1
|
Ran W, Zhao H, Zhang X, Li S, Sun JF, Liu J, Liu R, Jiang G. Critical Review of Pd-Catalyzed Reduction Process for Treatment of Waterborne Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38323894 DOI: 10.1021/acs.est.3c09198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Catalyzed reduction processes have been recognized as important and supplementary technologies for water treatment, with the specific aims of resource recovery, enhancement of bio/chemical-treatability of persistent organic pollutants, and safe handling of oxygenate ions. Palladium (Pd) has been widely used as a catalyst/electrocatalyst in these reduction processes. However, due to the limited reserves and high cost of Pd, it is essential to gain a better understanding of the Pd-catalyzed decontamination process to design affordable and sustainable Pd catalysts. This review provides a systematic summary of recent advances in understanding Pd-catalyzed reductive decontamination processes and designing Pd-based nanocatalysts for the reductive treatment of water-borne pollutants, with special focus on the interactions and transformation mechanisms of pollutant molecules on Pd catalysts at the atomic scale. The discussion begins by examining the adsorption of pollutants onto Pd sites from a thermodynamic viewpoint. This is followed by an explanation of the molecular-level reaction mechanism, demonstrating how electron-donors participate in the reductive transformation of pollutants. Next, the influence of the Pd reactive site structure on catalytic performance is explored. Additionally, the process of Pd-catalyzed reduction in facilitating the oxidation of pollutants is briefly discussed. The longevity of Pd catalysts, a crucial factor in determining their practicality, is also examined. Finally, we argue for increased attention to mechanism study, as well as precise construction of Pd sites under batch synthesis conditions, and the use of Pd-based catalysts/electrocatalysts in the treatment of concentrated pollutants to facilitate resource recovery.
Collapse
Affiliation(s)
- Wei Ran
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Fang Sun
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li M, Liu H, Liu C, Ding Y, Fang C, Wan R, Zhu H, Yang Y. Pd sub-nanolayer on Au core for enhanced catalytic hydrogenation reduction of oxyanions pollutants: Synergistic effect of Pd and Au. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122067. [PMID: 37352958 DOI: 10.1016/j.envpol.2023.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Oxyanion pollutants in industrial wasterwater, such as (Cr(VI)), BrO3- (Br(V)) and SeO32- (Se(IV)) have detrimental or toxic effects on individual health when their concentrations accumulated to a certain level. The conversion of these oxyanions into harmless/industrial-valuable products or removal from wastewater is of significance. Herein, we designed Pd sub-nanolayer on Au core catalysts supported on Al2O3 (sub-Pd-Au/Al2O3) for highly effective catalytic hydrogenation reduction of oxyanions under ambient conditions. The sub-Pd(0.049)-Au(0.927)/Al2O3 catalyst exhibited the highest catalytic activity and TOF value for Cr(VI), Br(V) and Se(IV) reduction, respectively, by optimizing the Pd loading amount. The synergistic effect between Pd sub-nanolayer and Au core enhanced catalytic activity by regulating the Pd dispersion and site property, according to thorough characterizations that included high-angle annular dark-field transmission electron microscopy (HAADF-TEM) image, in-situ CO-IR adsorption, CO chemisorption, and X-ray photoelectron spectroscopy (XPS). This work might provide some new lights on design of highly efficient catalysts for the elimination of oxyanion pollutants.
Collapse
Affiliation(s)
- Minghui Li
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Hang Liu
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Chang Liu
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Yan Ding
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Caixia Fang
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Rui Wan
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Yaning Yang
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui, 243000, PR China.
| |
Collapse
|
3
|
Gao W, Liu S, Sun G, Zhang C, Pan Y. Single-Atom Catalysts for Hydrogen Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300956. [PMID: 36950768 DOI: 10.1002/smll.202300956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Selective hydrogenation is one of the most important reactions in fine chemical industry, and the activation of H2 is the key step for hydrogenation. Catalysts play a critical role in selective hydrogenation, and some single-atom catalysts (SACs) are highly capable of activating H2 in selective hydrogenation by virtue of the maximized atom utilization and the highly uniform active sites. Therefore, more research efforts are needed for the rational design of SACs with superior H2 -activating capabilities. Herein, the research progress on H2 activation in typical hydrogenation systems (such as alkyne hydrogenation, hydroformylation, hydrodechlorination, hydrodeoxygenation, nitroaromatics hydrogenation, and polycyclic aromatics hydrogenation) is reviewed, the mechanisms of SACs for H2 activation are summarized, and the structural regulation strategies for SACs are proposed to promote H2 activation and provide schemes for the design of high-selectivity hydrogenation catalysts from the atomic scale. At the end of this review, an outlook on the opportunities and challenges for SACs to be developed for selective hydrogenation is presented.
Collapse
Affiliation(s)
- Wenwen Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
4
|
Boasiako CA, Zhou Z, Huo X, Ye T. Development of Pd-based catalysts for hydrogenation of nitrite and nitrate in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130661. [PMID: 36587602 DOI: 10.1016/j.jhazmat.2022.130661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Pd-based catalytic hydrogenation for nitrate decontamination has been the subject of extensive research over the past 30 years. Advances in computational simulation, nanomaterial synthesis, and experimental characterization in the past decade have generated new understandings of the reaction mechanisms, guided the development of various catalysts with enhanced performance, and brought revolutionary upgrades to conventional nitrate treatment technologies. However, technical and economic challenges are still limiting its large-scale implementation. In this review, we provide a brief summary of the up-to-date reaction pathways. We then critically examine the methods for the synthesis of supported Pd-based catalysts and the supports that are used for the immobilization of Pd-based catalysts, identifying candidate catalysts with the most promising future. To facilitate practical deployment and niche applications of catalytic hydrogenation, we introduce alternative easy-to-handle hydrogen carriers and cost-effective metal catalysts that can potentially substitute precious Pd. Afterwards, we emphasize the significance of new development in hybrid catalytic systems that couple catalytic processes with other modules, enabling economically and sustainably treating nitrate-contaminated water. Future research needs are accordingly proposed. Through this review, we aim to provide guidance for standardized catalyst synthesis strategies and candidate catalyst evaluation and motivate future research that produces catalysts with industrially relevant performance.
Collapse
Affiliation(s)
- Collins Antwi Boasiako
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering, The George Washington University, Washington DC 20052, United States
| | - Xiangchen Huo
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States.
| |
Collapse
|
5
|
Gao J, Zhao Q, Tan C, Xie S, Yin Y, Liu F, Liu H, Chen B, Liu J. Accelerating Catalytic Oxyanion Reduction with Inert Metal Hydroxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1479-1486. [PMID: 36633933 PMCID: PMC9878714 DOI: 10.1021/acs.est.2c06468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Adding CrIII or AlIII salts into the water suspension of platinum group metal (PGM) catalysts accelerated oxyanion pollutant reduction by up to 600%. Our initial attempts of adding K2CrVIO4, K2CrVI2O7, or KCrIII(SO4)2 into Pd/C enhanced BrO3- reduction with 1 atm H2 by 6-fold. Instrument characterizations and kinetic explorations collectively confirmed the immobilization of reduced CrVI as CrIII(OH)3 on the catalyst surface. This process altered the ζ-potentials from negative to positive, thus substantially enhancing the Langmuir-Hinshelwood adsorption equilibrium constant for BrO3- onto Pd/C by 37-fold. Adding AlIII(OH)3 from alum at pH 7 achieved similar enhancements. The Cr-Pd/C and Al-Pd/C showed top-tier efficiency of catalytic performance (normalized with Pd dosage) among all the reported Pd catalysts on conventional and nanostructured support materials. The strategy of adding inert metal hydroxides works for diverse PGMs (palladium and rhodium), substrates (BrO3- and ClO3-), and support materials (carbon, alumina, and silica). This work shows a simple, inexpensive, and effective example of enhancing catalyst activity and saving PGMs for environmental applications.
Collapse
Affiliation(s)
- Jinyu Gao
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Qiang Zhao
- Department
of Environmental Science, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Cheng Tan
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Shaohua Xie
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida32816, United States
| | - Yadong Yin
- Department
of Chemistry, University of California, Riverside, California92521, United States
| | - Fudong Liu
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida32816, United States
| | - Haizhou Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Baoliang Chen
- Department
of Environmental Science, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jinyong Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| |
Collapse
|
6
|
Palladium Nanoparticles on Chitosan-Coated Superparamagnetic Manganese Ferrite: A Biocompatible Heterogeneous Catalyst for Nitroarene Reduction and Allyl Carbamate Deprotection. Polymers (Basel) 2023; 15:polym15010232. [PMID: 36616581 PMCID: PMC9824173 DOI: 10.3390/polym15010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 01/03/2023] Open
Abstract
Although metallic nanocatalysts such as palladium nanoparticles (Pd NPs) are known to possess higher catalytic activity due to their large surface-to-volume ratio, however, in nanosize greatly reducing their activity due to aggregation. To overcome this challenge, superparamagnetic chitosan-coated manganese ferrite was successfully prepared and used as a support for the immobilization of palladium nanoparticles to overcome the above-mentioned challenge. The Pd-Chit@MnFe2O4 catalyst exhibited high catalytic activity in 4-nitrophenol and 4-nitroaniline reductions, with respective turnover frequencies of 357.1 min-1 and 571.4 min-1, respectively. The catalyst can also be recovered easily by magnetic separation after each reaction. Additionally, the Pd-Chit@MnFe2O4 catalyst performed well in the reductive deprotection of allyl carbamate. Coating the catalyst with chitosan reduced the Pd leaching and its cytotoxicity. Therefore, the catalytic activity of Pd-Chit@MnFe2O4 was proven to be unrestricted in biology conditions.
Collapse
|
7
|
Palladium Impregnation on Electrospun Carbon Fibers for Catalytic Reduction of Bromate in Water. Processes (Basel) 2022. [DOI: 10.3390/pr10030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The remediation of bromate in water is a concern due to the reported health issues caused by its ingestion. Catalytic processes, wherein bromate is reduced to non-hazardous bromide, have been studied. In the present work, catalysts of 1% palladium supported in electrospun carbon fibers (Pd-CFs) using different methods for palladium incorporation were prepared. The textural properties, morphology, crystalline structure, and hydrogenation capacity by H2 chemisorption analysis of the Pd-CFs catalysts were characterized. The catalytic tests were performed in a semi-batch reactor, and the obtained results showed different catalytic activity by each prepared Pd-CFs catalyst. The catalysts prepared by incipient wetness impregnation—1% Pd/CF1 and 1% Pd/CF2, using CFs obtained with electrospinning flow rates of 0.5 mL h−1 and 2 mL h−1, respectively—achieved total bromate reduction after 120 min of operation; however, 1% Pd/CF1 obtained total reduction as early as 30 min. Taking into account the catalyst properties, 1% Pd/CF1 showed a good catalytic activity due to CFs morphology obtained using a low electrospinning flow rate, while the Pd incorporation method allowed a high availability of active sites with hydrogenation properties for bromate reduction.
Collapse
|
8
|
Yu L, Zhou J, Xu Z, Zheng S. One-step elimination of Cr(VI) by catalytic hydrogenation of Cr(VI) and simultaneous Cr(OH) 3 recovery on Pt catalysts encapsulated in N-doped mesoporous carbon. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126782. [PMID: 34391972 DOI: 10.1016/j.jhazmat.2021.126782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Hexavalent chromium Cr(VI) is a highly toxic heavy metal, which is commonly eliminated by stepwise reduction at acidic pH and precipitation of Cr(OH)3 at alkaline pH. A unique Pt catalyst with Pt particles embedded in the framework of N-doped mesoporous carbon CMK-3 (denoted as Pt@NCMK-3) was designed and fabricated to one-step eliminate Cr(VI) pollution at near neutral pH via simultaneous Cr(VI) reduction by catalytic hydrogenation and Cr(OH)3 recovery. Structural characterization showed that Pt particles of Pt@NCMK-3 were effectively embedded in the carbon rods of NCMK-3. Batch experiments revealed that Pt@NCMK-3 exhibited a higher catalytic activity and stability than other test catalysts. Fixed-bed column reaction results indicated that under the experimental conditions Pt@NCMK-3 had better breakthrough performances than other catalysts. Additionally, after 4 treatment-recovery cycles Pt@NCMK-3 maintained nearly identical breakthrough performance, whereas other catalysts displayed markedly decreased breakthrough bed volumes, reflecting a substantially higher stability of Pt@NCMK-3.
Collapse
Affiliation(s)
- Le Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Junyan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Long M, Elias WC, Heck KN, Luo YH, Lai YS, Jin Y, Gu H, Donoso J, Senftle TP, Zhou C, Wong MS, Rittmann BE. Hydrodefluorination of Perfluorooctanoic Acid in the H 2-Based Membrane Catalyst-Film Reactor with Platinum Group Metal Nanoparticles: Pathways and Optimal Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16699-16707. [PMID: 34874150 DOI: 10.1021/acs.est.1c06528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PFAAs (perfluorinated alkyl acids) have become a concern because of their widespread pollution and persistence. A previous study introduced a novel approach for removing and hydrodefluorinating perfluorooctanoic acid (PFOA) using palladium nanoparticles (Pd0NPs) in situ synthesized on H2-gas-transfer membranes. This work focuses on the products, pathways, and optimal catalyst conditions. Kinetic tests tracking PFOA removal, F- release, and hydrodefluorination intermediates documented that PFOA was hydrodefluorinated by a mixture of parallel and stepwise reactions on the Pd0NP surfaces. Slow desorption of defluorination products lowered the catalyst's activity for hydrodefluorination. Of the platinum group metals studied, Pd was overall superior to Pt, Rh, and Ru for hydrodefluorinating PFOA. pH had a strong influence on performance: PFOA was more strongly adsorbed at higher pH, but lower pH promoted defluorination. A membrane catalyst-film reactor (MCfR), containing an optimum loading of 1.2 g/m2 Pd0 for a total Pd amount of 22 mg, removed 3 mg/L PFOA during continuous flow for 90 days, and the removal flux was as high as 4 mg PFOA/m2/d at a steady state. The EPA health advisory level (70 ng/L) also was achieved over the 90 days with the influent PFOA at an environmentally relevant concentration of 500 ng/L. The results document a sustainable catalytic method for the detoxification of PFOA-contaminated water.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Welman C Elias
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Kimberly N Heck
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Grzelak K, Trejda M. Spherical Silica Modified with Magnesium and Ruthenium-Synthesis, Characterization and Catalytic Properties. MATERIALS 2021; 14:ma14237378. [PMID: 34885533 PMCID: PMC8658599 DOI: 10.3390/ma14237378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
The design of different bimetallic catalysts is an important area of catalytic research in the context of their possible applications in the cascade processes, meeting the requirements of the so-called green chemistry. In this study, such catalysts were obtained by the incorporation of magnesium species into spherical silica, which was in the next step covered with porous silica and modified with ruthenium species. The structure and chemical composition of the materials obtained were determined by XRD measurements, low temperature N2 adsorption/desorption, SEM, ICP-OES and XPS methods. The catalytic activities of materials obtained were tested in 2-propanol decomposition and hydrogenation of levulinic acid. The results obtained confirmed the successful coverage of nanospheres with porous silica. A much higher concentration of ruthenium species was found on the surface of the catalysts than in their bulk. The opposite relationship was observed for magnesium species. The modification of nanospheres with silica had a positive effect on the catalytic activity of the materials obtained. For the most active sample, i.e., Ru/NS/3Mg/NS, 49% of levulinic acid conversion in its hydrogenation process was reported with γ-valerolactone as the only product.
Collapse
|
11
|
Fei Z, Wang Z, Li D, Xue F, Cheng C, Liu Q, Chen X, Cui M, Qiao X. Silica-confined Ru highly dispersed on ZrO 2 with enhanced activity and thermal stability in dichloroethane combustion. NANOSCALE 2021; 13:10765-10770. [PMID: 34109329 DOI: 10.1039/d1nr01538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient strategy (spontaneous deposition to enhance noble metal dispersity and core-shell confinement to inhibit noble metal sintering) is presented to synthesize highly active and thermally stable Ru/ZrO2@SiO2 catalysts for dichloroethane combustion.
Collapse
Affiliation(s)
- Zhaoyang Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Zhicheng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Dunfei Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Fan Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Chao Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Qing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Xian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
12
|
Orooji Y, Akbari R, Nezafat Z, Nasrollahzadeh M, Kamali TA. Recent signs of progress in polymer-supported silver complexes/nanoparticles for remediation of environmental pollutants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Abstract
The presence of bromate in water sources generates environmental concern due to its toxicity for humans. Diverse technologies, like membranes, ion exchange, chemical reduction, etc., can be employed to treat bromate-polluted water but they produce waste that must be treated. An alternative to these technologies can be the catalytic reduction of bromate to bromide using hydrogen as a reducing agent. In this review, we analyze the research published about this catalytic technology. Specifically, we summarize and discuss about the state of knowledge related to (1) the different metals used as catalysts for the reaction; (2) the influence of the support on the catalytic activity; (3) the characterization of the catalysts; (4) the reaction mechanisms; and (5) the influence of the water composition in the catalytic activity and in the catalyst stability. Based on published papers, we analyze the strength and weaknesses of this technique and the possibilities of using this reaction for the treatment of bromate-polluted water as a sustainable process.
Collapse
|
14
|
Almohamadi H, Alamoudi MA, Smith KJ. Washcoat Overlayer for Improved Activity and Stability of Natural Gas Vehicle Monolith Catalysts Operating in the Presence of H 2O and SO 2. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamad Almohamadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42315, Saudi Arabia
| | - Majed A. Alamoudi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Kevin J. Smith
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
15
|
Kumar S, Mohan B, Tao Z, You H, Ren P. Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00663k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogenization of homogeneous organometallic catalysts by incorporation into MOFs using different strategies, MOF selection, OMC selection, and the use of hybrid heterogeneous catalysts OMC@MOFs in catalytic applications are summarized and discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiyu Tao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
16
|
Huang KZ, Zhang H. Galvanic oxidation processes (GOPs): An effective direct electron transfer approach for organic contaminant oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140828. [PMID: 32758851 DOI: 10.1016/j.scitotenv.2020.140828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The activation of peroxymonosulfate (PMS) for organic contaminant oxidation usually relies on the formation of reactive oxygen species (ROSs). However, the ubiquitous anions and natural organic matter can easily scavenge ROSs and/or PMS, resulting in lower efficiencies and/or the formation of toxic byproducts. Relying on the unique long-distance electron transfer property, the recently developed Galvanic Oxidation Process (GOP) successfully achieved bisphenol A (BPA) degradation when BPA and PMS were physically separated in two reactors. In this study, we systematically investigated the performance of GOP at different PMS or BPA concentrations, pH, and ionic strength (IS) in both PMS and BPA solutions. The kinetic modeling employing the Langmuir-Hinshelwood model at different BPA concentrations suggested that although BPA and PMS were physically separated, the oxidation of the adsorbed BPA and reduction of the adsorbed PMS still followed a similar mechanism to that in traditional heterogeneous catalytic processes. The anions in the target water showed little impact on BPA degradation; higher IS enhanced the solution conductivity but inhibited BPA and electrode interactions, resulting in increased and then decrease BPA degradation rate. The electrodes presented high stability with a rate increase of 12% after 13 times of uses, and their hydration significantly facilitated BPA degradation but reduced the current by decreasing the potential difference between the anode and cathode. The graphite sheet itself without catalyst coating was also capable of shuttling electrons, while the use of a graphite fiber anode increased the BPA degradation by near 100% because of the larger surface area. The developed continuous stirred-tank reactor coupled with GOP (CSTR-GOP) achieved stable BPA degradation in less than 35 min and its scaling up is promising for future applications.
Collapse
Affiliation(s)
- Kuan Z Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Lin Y, Cao Y, Yao Q, Chai OJH, Xie J. Engineering Noble Metal Nanomaterials for Pollutant Decomposition. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04258] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzheng Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
18
|
Subramanian B, Veerappan M, Rajan K, Chen Z, Hu C, Wang F, Wang F, Yang M. Fabrication of Hierarchical Indium Vanadate Materials for Supercapacitor Application. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:2000002. [PMID: 33163224 PMCID: PMC7607248 DOI: 10.1002/gch2.202000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Transition metal orthovanadates are emerging 2D materials for promising electrochemical energy storage applications. Facile hydrothermal method for nanocrystalline indium vanadate (InVO4) semiconducting materials' fabrication is economical because of its direct chemical synthesis. X-ray diffraction studies, field emission scanning electron microscope (SEM) images, transmission electron microscopy (TEM), and photoelectron X-ray spectrum are used to describe the semiconductor materials as synthesized. InVO4 microspheres have attracted a lot of attention in the energy and environmental sector. These microsphere-derived semiconductor materials are recognized to offer the advantages of their large surface area, tunable pore sizes, enhanced light absorption, efficient carrier (electron-hole) separation, superior electronic and optical behavior, and high durability. From the results of SEM and TEM, InVO4 shows a microsphere construction with a mixture of nanosized particles. Diffuse reflectance UV-visible measurements are used to determine the bandgap, and it is found to be 2.1 eV for InVO4. The electrochemical analysis reveals a superior performance of the pseudocapacitor with hydrothermally derived microspheres of InVO4. Alongside an improved pseudocapacity, developed after 4000 cycles, it has excellent cycling stability with a retention of ≈94% of its original specific capacitance efficiency.
Collapse
Affiliation(s)
- Balachandran Subramanian
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Manimuthu Veerappan
- Department of Electrical and Electronic EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Karthikeyan Rajan
- Engineering Research Center for Hydrogen Energy Materials and DevicesCollege of Rare Earths (CORE)Jiangxi University of Science and TechnologyGanzhouJiangxi341000P. R. China
| | - Zheming Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
| | - Chengzhi Hu
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Fei Wang
- Department of Electrical and Electronic EngineeringSouthern University of Science and TechnologyNanshan DistrictShenzhenGuangdong518055P. R. China
| | - Feng Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of SciencesZhongguancun North First Street 2Beijing100190P. R. China
| |
Collapse
|
19
|
Pal N, Lee JH, Cho EB. Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2122. [PMID: 33113856 PMCID: PMC7692592 DOI: 10.3390/nano10112122] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
Abstract
The outstanding journey towards the investigation of mesoporous materials commences with the discovery of high surface area porous silica materials, named MCM-41 (Mobil Composition of Matter-41) according to the inventors' name Mobile scientists in the United States. Based on a self-assembled supramolecular templating mechanism, the synthesis of mesoporous silica has extended to wide varieties of silica categories along with versatile applications of all these types in many fields. These silica families have some extraordinary structural features, like highly tunable nanoscale sized pore diameter, good Brunauer-Emmett-Teller (BET) surface areas, good flexibility to accommodate different organic and inorganic functional groups, metals etc., onto their surface. As a consequence, thousands of scientists and researchers throughout the world have reported numerous silica materials in the form of published articles, communication, reviews, etc. Beside this, attention is also given to the morphology-oriented synthesis of silica nanoparticles and their significant effects on the emerging fields of study like catalysis, energy applications, sensing, environmental, and biomedical research. This review highlights a consolidated overview of those morphology-based mesoporous silica particles, emphasizing their syntheses and potential role in many promising fields of research.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Jun-Hyeok Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Eun-Bum Cho
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|
20
|
Affiliation(s)
- Chuanbo Gao
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, China
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Huo X, Vanneste J, Cath TY, Strathmann TJ. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine. WATER RESEARCH 2020; 175:115688. [PMID: 32171095 DOI: 10.1016/j.watres.2020.115688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Ion exchange is widely used to treat nitrate-contaminated groundwater, but high salt usage for resin regeneration and management of waste brine residuals increase treatment costs and add environmental burdens. Development of palladium-based catalytic nitrate treatment systems for brine treatment and reuse has showed promising activity for nitrate reduction and selectivity towards the N2 over the alternative product ammonia, but this strategy overlooks the potential value of nitrogen resources. Here, we evaluated a hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery during treatment and reuse of nitrate-contaminated waste ion exchange brines. In the first step of the hybrid process, a Ru/C catalyst with high selectivity towards ammonia was found to be effective for nitrate hydrogenation under conditions representative of waste brines, including expected salt buildup that would occur with repeated brine reuse cycles. The apparent rate constants normalized to metal mass (0.30 ± 0.03 mM min-1 gRu-1 under baseline condition) were comparable to the state-of-the-art bimetallic Pd catalyst. In the second stage of the hybrid process, membrane distillation was applied to recover the ammonia product from the brine matrix, capturing nitrogen as ammonium sulfate, a commercial fertilizer product. Solution pH significantly influenced the rate of ammonia mass transfer through the gas-permeable membrane by controlling the fraction of free ammonia species (NH3) present in the solution. The rate of ammonia recovery was not affected by increasing salt levels in the brine, indicating the feasibility of membrane distillation for recovering ammonia over repeated reuse cycles. Finally, high rates of nitrate hydrogenation (apparent rate constant 1.80 ± 0.04 mM min-1 gRu-1) and ammonia recovery (overall mass transfer coefficient 0.20 m h-1) with the hybrid treatment process were demonstrated when treating a real waste ion exchange brine obtained from a drinking water utility. These findings introduce an innovative strategy for recycling waste ion exchange brine while simultaneously recovering potentially valuable nitrogen resources when treating contaminated groundwater.
Collapse
Affiliation(s)
- Xiangchen Huo
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Johan Vanneste
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
22
|
Ilunga AK, Mamba BB, Nkambule TTI. Fabrication of palladium and platinum nanocatalysts stabilized by polyvinylpyrrolidone and their use in the hydrogenolysis of methyl orange. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Li J, Li M, Yang X, Wang S, Zhang Y, Liu F, Liu X. Sub-nanocatalysis for Efficient Aqueous Nitrate Reduction: Effect of Strong Metal-Support Interaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33859-33867. [PMID: 31487151 DOI: 10.1021/acsami.9b09544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic ferroferric oxide-supported bimetallic Pd-In cluster sub-nanoparticles were used for the first time for the catalytic reduction of nitrates. Due to the unique properties of the FeOx support, the PdIn active centers could be highly dispersed in both nano- and sub-nanoscales. A variety of characterizations and the charge density difference model confirm that a strong metal-support interaction exists between the active sites and the support. The PdIn nanoparticles on FeOx show high selectivity toward nitrogen and excellent cyclic activity due to ferromagnetism, which broaden its prospect in practical water treatment. Moreover, the active centers in the sub-nanoscale are used in the nitrate reduction process for the first time and they show a distinct higher activity in denitration. The rate constant for nitrate conversion on PdIn sub-nanoparticles is larger than that for its nanometer counterpart based on the Langmuir-Hinshelwood model. High turnover frequency value and ammonia selectivity are achieved for the small-sized sub-nanocatalyst. The FeOx-supported PdIn nanoparticles and sub-nanoparticles have two application areas in water purification and ammonia recovery, respectively. Density functional theory calculations on the adsorption energies of elemental reactions are also performed, which shed some light on the catalysis mechanism and catalyst design.
Collapse
Affiliation(s)
- Jiacheng Li
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Miao Li
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Xu Yang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Sai Wang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Yu Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Fang Liu
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Xiang Liu
- School of Environment , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
24
|
Ma H, Li S, Wang H, Schneider WF. Water-Mediated Reduction of Aqueous N-Nitrosodimethylamine with Pd. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7551-7563. [PMID: 31244058 DOI: 10.1021/acs.est.9b01425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pd-catalyzed reduction has emerged as a promising treatment strategy to remove the recalcitrant disinfection byproduct N-nitrosodimethylamine (NDMA). However, the reaction pathways remain unexplored, and questions remain about how water solvent influences NDMA reduction mechanisms and selectivity. Here, we compute the energies and barriers of all relevant elementary steps in NDMA reduction by H2 on Pd(111) using density functional theory. We further calculate water-assisted H-shuttling for all hydrogenation reactions explicitly and include water solvation for all elementary reactions implicitly. We parametrize microkinetic models to predict product formation rates and selectivities over a wide range of NDMA concentrations. We show that H2O-mediated H-shuttling lowers the reaction barriers for all hydrogenation reactions involved in NDMA reduction while implicit solvation has negligible impact on the reaction and activation energies. We further conduct batch experiments with SiO2-supported Pd nanoparticles and compare them with the microkinetic models. The predicted rates, selectivity, and apparent activation energy from the model parametrized with both explicit H2O-mediated H-shuttling and implicit solvation correspond well with experimental observations. Models that ignore water as an H-shuttle or solvent fail to recover the experimental rates and apparent activation energy. We identified the rate-determining steps of the reaction and show the reaction flow pathways of the complicated reaction network. Finally, we demonstrate that water-mediated H-shuttling changes the rate-determining steps and reaction flows of elementary reactions.
Collapse
Affiliation(s)
- Hanyu Ma
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Sichi Li
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Haitao Wang
- School of Environmental Science and Technology , Nankai University , Tianjin 300350 , PR China
| | - William F Schneider
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
25
|
Jiang SF, Xi KF, Yang J, Jiang H. Biochar-supported magnetic noble metallic nanoparticles for the fast recovery of excessive reductant during pollutant reduction. CHEMOSPHERE 2019; 227:63-71. [PMID: 30981971 DOI: 10.1016/j.chemosphere.2019.04.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
The catalytic reduction of diverse pollutants by noble metal catalysts in the presence of reductants is a highly effective and widely used method. However, the considerable cost of noble metal catalysts impedes the practical application of this method, and the recovery of excessive reductants has not been reported previously. In this work, we prepared inexpensive biochar-supported magnetic noble metallic nanoparticles (NPs) and efficiently recovered the excessive reductants in the form of H2. The as-synthesized biochar-supported noble metallic NPs exhibited high H2 recovery during the 4-nitrophenol reduction reaction. Results showed that the catalysts with low noble metallic content have higher H2 recovery rate than commercial Pd/C, Ag/C, and Pt/C. The catalytic mechanism of magnetic biochar-supported noble metallic NPs was demonstrated to be a "synergetic effect", where biochar and Fe3O4 acted as accelerants that enable noble metallic NPs to produce active hydrogen for the reduction reaction, and the excess active hydrogen atoms combined to form H2.
Collapse
Affiliation(s)
- Shun-Feng Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kun-Fang Xi
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
26
|
Fang X, Li J, Ren B, Huang Y, Wang D, Liao Z, Li Q, Wang L, Dionysiou DD. Polymeric ultrafiltration membrane with in situ formed nano-silver within the inner pores for simultaneous separation and catalysis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Hamid S, Abudanash D, Han S, Kim JR, Lee W. Strategies to enhance the stability of nanoscale zero-valent iron (NZVI) in continuous BrO 3- reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:714-725. [PMID: 30399548 DOI: 10.1016/j.jenvman.2018.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
The reduction of bromate to bromide was successfully achieved by bimetallic catalysts with NZVI support in continuous-flow reactors. The stability of NZVI-supported bimetallic catalysts was enhanced by decelerating the iron corrosion and sequential rapid passivation of the iron-Cu-Pd ensembles under optimized reaction conditions. Thus >99% bromate removal can be continuously achieved for 11 h. The lifetime of the bimetallic catalyst was further enhanced and tested under different hydraulic retention time, catalyst loading, and initial bromate concentrations. At the optimized operation conditions, the catalyst showed a complete bromate reduction by 24 h and then the reactivity slowly decreased to 20% over the next 100 h. X-ray diffraction and X-ray photoelectron spectroscopy showed that the reactive NZVI support was oxidized to Fe(II) and Fe(III) along with Cu(0) oxidation to CuO, while the oxidation state of Pd did not change. Therefore, bromate reduction occurred on the surface of reactive NZVI support and Cu(0) particle, while Pd played a role as a hydrogenation catalyst that prolonged the lifetime of the bimetallic catalyst.
Collapse
Affiliation(s)
- Shanawar Hamid
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan; Department of Structures and Environmental Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Damira Abudanash
- School of Mining and Geosciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| | - Seunghee Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Jong R Kim
- Department of Civil and Environmental Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| | - Woojin Lee
- Department of Civil and Environmental Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan.
| |
Collapse
|
28
|
Zare Asadabadi A, Hoseini SJ, Bahrami M, Nabavizadeh SM. Catalytic applications of β-cyclodextrin/palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. NEW J CHEM 2019. [DOI: 10.1039/c8nj06449k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A supramolecular catalyst of Pd/β-cyclodextrin thin film is synthesized via a facile and one-pot procedure at an oil–water interface and applied for the reduction of toxic nitrophenol compounds and the degradation of harmful azo dyes.
Collapse
Affiliation(s)
- Azam Zare Asadabadi
- Department of Chemistry
- Faculty of Sciences
- Yasouj University
- Yasouj 7591874831
- Iran
| | - S. Jafar Hoseini
- Department of Chemistry
- Faculty of Sciences
- Yasouj University
- Yasouj 7591874831
- Iran
| | - Mehrangiz Bahrami
- Department of Chemistry
- Faculty of Sciences
- Yasouj University
- Yasouj 7591874831
- Iran
| | - S. Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz
| |
Collapse
|
29
|
Yang S, Peng L, Bulut S, Queen WL. Recent Advances of MOFs and MOF-Derived Materials in Thermally Driven Organic Transformations. Chemistry 2018; 25:2161-2178. [DOI: 10.1002/chem.201803157] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Shuliang Yang
- Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais; Sion 1950 Switzerland
| | - Li Peng
- Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais; Sion 1950 Switzerland
| | - Safak Bulut
- Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais; Sion 1950 Switzerland
| | - Wendy L. Queen
- Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais; Sion 1950 Switzerland
| |
Collapse
|
30
|
Peng H, Rao C, Zhang N, Wang X, Liu W, Mao W, Han L, Zhang P, Dai S. Confined Ultrathin Pd‐Ce Nanowires with Outstanding Moisture and SO
2
Tolerance in Methane Combustion. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Honggen Peng
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Cheng Rao
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ning Zhang
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiang Wang
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Wenming Liu
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Wenting Mao
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu Han
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Chemistry University of Tennessee Knoxville TN 37996 USA
| | - Sheng Dai
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA
- Department of Chemistry University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
31
|
Peng H, Rao C, Zhang N, Wang X, Liu W, Mao W, Han L, Zhang P, Dai S. Confined Ultrathin Pd‐Ce Nanowires with Outstanding Moisture and SO
2
Tolerance in Methane Combustion. Angew Chem Int Ed Engl 2018; 57:8953-8957. [DOI: 10.1002/anie.201803393] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Honggen Peng
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Cheng Rao
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ning Zhang
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiang Wang
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Wenming Liu
- Institute of Applied Chemistry College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Wenting Mao
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu Han
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Chemistry University of Tennessee Knoxville TN 37996 USA
| | - Sheng Dai
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA
- Department of Chemistry University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
32
|
Rao C, Peng C, Peng H, Zhang L, Liu W, Wang X, Zhang N, Wu P. In Situ Embedded Pseudo Pd-Sn Solid Solution in Micropores Silica with Remarkable Catalytic Performance for CO and Propane Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9220-9224. [PMID: 29498506 DOI: 10.1021/acsami.8b01450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most of the industrial and environmental catalytic reactions are operated at high temperature for a long time, and the sintering of the active centers is the main factor leading to catalysts deactivation, especially for noble metal catalysts. Herein we develop a dual confinement (enhanced metal-oxide interaction and the porous shell confinement) strategy to prepare Pd-Sn pseudo solid solution and in situ embedded in microporous silica for the first time and showed superior catalytic performance for CO and propane total oxidation (two main vehicle emission gases), even stored more than 640 days.
Collapse
Affiliation(s)
- Cheng Rao
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Cheng Peng
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Honggen Peng
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Li Zhang
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Wenming Liu
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Xiang Wang
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Ning Zhang
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry and Molecular Engineering , East China Normal University , North Zhongshan Road 3663 , 200062 Shanghai , China
| |
Collapse
|
33
|
Ni X, Wu Z, Gu X, Wang D, Yang C, Sun P, Li Y. In Situ Growth of Clean Pd Nanoparticles on Polystyrene Microspheres Assisted by Functional Reduced Graphene Oxide and Their Excellent Catalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8157-8164. [PMID: 28749695 DOI: 10.1021/acs.langmuir.7b01214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein an in situ growth of clean palladium nanoparticles (Pd NPs) on functional reduced graphene oxide (RGO)-coated polystyrene (PS) microspheres is achieved by a simple two-step process. On the basis of the hydrophobic interaction and π-electron interaction, the PS/RGO composite particles are first prepared by the reduction of graphene oxide in the presence of PS microspheres. Second, without using any additional reducing agent or stabilizer, the clean Pd NPs grow in situ on the surface of PS/RGO composite particles in water through a spontaneous redox reaction between Pd2+ and RGO. Significantly, owing to the stabilizer-free surface of Pd NPs and the synergistic effect of RGO and Pd NPs, the resultant PS/RGO@Pd composite particles feature pronounced catalytic activity toward the reduction of p-nitrophenol and Suzuki coupling reactions. Moreover, the catalyst particles can be easily recovered by centrifugation because of the large size of support microspheres and recycled consecutively.
Collapse
Affiliation(s)
- Xinjiong Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Zhengfeng Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Xiaodan Gu
- School of Polymers and High Performance Materials, University of Southern Mississippi , 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Peidong Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| |
Collapse
|
34
|
Magnetically Recoverable Pd/Fe
3
O
4
Core–Shell Nanowire Clusters with Increased Hydrogenation Activity. Chempluschem 2017; 82:347-351. [DOI: 10.1002/cplu.201700009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 11/07/2022]
|
35
|
Lan H, Mao R, Tong Y, Liu Y, Liu H, An X, Liu R. Enhanced Electroreductive Removal of Bromate by a Supported Pd-In Bimetallic Catalyst: Kinetics and Mechanism Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11872-11878. [PMID: 27689240 DOI: 10.1021/acs.est.6b02822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, the electroreductive removal of bromate by a Pd1-In4/Al2O3 catalyst in a three-dimensional electrochemical reactor was investigated. A total of 96.4% of bromate could be efficiently reduced and completely converted into bromide within 30 min under optimized conditions. On the basis of the characterization results and kinetics analysis, a synergistic effect of Pd and In was observed, and Pd1-In4/Al2O3 had the highest reaction rate constant of 0.1275 min-1 (vs 0.0413, 0.0328, and 0.0253 min-1 for In/Al2O3, Pd/Al2O3, and Al2O3). The results of electron spin resonance and scavenger experiments confirmed that both direct electron transfer and indirect reduction by atomic H* were involved in the bromate removal process, while the direct reduction played a more important role. Moreover, the introduction of In could increase the zeta potential of Pd1-In4/Al2O3, facilitating bromate adsorption and its subsequent reduction on the catalyst. Finally, a reaction mechanism for bromate reduction by Pd1-In4/Al2O3 was proposed based on all the experimental results.
Collapse
Affiliation(s)
- Huachun Lan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Ran Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yating Tong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Huijuan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Xiaoqiang An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
36
|
Ye T, Durkin DP, Hu M, Wang X, Banek NA, Wagner MJ, Shuai D. Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17739-17744. [PMID: 27387354 DOI: 10.1021/acsami.6b03635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity.
Collapse
Affiliation(s)
- Tao Ye
- Department of Civil and Environmental Engineering, The George Washington University , Washington, D.C. 20052, United States
| | - David P Durkin
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Maocong Hu
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Xianqin Wang
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Nathan A Banek
- Department of Chemistry, The George Washington University , Washington, D.C. 20052, United States
| | - Michael J Wagner
- Department of Chemistry, The George Washington University , Washington, D.C. 20052, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University , Washington, D.C. 20052, United States
| |
Collapse
|
37
|
Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 2016; 44:7540-90. [PMID: 26288197 DOI: 10.1039/c5cs00343a] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Core-shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core-shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.
Collapse
Affiliation(s)
- Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Anandarup Goswami
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic. and Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA and Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA
| | - Huizhang Guo
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ankush V Biradar
- Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, US Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio 45268, USA.
| |
Collapse
|
38
|
Zhang Z, Li J, Gao W, Xia Z, Qin Y, Qu Y, Ma Y. Thermally stable sandwich-type catalysts of Pt nanoparticles encapsulated in CeO2 nanorod/CeO2 nanoparticle core/shell supports for methane oxidation at high temperatures. RSC Adv 2016. [DOI: 10.1039/c6ra05967h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sandwich-type Pt nanocatalyst encapsulated ceria-based core–shell catalyst (CNR@Pt@CNP) was designed and synthesized, which exhibited high catalytic activity and remarkably thermal-stability at high temperatures up to 700 °C.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
| | - Jing Li
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
| | - Wei Gao
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
| | - Zhaoming Xia
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
| | - Yuanbin Qin
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
| | - Yongquan Qu
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
| | - Yuanyuan Ma
- Center for Applied Chemical Research
- Frontier Institute of Science and Technology
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an
| |
Collapse
|
39
|
Sadjadi S, Heravi MM. Pd(0) encapsulated nanocatalysts as superior catalytic systems for Pd-catalyzed organic transformations. RSC Adv 2016. [DOI: 10.1039/c6ra18049c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the last decade, Pd(0) nanoparticles have attracted increasing attention due to their outstanding utility as nanocatalysts in a wide variety of key chemical reactions.
Collapse
Affiliation(s)
- S. Sadjadi
- Iran Polymer and Petrochemical Institute
- Tehran
- Iran
| | - M. M. Heravi
- Department of Chemistry
- School of Science
- Alzahra University
- Tehran
- Iran
| |
Collapse
|
40
|
Banerjee B, Singuru R, Kundu SK, Dhanalaxmi K, Bai L, Zhao Y, Reddy BM, Bhaumik A, Mondal J. Towards rational design of core–shell catalytic nanoreactor with high performance catalytic hydrogenation of levulinic acid. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00169f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Core–shell catalytic nanoreactor was designed, exhibiting high catalytic activity for levulinic acid hydrogenation.
Collapse
Affiliation(s)
- Biplab Banerjee
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Ramana Singuru
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Sudipta K. Kundu
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Karnekanti Dhanalaxmi
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Linyi Bai
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Benjaram Mahipal Reddy
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Asim Bhaumik
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - John Mondal
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| |
Collapse
|
41
|
|
42
|
Abstract
The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on 'design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.
Collapse
Affiliation(s)
- Renyuan Li
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | | | | |
Collapse
|
43
|
Liu J, Chen X, Wang Y, Strathmann TJ, Werth CJ. Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12932-12940. [PMID: 26422179 DOI: 10.1021/acs.est.5b03393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A biomimetic heterogeneous catalyst combining palladium nanoparticles and an organic ligand-coordinated oxorhenium complex on activated carbon, Re(hoz)2-Pd/C, was previously developed and shown to reduce aqueous perchlorate (ClO4-) with H2 at a rate ∼100 times faster than the first generation ReOx-Pd/C catalyst prepared from perrhenate (ReO4-). However, the immobilized Re(hoz)2 complex was shown to partially decompose and leach into water as ReO4-, leading to an irreversible loss of catalytic activity. In this work, the stability of the immobilized Re(hoz)2 complex is shown to depend on kinetic competition between three processes: (1) ReV(hoz)2 oxidation by ClO4- and its reduction intermediates ClOx-, (2) ReVII(hoz)2 reduction by Pd-activated hydrogen, and (3) hydrolytic ReVII(hoz)2 decomposition. When ReV(hoz)2 oxidation is faster than ReVII(hoz)2 reduction, the ReVII(hoz)2 concentration builds up and leads to hydrolytic decomposition to ReO4- and free hoz ligand. Rapid ReV(hoz)2 oxidation is mainly promoted by highly reactive ClOx- formed from the reduction of ClO4-. To mitigate Re(hoz)2 decomposition and preserve catalytic activity, ruthenium (Ru) and rhodium (Rh) were evaluated as alternative H2 activators to Pd. Rh showed superior activity for reducing the ClO3- intermediate to Cl-, thereby preventing ClOx- buildup and lowering Re complex decomposition in the Re(hoz)2-Rh/C catalyst. In contrast, Ru showed the lowest ClO3- reduction activity and resulted in the most Re(hoz)2 decomposition among the Re(hoz)2-M/C catalysts. This work highlights the importance of using mechanistic insights from kinetic and spectroscopic tests to rationally design water treatment catalysts for enhanced performance and stability.
Collapse
Affiliation(s)
- Jinyong Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Xi Chen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53211, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|