that the tri(azaindolyl)borane-Rh catalyst favors the synergetic heterolytic mechanism; the PBP-Co catalyst prefers the mer(trans)-homolytic mechanism; the DPB-Pd catalyst operates through the fac(cis)-homolytic mechanism, whereas the BIM-Pt catalyst tends to undergo the dissociative heterolytic mechanism. The mechanistic variations are determined by the coordination geometry, the LA-TM bonding nature, the electronic structure of the TM center, and the flexibility or steric effect of the LA ligands. The presented mechanistic framework should provide helpful guidelines for LA-TM catalyst design and reaction developments.
Collapse
Affiliation(s)
- Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Department of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, Department of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiao Huang
- School of Materials Science & Engineering, PCFM Lab, Department of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Cunyuan Zhao
- School of Materials Science & Engineering, PCFM Lab, Department of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Robert Langer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str., 35032, Marburg, Germany
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Department of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
36
|
A Facile Synthesis of ZrOx-MnCO3/Graphene Oxide (GRO) Nanocomposites for the Oxidation of Alcohols using Molecular Oxygen under Base Free Conditions. Catalysts 2019. [DOI: 10.3390/catal9090759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Graphene and its nanocomposites are showing excellent potential in improving the catalytic performances of different materials. However, the synthetic protocol and its form, such as graphene oxide (GRO) or highly reduced graphene oxide (HRG), influence the catalytic efficiencies. Here, we present, a facile synthesis of graphene oxide (GRO) and ZrOx-MnCO3-based nanocomposites [(1%)ZrOx–MnCO3/(x%)GRO] and their outcome as an oxidation catalyst for alcohol oxidation under mild conditions using O2 as a clean oxidant. The ZrOx–MnCO3/GRO catalyst prepared by incorporating GRO to pre-calcined ZrOx-MnCO3 using ball milling showed remarkable enhancement in the catalytic activities as compared to pristine ZrOx–MnCO3, ZrOx–MnCO3 supported on HRG or ZrOx–MnCO3/GRO prepared by in-situ growth of ZrOx–MnCO3 onto GRO followed by calcination. The catalyst with composition (1%)ZrOx–MnCO3/(1%)GRO exhibited superior specific activity (57.1 mmol/g·h) with complete conversion and >99% selectivity of the product within a short period of time (7 min) and at a relatively lower temperature (100 °C). The catalyst could be recycled at least five times with a negligible decrease in efficiency and selectivity. The catalytic study was extended to different aromatic as well as aliphatic alcohols under optimized conditions, which confirmed the efficiency and selectivity of the catalyst.
Collapse
|
37
|
Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat Commun 2019; 10:2796. [PMID: 31243290 PMCID: PMC6594969 DOI: 10.1038/s41467-019-10928-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
Alcohol oxidation reactions are widely used for the preparation of aldehydes and ketones. The electrolysis of alcohols to carbonyl compounds have been underutilized owing to low efficiency. Herein, we report an electrochemical oxidation of various alcohols in a continuous-flow reactor without external oxidants, base or mediators. The robust electrochemical oxidation is performed for a variety of alcohols with good functional group tolerance, high efficiency and atom economy, whereas mechanistic studies support the benzylic radical intermediate formation and hydrogen evolution. The electrochemical oxidation proves viable on diols with excellent levels of selectivity for the benzylic position.
Collapse
|
38
|
Jana S, Thomas J, Sen Gupta S. Catalytic oxidation of alcohols using Fe-bTAML and NaClO: Comparing the reactivity of Fe(V)O and Fe(IV)O intermediates. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Gangwar MK, Dahiya P, Emayavaramban B, Sundararaju B. Cp*Co III -Catalyzed Efficient Dehydrogenation of Secondary Alcohols. Chem Asian J 2018; 13:2445-2448. [PMID: 29863804 DOI: 10.1002/asia.201800697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/01/2018] [Indexed: 11/09/2022]
Abstract
A novel, well-defined molecular Cp*CoIII complex was isolated and structurally characterized for the first time. The efficiency of this cobalt catalyst was demonstrated in the alcohol dehydrogenation and dehydrative coupling of secondary alcohols under mild conditions into ketones and ethers, respectively.
Collapse
Affiliation(s)
- Manoj Kumar Gangwar
- Fine Chemicla Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Pardeep Dahiya
- Fine Chemicla Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Balakumar Emayavaramban
- Fine Chemicla Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Basker Sundararaju
- Fine Chemicla Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| |
Collapse
|
40
|
Bhadra BN, Jhung SH. Well-dispersed Ni or MnO nanoparticles on mesoporous carbons: preparation via carbonization of bimetallic MOF-74s for highly reactive redox catalysts. NANOSCALE 2018; 10:15035-15047. [PMID: 30052243 DOI: 10.1039/c8nr04262d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of metal-organic framework-74s (MOF-74s), composed of two different metallic species (Zn/Ni or Zn/Mn in various compositions), were synthesized, and Ni or MnO-doped carbonaceous materials were first prepared by pyrolysis of the MOFs under an inert environment for catalytic applications. These MOF-derived nanomaterials (MDNMs), obtained by pyrolysis of MOF-74s, were characterized thoroughly to understand their phase, porosity, particle size, dispersion, and composition. With increasing Zn content in the bimetallic MOF-74s, the porosity of the MDNMs increased but the size and content of Ni or MnO in the MDNMs decreased monotonously. One MDNM(75Zn25Mn), prepared from MOF-74(75%Zn/25%Mn), showed noticeably higher activity in the oxidation of benzyl alcohol as compared with not only the MDNM(xZnyMn)s but also MnOx-loaded carbon or loaded γ-alumina (or, MDNM(75Zn25Mn) showed ∼54 times turnover frequency (TOF) to that of MnO/activated carbon). MDNM(75Zn25Mn) was also effective in the oxidative removal of dibenzothiophene from a model fuel. Moreover, MDNM(75Zn25Ni), prepared from MOF-74(75%Zn/25%Ni), had the highest TOF in the reduction of 4-nitrophenol among various MDNM(xZnyNi)s. The highest activity of MDNM(75Zn25Mn) and MDNM(75Zn25Ni), even with the lowest Mn and Ni contents in the respective MDNMs, for oxidation and reduction in several cycles might be due to the well-dispersed MnO (and Ni) and high porosity with mesopores. Therefore, it can be suggested that pyrolysis of mixed-metal MOFs such as MOF-74s can be a facile way to obtain highly effective and recyclable heterogeneous catalysts, with well-dispersed active species in very small sizes, for various organic reactions.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | |
Collapse
|
41
|
Alabau RG, Esteruelas MA, Martínez A, Oliván M, Oñate E. Base-Free and Acceptorless Dehydrogenation of Alcohols Catalyzed by an Iridium Complex Stabilized by a N,N,N-Osmaligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Roberto G. Alabau
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Antonio Martínez
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
42
|
Zhang W, Meng C, Liu Y, Tang Y, Li F. Auto-Tandem Catalysis with Ruthenium: From o
-Aminobenzamides and Allylic Alcohols to Quinazolinones via
Redox Isomerization/Acceptorless Dehydrogenation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800660] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Weikang Zhang
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Chong Meng
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Yan Liu
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Yawen Tang
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Feng Li
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 People's Republic of China
| |
Collapse
|
43
|
Wang L, Bie Z, Shang S, Li G, Niu J, Gao S. Cu‐Catalyzed Aerobic Oxidation of Alcohols with a Multi‐Functional NMI‐TEMPO. ChemistrySelect 2018. [DOI: 10.1002/slct.201800398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lianyue Wang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| | - Zhixing Bie
- Henan Key Laboratory of Polyoxometalate ChemistryInstitute of Molecular and Crystal EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 China
| | - Sensen Shang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| | - Guosong Li
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate ChemistryInstitute of Molecular and Crystal EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng Henan 475004 China
| | - Shuang Gao
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physicsthe Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
44
|
Xu S, Alhthlol LM, Paudel K, Reinheimer E, Tyer DL, Taylor DK, Smith AM, Holzmann J, Lozano E, Ding K. Tripodal N,P Mixed-Donor Ligands and Their Cobalt Complexes: Efficient Catalysts for Acceptorless Dehydrogenation of Secondary Alcohols. Inorg Chem 2018; 57:2394-2397. [DOI: 10.1021/acs.inorgchem.8b00043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Latifah M. Alhthlol
- King Saud bin Abdulaziz University for Health Sciences, Al Mubarraz, Alahsa 36428, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Buil ML, Esteruelas MA, Gay MP, Gómez-Gallego M, Nicasio AI, Oñate E, Santiago A, Sierra MA. Osmium Catalysts for Acceptorless and Base-Free Dehydrogenation of Alcohols and Amines: Unusual Coordination Modes of a BPI Anion. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00906] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- María L. Buil
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Pilar Gay
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Mar Gómez-Gallego
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio I. Nicasio
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Alicia Santiago
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
46
|
Wang Q, Chai H, Yu Z. Acceptorless Dehydrogenation of N-Heterocycles and Secondary Alcohols by Ru(II)-NNC Complexes Bearing a Pyrazoyl-indolyl-pyridine Ligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00902] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Qingfu Wang
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huining Chai
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhengkun Yu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, PR China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, PR China
| |
Collapse
|
47
|
Das S, Maiti D, De Sarkar S. Synthesis of Polysubstituted Quinolines from α-2-Aminoaryl Alcohols Via Nickel-Catalyzed Dehydrogenative Coupling. J Org Chem 2018; 83:2309-2316. [PMID: 29345932 DOI: 10.1021/acs.joc.7b03198] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
48
|
Jaiswal G, Landge VG, Jagadeesan D, Balaraman E. Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nat Commun 2017. [DOI: 10.1038/s41467-017-01603-3 pmid: 29247179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
49
|
Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nat Commun 2017; 8:2147. [PMID: 29247179 PMCID: PMC5732290 DOI: 10.1038/s41467-017-01603-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
Abstract
Development of sustainable catalytic systems for fundamentally important synthetic transformations and energy storage applications is an intellectually stimulating challenge. Catalytic dehydrogenation of feedstock chemicals, such as alcohols and amines to value-added products with the concomitant generation of dihydrogen is of much interest in the context of hydrogen economy and is an effective alternative to the classical oxidation reactions. Despite a number of homogeneous catalysts being identified for the acceptorless dehydrogenation, the use of high price and limited availability of precious metals and poor recovery of the catalyst have spurred interest in catalysis with more earth-abundant alternatives, especially iron. However, no report has described a reusable iron-based heterogeneous catalyst for oxidant-free and acceptorless dehydrogenation reactions. Here we replace expensive noble metal catalysts with an inexpensive, benign, and sustainable nanoscale iron catalyst for the efficient acceptorless dehydrogenation of N-heterocycles and alcohols with liberation of hydrogen gas. Catalytic acceptorless dehydrogenation reactions provide a sustainable route to valuable products and hydrogen fuel. Here, the authors show a recyclable iron catalyst that is highly active in the acceptorless dehydrogenation of a wide range of N-heterocycles and alcohols.
Collapse
|
50
|
Sinha S, Das S, Sikari R, Parua S, Brandaõ P, Demeshko S, Meyer F, Paul ND. Redox Noninnocent Azo-Aromatic Pincers and Their Iron Complexes. Isolation, Characterization, and Catalytic Alcohol Oxidation. Inorg Chem 2017; 56:14084-14100. [PMID: 29120616 DOI: 10.1021/acs.inorgchem.7b02238] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The new redox-noninnocent azoaromatic pincers 2-(arylazo)-1,10-phenanthroline (L1) and 2,9-bis(phenyldiazo)-1,10-phenanthroline (L2) are reported. The ligand L1 is a tridentate pincer having NNN donor atoms, whereas L2 is tetradentate having two azo-N donors and two N-donor atoms from the 1,10-phenanthroline moiety. Reaction of FeCl2 with L1 or L2 produced the pentacoordinated mixed-ligand Fe(II) complexes FeL1Cl2 (1) and FeL2Cl2 (2), respectively. Homoleptic octahedral Fe(II) complexes, mer-[Fe(L1)2](ClO4)2 [3](ClO4)2 and mer-[Fe(L2)2](ClO4)2 [4](ClO4)2, have been synthesized from the reaction of hydrated Fe(ClO4)2 and L1 or L2. The ligand L2, although having four donor sites available for coordination, binds the iron center in a tridentate fashion with one uncoordinated pendant azo function. Molecular and electronic structures of the isolated complexes have been scrutinized thoroughly by various spectroscopic techniques, single-crystal X-ray crystallography, and density functional theory. Beyond mere characterization, complexes 1 and 2 were successfully used as catalysts for the aerobic oxidation of primary and secondary benzylic alcohols. A wide variety of substituted benzyl alcohols were found to be converted to the corresponding carbonyl compounds in high yields, catalyzed by complex 1. Several control reactions were carried out to understand the mechanism of this alcohol oxidation reactions.
Collapse
Affiliation(s)
- Suman Sinha
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Botanic Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Botanic Garden, Howrah 711103, India
| | - Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Botanic Garden, Howrah 711103, India
| | - Seuli Parua
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Botanic Garden, Howrah 711103, India
| | - Paula Brandaõ
- Departamento de Química/CICECO, Universidade de Aveiro , 3810-193 Aveiro, Portugal
| | - Serhiy Demeshko
- Universität Göttingen , Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen , Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|