1
|
Jamil S, Afzal R, Khan SR, Shabbir M, Alhokbany N, Li S, Saeed Ashraf Janjua MR. Photocatalytic degradation of indigo carmine dye by hydrothermally synthesized graphene nanodots (GNDs): investigation of kinetics and thermodynamics. RSC Adv 2024; 14:23973-23986. [PMID: 39086519 PMCID: PMC11289714 DOI: 10.1039/d4ra02476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Graphene nano dots (GNDs) are an intriguing emerging class of materials at the nano scale with distinctive characteristics and exciting potential applications. Graphene oxide was synthesized in a lab setting using a modified version of Hummers' approach and used as a precursor for synthesis of graphene nano dots. Graphene oxide is then treated through hydrothermal treatment to produce GNDs with exact control over their size and form. Synthesized graphene nano dots were subjected to various instruments to study morphology, crystallinity, size and other properties. UV-visible spectroscopy was used to detect the maximum absorbance of light. For functional group identification, FTIR analysis was conducted. X-ray diffraction analysis explained structural composition and various other parameters i.e., crystal size and diameter, which was further verified by Vesta software. Surface morphology of GNDs was analyzed by scanning electron microscopy. AFM analysis of GNDs demonstrates the topography of the surface. The photo degradation of the indigo carmine dye by the GNDs also demonstrates their superiority as UV-visible light driven photo catalysts. To evaluate the results, the thermodynamics and kinetics of the degradation reactions are examined. The effects of several factors, such as temperature, initial concentration, time, pH and catalyst concentration, are also investigated. The data will be analyzed statistically by regression and correlation analysis using dependent and independent variables, regression coefficient and other statistical techniques.
Collapse
Affiliation(s)
- Saba Jamil
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rabia Afzal
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Shanza Rauf Khan
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mehwish Shabbir
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Songnan Li
- Harbin Normal University, Songbei Campus Harbin 150026 China
| | | |
Collapse
|
2
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
3
|
Rasheed PA, Ankitha M, Pillai VK, Alwarappan S. Graphene quantum dots for biosensing and bioimaging. RSC Adv 2024; 14:16001-16023. [PMID: 38765479 PMCID: PMC11099990 DOI: 10.1039/d4ra01431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Graphene Quantum Dots (GQDs) are low dimensional carbon based materials with interesting physical, chemical and biological properties that enable their applications in numerous fields. GQDs possess unique electronic structures that impart special functional attributes such as tunable optical/electrical properties in addition to heteroatom-doping and more importantly a propensity for surface functionalization for applications in biosensing and bioimaging. Herein, we review the recent advancements in the top-down and bottom-up approaches for the synthesis of GQDs. Following this, we present a detailed review of the various surface properties of GQDs and their applications in bioimaging and biosensing. GQDs have been used for fluorescence imaging for visualizing tumours and monitoring the therapeutic responses in addition to magnetic resonance imaging applications. Similarly, the photoluminescence based biosensing applications of GQDs for the detection of hydrogen peroxide, micro RNA, DNA, horse radish peroxidase, heavy metal ions, negatively charged ions, cardiac troponin, etc. are discussed in this review. Finally, we conclude the review with a discussion on future prospects.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Menon Ankitha
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Vijayamohanan K Pillai
- Department of Chemistry, Indian Institute of Science Education and Research Rami Reddy Nagar Mangalam Tirupati AP 517507 India
| | - Subbiah Alwarappan
- Electrodics & Electrocatalysis Division, CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| |
Collapse
|
4
|
Im MJ, Kim JI, Hyeong SK, Moon BJ, Bae S. From Pristine to Heteroatom-Doped Graphene Quantum Dots: An Essential Review and Prospects for Future Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304497. [PMID: 37496316 DOI: 10.1002/smll.202304497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/28/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based zero-dimensional materials that have received considerable scientific interest due to their exceptional optical, electrical, and optoelectrical properties. Their unique electronic band structures, influenced by quantum confinement and edge effects, differentiate the physical and optical characteristics of GQDs from other carbon nanostructures. Additionally, GQDs can be synthesized using various top-down and bottom-up approaches, distinguishing them from other carbon nanomaterials. This review discusses recent advancements in GQD research, focusing on their synthesis and functionalization for potential applications. Particularly, various methods for synthesizing functionalized GQDs using different doping routes are comprehensively reviewed. Based on previous reports, current challenges and future directions for GQDs research are discussed in detail herein.
Collapse
Affiliation(s)
- Min Ji Im
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Il Kim
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Byung Joon Moon
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| | - Sukang Bae
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| |
Collapse
|
5
|
Zhang Q, Chen Y, Pan J, Daiyan R, Lovell EC, Yun J, Amal R, Lu X. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302338. [PMID: 37267930 DOI: 10.1002/smll.202302338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.
Collapse
Affiliation(s)
- Qingran Zhang
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jian Pan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jimmy Yun
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
- Qingdao International Academician Park Research Institute, Qingdao, Shandong, 266000, China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Jing B, Zhou J, Li D, Ao Z. Computational study on persulfate activation by two-dimensional carbon materials with various nitrogen proportions for carbamazepine oxidation in wastewater: The essential role of graphitic N atoms. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130074. [PMID: 36193610 DOI: 10.1016/j.jhazmat.2022.130074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional carbon materials with various N atom proportions (2D-CNMs) are constructed to clarify the optimal catalyst for carbamazepine (CBZ) oxidation and the inner mechanism for persulfate-based advanced oxidation processes (P-AOPs). Results show that peroxydisulfate (PDS) can be activated by all 2D-CNMs with the order of C3N > C71N > graphene > C2N > CN, while C3N is the only catalyst for peroxymonosulfate (PMS) activation. The C3N with the maximum graphitic N can activate PDS and PMS in a wide temperature range at any pH, and demonstrates the optimal CBZ oxidation performance. Notably, the graphitic N atoms promote P-AOPs from five aspects: (i) electron structure, (ii) electrical conductivity, (iii) electron transfer from persulfate to catalysts, (iv) electron jump of co-system before and after activation, (v) interaction between catalyst and persulfate. The most vigorous activity of C3N is attributed to the greatest number of graphitic N. This work clarifies the essential role of graphitic N atoms with implications for the catalyst design, and facilitates the environmental applications of P-AOPs for micropollutant abatement.
Collapse
Affiliation(s)
- Binghua Jing
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon 99977, Hong Kong, China
| | - Junhui Zhou
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, PR China
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhimin Ao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, PR China.
| |
Collapse
|
7
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
8
|
Mazzucato M, Daniel G, Perazzolo V, Brandiele R, Rizzi GA, Isse AA, Gennaro A, Durante C. Mesoporosity and nitrogen doping: The leading effect in oxygen reduction reaction activity and selectivity at nitrogen‐doped carbons prepared by using polyethylene oxide‐block‐polystyrene as a sacrificial template. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marco Mazzucato
- Department of Chemical Sciences University of Padova Padova Italy
| | - Giorgia Daniel
- Department of Chemical Sciences University of Padova Padova Italy
| | | | | | | | | | - Armando Gennaro
- Department of Chemical Sciences University of Padova Padova Italy
| | | |
Collapse
|
9
|
Zhang Y, Daniel G, Lanzalaco S, Isse AA, Facchin A, Wang A, Brillas E, Durante C, Sirés I. H 2O 2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127005. [PMID: 34479080 DOI: 10.1016/j.jhazmat.2021.127005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of β-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.
Collapse
Affiliation(s)
- Yanyu Zhang
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Giorgia Daniel
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Facchin
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Christian Durante
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
Activity origin of boron doped carbon cluster for thermal catalytic oxidation: Coupling effects of dopants and edges. J Colloid Interface Sci 2022; 613:47-56. [PMID: 35032776 DOI: 10.1016/j.jcis.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
Catalytic oxidation plays important roles in energy conversion and environment protection. Boron-doped crystalline carbocatalyst has been demonstrated effective; however, the application potential of boron-doped amorphous carbocatalyst remains to be explored. For amorphous carbon material, finite-sized carbon clusters are the basic structural units, which exhibit unique activity due to edge and size effect. Herein, using sulfur dioxide (SO2) and carbon monoxide (CO) oxidation as probe thermal-catalysis reactions, we found the distribution and reactivity of active sites in boron-doped carbon clusters are simultaneously determined by dopants and edges. According to comparisons of oxygen (O2) chemisorption energy at different sites of symmetric and non-symmetric carbon cluster, the most active site is found to be the edge carbon atom with high electron donation ability, which can be accurately identified by electrophilic Fukui function. More importantly, the reactivity of boron-doped cluster is simultaneously influenced by doping configuration and the type of edge, based on which -O-B-O- configuration embedded into K-region edge (isolated carbon-carbon double bonds that do not belong to Clar sextet) is predicted to exhibit the highest reactivity among various boron doping configurations. This work clarifies unique activity origin of heteroatom-doped amorphous carbon materials, providing new insights into designing high-performance carbocatalysts.
Collapse
|
11
|
Bu Y, Wang Y, Han GF, Zhao Y, Ge X, Li F, Zhang Z, Zhong Q, Baek JB. Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103266. [PMID: 34562030 DOI: 10.1002/adma.202103266] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is an environment-friendly and efficient oxidant with a wide range of applications in different industries. Recently, the production of hydrogen peroxide through direct electrosynthesis has attracted widespread research attention, and has emerged as the most promising method to replace the traditional energy-intensive multi-step anthraquinone process. In ongoing efforts to achieve highly efficient large-scale electrosynthesis of H2 O2 , carbon-based materials have been developed as 2e- oxygen reduction reaction catalysts, with the benefits of low cost, abundant availability, and optimal performance. This review comprehensively introduces the strategies for optimizing carbon-based materials toward H2 O2 production, and the latest advances in carbon-based hybrid catalysts. The active sites of the carbon-based materials and the influence of coordination heteroatom doping on the selectivity of H2 O2 are extensively analyzed. In particular, the appropriate design of functional groups and understanding the effect of the electrolyte pH are expected to further improve the selective efficiency of producing H2 O2 via the oxygen reduction reaction. Methods for improving catalytic activity by interface engineering and reaction kinetics are summarized. Finally, the challenges carbon-based catalysts face before they can be employed for commercial-scale H2 O2 production are identified, and prospects for designing novel electrochemical reactors are proposed.
Collapse
Affiliation(s)
- Yunfei Bu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yaobin Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Gao-Feng Han
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Yunxia Zhao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Xinlei Ge
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Qin Zhong
- School of Chemical and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
12
|
A Tribute to Professor Gaetano Granozzi and His Contributions to Surface Science on the Occasion of His 70th Birthday. SURFACES 2021. [DOI: 10.3390/surfaces4040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On the occasion of his 70th birthday, we celebrate the career of our Editor-in-Chief, Professor Gaetano Granozzi [...]
Collapse
|
13
|
Effectively enhanced photoluminescence of CePO4:Tb3+ nanorods combined with carbon dots. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Facchin A, Zerbetto M, Gennaro A, Vittadini A, Forrer D, Durante C. Oxygen Reduction Reaction at Single‐Site Catalysts: A Combined Electrochemical Scanning Tunnelling Microscopy and DFT Investigation on Iron Octaethylporphyrin Chloride on HOPG**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alessandro Facchin
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Mirco Zerbetto
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Vittadini
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR via Marzolo 1 I-35131 Padova Italy
| | - Daniel Forrer
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR via Marzolo 1 I-35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
15
|
GAI HY, WANG XK, HUANG MH. Catalytic Activity Analysis of Uniform Palladium Nanoparticles Anchored on Nitrogen-Doped Mesoporous Carbon Spheres for Oxygen Reduction Reaction. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Qin Y, Ou Z, Xu C, Zhang Z, Yi J, Jiang Y, Wu J, Guo C, Si Y, Zhao T. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization. NANOSCALE RESEARCH LETTERS 2021; 16:92. [PMID: 34032941 PMCID: PMC8149500 DOI: 10.1186/s11671-021-03548-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The increasing popularity of wearable electronic devices has led to the rapid development of flexible energy conversion systems. Flexible rechargeable zinc-air batteries (ZABs) with high theoretical energy densities demonstrate significant potential as next-generation flexible energy devices that can be applied in wearable electronic products. The design of highly efficient and air-stable cathodes that can electrochemically catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable but challenging. Flexible carbon-based catalysts for ORR/OER catalysis can be broadly categorized into two types: (i) self-supporting catalysts based on the in situ modification of flexible substrates; (ii) non-self-supporting catalysts based on surface coatings of flexible substrates. Methods used to optimize the catalytic performance include doping with atoms and regulation of the electronic structure and coordination environment. This review summarizes the most recently proposed strategies for the synthesis of designer carbon-based electrocatalysts and the optimization of their electrocatalytic performances in air electrodes. And we significantly focus on the analysis of the inherent active sites and their electrocatalytic mechanisms when applied as flexible ZABs catalysts. The findings of this review can assist in the design of more valuable carbon-based air electrodes and their corresponding flexible ZABs for application in wearable electronic devices.
Collapse
Affiliation(s)
- Yuan Qin
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zihao Ou
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chuanlan Xu
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Zubang Zhang
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Junjie Yi
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ying Jiang
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jinyan Wu
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chaozhong Guo
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Key Laboratory of Materials Surface and Interface Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Yujun Si
- College of Chemistry and Materials Science, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Tiantao Zhao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
17
|
Wang B, Zhao P, Feng J, Chen D, Huang Y, Sui L, Dong H, Ma S, Dong L, Yu L. Carbon-based 0D/1D/2D assembly with desired structures and defect states as non-metal bifunctional electrocatalyst for zinc-air battery. J Colloid Interface Sci 2021; 588:184-195. [PMID: 33387820 DOI: 10.1016/j.jcis.2020.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/28/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
For the design of electrocatalysts, the combination between components and the regulation of material structures tend to be neglected, giving rise to the constraint of catalytic performance and durability. Herein, we developed a graphene oxide quantum dots (GOQDs) with enhanced oxygen content by a one-step cutting method. Then, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) reduced graphene oxide are crosslinked and self-assembled, thus attracting unsaturated-bond-riches GOODs (0D) to uniformly attach to the skeleton, simultaneously achieving nitrogen and sulfur co-doping. To the best of our knowledge, there is no report to prepare bifunctional electrocatalyst with GOQDs. Electrochemical tests show that even without metal-doping, the novel non-metal bifunctional electrocatalyst (N,S-GOQD-RGO/CNT) exhibits a higher half-wave potential (0.84 V) and enhanced limiting current density (5.88 mA cm-2) than commercial Pt/C catalyst. The density functional theory is implemented to reveal the coordination of nitrogen and sulfur co-doping on GOQDs, which results in the improvement of overall catalytic active sites. Furthermore, the rechargeable zinc-air battery based on N,S-GOQD-RGO/CNT exhibits a maximum power density of 134.3 mW cm-2, open circuit potential of 1.414 V, which is better than Pt/C+Ru/C mixed material. The obtained N,S-GOQD-RGO/CNT will provide a perspective application in fuel cells.
Collapse
Affiliation(s)
- Bingnan Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ping Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianguang Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Di Chen
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Yan Huang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lina Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongzhou Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuai Ma
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
18
|
Huang X, Oleynikov P, He H, Mayoral A, Mu L, Lin F, Zhang YB. Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. NANO RESEARCH 2021; 15:145-152. [PMID: 33680338 PMCID: PMC7921286 DOI: 10.1007/s12274-021-3382-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
Tailoring the reaction kinetics is the central theme of designer electrocatalysts, which enables the selective conversion of abundant and inert atmospheric species into useful products. Here we show a supporting effect in tuning the electrocatalytic kinetics of oxygen reduction reaction (ORR) from four-electron to two-electron mechanism by docking metalloporphyrin-based metal-organic frameworks (MOFs) crystals on graphene support, leading to highly selective peroxide production with faradaic efficiency as high as 93.4%. A magic angle of 38.1° tilting for the co-facial alignment was uncovered by electron diffraction tomography, which is attributed to the maximization of π-π interaction for mitigating the lattice and symmetry mismatch between MOF and graphene. The facilitated electron migration and oxygen chemisorption could be ascribed to the supportive effect of graphene that disperses of the electron state of the active center, and ultimately regulates rate-determining step. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (synthesis protocols for control samples, morphological and structural characterizations, porosity, electrochemical properties and activities including SEM, TEM, XPS, Raman, AFM investigations) is available in the online version of this article at 10.1007/s12274-021-3382-3.
Collapse
Affiliation(s)
- Xiaofeng Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Peter Oleynikov
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Alvaro Mayoral
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Linqin Mu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Feng Lin
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
19
|
Xu H, Zhang S, Geng J, Wang G, Zhang H. Cobalt single atom catalysts for the efficient electrosynthesis of hydrogen peroxide. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00158b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt single atoms anchored on N-doped graphitic carbon were successfully synthesised and exhibited superior two-electron oxygen reduction reaction activity with a H2O2 selectivity of ∼76.0% at 0.5 V (vs. RHE).
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Shengbo Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Jing Geng
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Guozhong Wang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Haimin Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| |
Collapse
|
20
|
Jana J, Ngo YLT, Chung JS, Hur SH. Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2020.00934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Feng T, Tao S, Yue D, Zeng Q, Chen W, Yang B. Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001295. [PMID: 32529773 DOI: 10.1002/smll.202001295] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Indexed: 05/19/2023]
Abstract
Exploitation and utilization of sustainable energy sources has increasingly become the common theme of global social development, which has promoted tremendous development of energy conversion devices/technologies. Owing to excellent and unique optical/electrical properties, carbon dots (CDs) have attracted extensive research interest for numerous energy conversion applications. Strong absorption, downconversion photoluminescence, electron acceptor/donor characteristics, and excellent electron conductivity endow CDs with enormous potential for applications in optoelectronic devices. Furthermore, excellent electron transfers/transport capacities and easily manipulable structural defects of CDs offer distinct advantages for electrocatalytic applications. Recent advances in CD-based energy conversion applications, including optoelectronic devices such as light-emitting diodes and solar cells, and electrocatalytic reactions including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, are summarized. Finally, current challenges and future prospects for CD-based energy conversion applications are proposed, highlighting the importance of controllable structural design and modifications.
Collapse
Affiliation(s)
- Tanglue Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Da Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
22
|
Kwon SH, Lee SG, Han SB, Park KW. Synergistically Enhanced Electrocatalytic Stability of Pt Catalyst Supported by Doped Porous Carbon Nanostructure for Oxygen Reduction Reaction. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00609-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Liang K, Wang L, Xu Y, Fang Y, Fang Y, Xia W, Liu YN. Carbon dots self-decorated heteroatom-doped porous carbon with superior electrocatalytic activity for oxygen reduction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Chen L, Xu X, Yang W, Jia J. Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions. Talanta 2020; 208:120375. [DOI: 10.1016/j.talanta.2019.120375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023]
|
26
|
Dinh LNM, Ramana LN, Agarwal V, Zetterlund PB. Miniemulsion polymerization of styrene using carboxylated graphene quantum dots as surfactant. Polym Chem 2020. [DOI: 10.1039/d0py00404a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carboxylated graphene quantum dots (cGQDs) were synthesized from dextrose and sulfuric acid via a hydrothermal process, and subsequently used as sole surfactant in miniemulsion polymerization of styrene.
Collapse
Affiliation(s)
- Le N. M. Dinh
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Lakshmi N. Ramana
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Vipul Agarwal
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
27
|
Dinh LNM, Ramana LN, Kuchel RP, Agarwal V, Zetterlund PB. Miniemulsion polymerization using carboxylated graphene quantum dots as surfactants: effects of monomer and initiator type. Polym Chem 2020. [DOI: 10.1039/d0py00925c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effectiveness of carboxylated graphene quantum dots (cGQDs) as sole surfactants have been investigated in miniemulsion polymerization of 8 different vinyl monomers, initiated by oil-soluble initiator AIBN and water-soluble initiator VA-044.
Collapse
Affiliation(s)
- Le N. M. Dinh
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Lakshmi N. Ramana
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Rhiannon P. Kuchel
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia
| | - Vipul Agarwal
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
28
|
Feng L, Qin Z, Huang Y, Peng K, Wang F, Yan Y, Chen Y. Boron-, sulfur-, and phosphorus-doped graphene for environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134239. [PMID: 31505340 DOI: 10.1016/j.scitotenv.2019.134239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The control of environmental pollutants is a global concern. Recently, heteroatom-doped graphene has drawn increasing attention due to their widespread applications in removing and detecting environmental pollutants. Owing to the introduction of heteroatoms into pristine graphene, the properties of heteroatom-doped graphene have been significantly enhanced in physic, chemistry, and biology. This review focuses on the approaches for synthesis and characterization of boron-, sulfur-, and phosphorus-doped graphene and their applications in the fields of adsorption, catalysis, and detection for environmental pollutants. The mechanisms of environmental applications, including π-π interactions, complexation, hydrophobic interactions, electronic conductivity, and active sites and reactive radicals, are elaborated. Furthermore, the challenges associated with the use of heteroatom-doped graphene materials and their prospective applications are also proposed.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Zhiyi Qin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yujun Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Kangshou Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuanyuan Yan
- College of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224002, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
29
|
Brandiele R, Zerbetto M, Dalconi MC, Rizzi GA, Isse AA, Durante C, Gennaro A. Mesoporous Carbon with Different Density of Thiophenic-Like Functional Groups and Their Effect on Oxygen Reduction. CHEMSUSCHEM 2019; 12:4229-4239. [PMID: 31309717 DOI: 10.1002/cssc.201901568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The metal-support interactions between sulfur-doped carbon supports (SMCs) and Pt nanoparticles (NPs) were investigated, aiming at verifying how sulfur functional groups can improve the electrocatalytic performance of Pt NPs towards the oxygen reduction reaction (ORR). SMCs were synthetized, tailoring the density of sulfur functional groups, and Pt NPs were deposited by thermal reduction of Pt(acac)2 . The extent of the metal-support interaction was proved by X-ray photoelectron spectroscopy (XPS) analysis, which revealed a strong electronic interaction, proportional to the density of sulfur defects, whereas XRD spectra provided evidence of higher strain in Pt NPs loaded on SMC. DFT simulations confirmed that the metal-support interaction was strongest in the presence of a high density of sulfur defects. The combination of microstrain and electronic effects resulted in a high catalytic activity of supported Pt NPs towards ORR, with linear correlations of the half-wave potential E1/2 or the kinetic current jk with the sulfur content in the support. Furthermore, a mass activity value (550 A g-1 ) well above the United States Department of Energy target of 440 A g-1 at 0.9 V (vs. reversible hydrogen electrode, RHE), was determined.
Collapse
Affiliation(s)
- Riccardo Brandiele
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Maria Chiara Dalconi
- Department of Geoscience, University of Padova, via Gradenigo 6, 35131, Padova, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
30
|
Cattelan M, Vagin MY, Fox NA, Ivanov IG, Shtepliuk I, Yakimova R. Anodization study of epitaxial graphene: insights on the oxygen evolution reaction of graphitic materials. NANOTECHNOLOGY 2019; 30:285701. [PMID: 30901765 DOI: 10.1088/1361-6528/ab1297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoemission electron microscopy and x-ray photoemission spectroscopy were utilized for the study of anodized epitaxial graphene (EG) on silicon carbide as a fundamental aspect of the oxygen evolution reaction on graphitic materials. The high-resolution analysis of surface morphology and composition quantified the material transformation during the anodization. We investigated the surface with lateral resolution <150 nm, revealing significant transformations on the EG and the role of multilayer edges in increasing the film capacitance.
Collapse
Affiliation(s)
- Mattia Cattelan
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Zhu H, Liu H, Yang L, Xiao B. How to Boost the Activity of the Monolayer Pt Supported on TiC Catalysts for Oxygen Reduction Reaction: A Density Functional Theory Study. MATERIALS 2019; 12:ma12091560. [PMID: 31085995 PMCID: PMC6539511 DOI: 10.3390/ma12091560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/29/2022]
Abstract
Developing the optimized electrocatalysts with high Pt utilization as well as the outstanding performance for the oxygen reduction reaction (ORR) has raised great attention. Herein, the effects of the interlayer ZrC, HfC, or TiN and the multilayer Pt shell on the adsorption ability and the catalytic activity of the TiC@Pt core-shell structures are systemically investigated by density functional theory (DFT) calculations. For the sandwich structures, the presence of TiN significantly enhances the adsorption ability of the Pt shell, leading to the deterioration of the activity whilst the negligible influence of the ZrC and HfC insertion results the comparable performance with respect to TiC@Pt1ML. In addition, increasing the thickness of the Pt shell reduces the oxyphilic capacity and then mitigates the OH poisoning. From the free energy plots, the superior activity of TiC@Pt2ML is identified in comparison with 1ML and 3ML Pt shell. Herein, the improved activity with its high Pt atomic utilization makes the potential TiC@Pt2ML electrocatalyst for the future fuel cells.
Collapse
Affiliation(s)
- Hui Zhu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Houyi Liu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Lei Yang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
32
|
Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, Liu J, Chen P. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808283. [PMID: 30828898 DOI: 10.1002/adma.201808283] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/25/2019] [Indexed: 05/18/2023]
Abstract
Graphene quantum dots (GQDs) that are flat 0D nanomaterials have attracted increasing interest because of their exceptional chemicophysical properties and novel applications in energy conversion and storage, electro/photo/chemical catalysis, flexible devices, sensing, display, imaging, and theranostics. The significant advances in the recent years are summarized with comparative and balanced discussion. The differences between GQDs and other nanomaterials, including their nanocarbon cousins, are emphasized, and the unique advantages of GQDs for specific applications are highlighted. The current challenges and outlook of this growing field are also discussed.
Collapse
Affiliation(s)
- Yibo Yan
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jun Gong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jie Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Zhiping Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiyang Liu
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
33
|
Huang H, Liang C, Sha H, Yu Y, Lou Y, Chen C, Li C, Chen X, Shi Z, Feng S. Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8343-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Ashrafi H, Hassanpour S, Saadati A, Hasanzadeh M, Ansarin K, Ozkan SA, Shadjou N, Jouyban A. Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Zhang P, Wei JS, Chen XB, Xiong HM. Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions. J Colloid Interface Sci 2019; 537:716-724. [DOI: 10.1016/j.jcis.2018.11.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
|
36
|
Píš I, Magnano E, Nappini S, Bondino F. Under-cover stabilization and reactivity of a dense carbon monoxide layer on Pt(111). Chem Sci 2019; 10:1857-1865. [PMID: 30842854 PMCID: PMC6371755 DOI: 10.1039/c8sc04461a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/01/2018] [Indexed: 01/07/2023] Open
Abstract
A dense CO overlayer on a Pt(111) surface under a 2D hybrid h-BN–graphene cover was studied.
The space between a metal surface and a two-dimensional cover can be regarded as a nanoreactor, where confined molecule adsorption and surface reactions may occur. In this work, we report CO intercalation and reactivity between a graphene-hexagonal boron nitride (h-BNG) heterostructure and Pt(111). By employing high resolution X-ray photoemission spectroscopy (XPS) we demonstrate the molecular intercalation of the full h-BNG overlayer and stabilization of a dense R23.4°–13CO layer on Pt(111) under ultra-high vacuum at room temperature. We provide experimental evidence of a weakened CO–metal bond due to the confinement effects of the 2D cover. Temperature-programmed XPS results reveal that CO desorption is kinetically delayed and occurs at a higher temperature than on bare Pt(111). Moreover, CO partially reacts with the h-BNG layer to form boron-oxide species, which affect repeated CO intercalation. Finally, we found that the properties of the system towards interaction with CO can be considerably recovered using high temperature treatment.
Collapse
Affiliation(s)
- Igor Píš
- Elettra - Sincrotrone Trieste S.C.p.A. , 34149 Basovizza , Trieste , Italy . .,IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy .
| | - Elena Magnano
- IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy . .,Department of Physics , University of Johannesburg , Auckland Park 2006 , South Africa
| | - Silvia Nappini
- IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy .
| | - Federica Bondino
- IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy .
| |
Collapse
|
37
|
Xiao B, Zhu H, Liu H, Jiang X, Jiang Q. The Activity Improvement of the TM 3(hexaiminotriphenylene) 2 Monolayer for Oxygen Reduction Electrocatalysis: A Density Functional Theory Study. Front Chem 2018; 6:351. [PMID: 30258838 PMCID: PMC6143676 DOI: 10.3389/fchem.2018.00351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/25/2018] [Indexed: 12/02/2022] Open
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most prominent clean energy technologies designed to achieve hydrogen utilization and solve problems such as low efficiency and high pollution associated with fossil fuel combustion. In order to bring about PEMFC commercialization, especially for automobile applications, developing high-activity and -selectivity catalysts for the oxygen reduction reaction (ORR) is of critical importance. Based on the density functional theory, the catalytic activity of the conductive, two-dimensional metal-organic frameworks TM3(HITP)2 monolayer (where HITP = hexaiminotriphenylene; TM = Ni, Co, Fe, Pd, Rh, Ru, Pt, Ir, and Os) for ORR has been investigated systematically. Furthermore, the classical volcano curves of the ORR activity, as a function of the OH binding, are found where the Ni, Pd, and Pt located at the weak binding side suffer from the sluggish *OOH formation and prefer the inefficient 2e - mechanism, while for other elements belonging to the strong binding side, the reactions are hindered by the poison due to ORR intermediates. Based on the free energy profiles, the corresponding overpotentials μORR exhibit the inverted volcano curve as a function of the atomic number of the 3d/4d/5d TM active center in the same period. Based on the μORR data, ORR activity decreases in the order of Ir > Co ≈ Rh > Ni ≈ Pd > Pt ≈ Fe > Ru > Os. Herein, the Co, Rh, and Ir central atoms exhibit enhanced catalytic activity in combination with the desirable selectivity of the O2 reduction to H2O. This systematic work may open new avenues for the development of high-performance non-PGM catalysts for practical applications of ORR.
Collapse
Affiliation(s)
- Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hui Zhu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - HouYi Liu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - XiaoBao Jiang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
38
|
Yang L, Wang X, Wang J, Cui G, Liu D. Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction. NANOTECHNOLOGY 2018; 29:345705. [PMID: 29856731 DOI: 10.1088/1361-6528/aac9ae] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.
Collapse
Affiliation(s)
- Liang Yang
- Department One, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Probing the correlation between Pt-support interaction and oxygen reduction reaction activity in mesoporous carbon materials modified with Pt-N active sites. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.182] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructures. NANOMATERIALS 2018; 8:nano8060406. [PMID: 29882781 PMCID: PMC6027206 DOI: 10.3390/nano8060406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 11/19/2022]
Abstract
Chemically modified graphene–based materials (CMG) are currently attracting a vast interest in their application in different fields. In particular, heteroatom-doped graphenes have revealed great potentialities in the field of electrocatalysis as substitutes of fuel cell noble metal–based catalysts. In this work, we investigate an innovative process for doping graphene nanostructures. We optimize a novel synthetic route based on aerosol preparation, which allows the simultaneous doping, crumpling, and reduction of graphene oxide (GO). Starting from aqueous solutions containing GO and the dopant precursors, we synthesize N- and N,S-dual-doped 3D graphene nanostructures (N-cGO and N,S-cGO). In the aerosol process, every aerosol droplet can be considered as a microreactor where dopant precursors undergo thermal decomposition and react with the GO flakes. Simultaneously, thanks to the relatively high temperature, GO undergoes crumpling and partial reduction. Using a combination of spectroscopic and microscopic characterization techniques, we investigate the morphology of the obtained materials and the chemical nature of the dopants within the crumpled graphene sheets. This study highlights the versatility of the aerosol process for the design of new CMG materials with tailored electrocatalytic properties.
Collapse
|
42
|
Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chem Rev 2018; 118:6337-6408. [DOI: 10.1021/acs.chemrev.7b00689] [Citation(s) in RCA: 1178] [Impact Index Per Article: 196.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chunxian Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xin Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jinlong Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Anthony Vasileff
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
43
|
Qin L, Wang L, Yang X, Ding R, Zheng Z, Chen X, Lv B. Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron- and nitrogen-codoped porous graphene. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Gan L, Wang M, Hu L, Fang J, Lai Y, Li J. Nanosheets/Mesopore Structured Co3
O4
@CMK-3 Composite as an Electrocatalyst for the Oxygen Reduction Reaction. ChemCatChem 2018. [DOI: 10.1002/cctc.201701822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lang Gan
- School of Metallurgy and Environment; Central South University; Changsha Hunan 410083 P.R. China
| | - Mengran Wang
- School of Metallurgy and Environment; Central South University; Changsha Hunan 410083 P.R. China
| | - Langtao Hu
- School of Metallurgy and Environment; Central South University; Changsha Hunan 410083 P.R. China
| | - Jing Fang
- School of Metallurgy and Environment; Central South University; Changsha Hunan 410083 P.R. China
| | - Yanqing Lai
- School of Metallurgy and Environment; Central South University; Changsha Hunan 410083 P.R. China
| | - Jie Li
- School of Metallurgy and Environment; Central South University; Changsha Hunan 410083 P.R. China
| |
Collapse
|
45
|
Zhang R, Ding Z. Recent Advances in Graphene Quantum Dots as Bioimaging Probes. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0047-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Hou X, Zhang P, Li S, Liu W. Enhanced electrocatalytic activity of nitrogen-doped olympicene/graphene hybrids for the oxygen reduction reaction. Phys Chem Chem Phys 2018; 18:22799-804. [PMID: 27499058 DOI: 10.1039/c6cp03451a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Developing inexpensive and non-precious metal electrocatalysts for the oxygen reduction reaction (ORR) is among the major goals in fuel cells. Herein, by using density-functional theory calculations, we show that N-doped olympicene/graphene hybrids exhibit unexpectedly high ORR catalytic activity-even comparable to that of the Pt(111) surface. Both graphitic-type and pyridine-type N-doped olympicene/graphene hybrids are highly active for the ORR and have good CO tolerance. The formation of the second H2O molecule is the rate-determining step for the ORR with the graphitic-type hybrid, whereas on the pyridine-type hybrid, it is the formation of OOH. Note that N-doped olympicene/graphene hybrid materials combine the high reactivity of olympicene and the high electrical conductivity of graphene, which allows them to be potentially used as low-cost and non-precious-metal ORR catalysts.
Collapse
Affiliation(s)
- Xiuli Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Peng Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shuang Li
- Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wei Liu
- Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
47
|
Perazzolo V, Brandiele R, Durante C, Zerbetto M, Causin V, Rizzi GA, Cerri I, Granozzi G, Gennaro A. Density Functional Theory (DFT) and Experimental Evidences of Metal–Support Interaction in Platinum Nanoparticles Supported on Nitrogen- and Sulfur-Doped Mesoporous Carbons: Synthesis, Activity, and Stability. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03942] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina Perazzolo
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Riccardo Brandiele
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Christian Durante
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Mirco Zerbetto
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Valerio Causin
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Gian Andrea Rizzi
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Isotta Cerri
- Toyota Motor Europe, Hoge Wei
33, 1930 Zaventem, Belgium
| | - Gaetano Granozzi
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Armando Gennaro
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
48
|
Zhang P, Hu Q, Yang X, Hou X, Mi J, Liu L, Dong M. Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots. RSC Adv 2018. [DOI: 10.1039/c7ra10104j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adsorption strength of ORR intermediates, the reaction free energy of rate-determining step, and the overpotential increase with the increase of the size of N-doped graphene quantum dots.
Collapse
Affiliation(s)
- Peng Zhang
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Qiang Hu
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xuejing Yang
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiuli Hou
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jianli Mi
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Lei Liu
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Mingdong Dong
- Center for DNA Nanotechnology (CDNA)
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus DK-8000
- Denmark
| |
Collapse
|
49
|
Ri M, Choe K, Kim K, Gao Y, Tang Z. C-doping into h-BN at low annealing temperature by alkaline earth metal borate for photoredox activity. RSC Adv 2018; 8:42109-42115. [PMID: 35558793 PMCID: PMC9092138 DOI: 10.1039/c8ra07583b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022] Open
Abstract
BCN (boron carbon nitride) nanosheets are promising photocatalyst materials for solar fuel production by visible light-driven water splitting and CO2 reduction due to their tunable band gap and unique properties. C-doping into h-BN by thermal annealing makes possible the preparation of BCN nanosheets with photocatalytic activity under visible light irradiation, but it generally requires a very high temperature (>1250 °C) from the thermodynamic viewpoint. Here, we report a new method to prepare BCN nanosheets with visible light-photocatalytic activity at lower annealing temperature (1000 °C) than equilibrium by adding alkaline earth metal compounds. BCN nanosheets formed in borate melt show a clear layered structure, tunable bandgap and photocatalytic activity for water splitting and CO2 reduction under visible light illumination. This provides a direction for doping other elements into h-BN at low annealing temperature by alkaline earth metal borates. The alkaline earth metal borates promote the formation of C-doped h-BN nanosheets at low annealing temperature towards robust photocatalytic activity.![]()
Collapse
Affiliation(s)
- Myonghak Ri
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Kwanghak Choe
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Kumchol Kim
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Yan Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| |
Collapse
|
50
|
Jayaprakash GK, Flores-Moreno R. Regioselectivity in hexagonal boron nitride co-doped graphene. NEW J CHEM 2018. [DOI: 10.1039/c8nj03679a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The active electron transfer (ET) sites on the graphene surface can be controlled by hexagonal boron nitride (h-BN) doping.
Collapse
Affiliation(s)
| | - Roberto Flores-Moreno
- Departamento de Química
- Centro Universitario de Ciencias Exactas e Ingenierías
- Universidad Guadalajara
- Mexico
| |
Collapse
|