1
|
Xu R, Jiang Z, Yang Q, Bloino J, Biczysko M. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J Comput Chem 2024; 45:1846-1869. [PMID: 38682874 DOI: 10.1002/jcc.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Collapse
Affiliation(s)
- Ruiqin Xu
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | | | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czechia
| | - Julien Bloino
- Classe di Scienze, Scuola Normale Superiore, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Capone M, Parisse G, Narzi D, Guidoni L. Unravelling Mn 4Ca cluster vibrations in the S 1, S 2 and S 3 states of the Kok-Joliot cycle of photosystem II. Phys Chem Chem Phys 2024; 26:20598-20609. [PMID: 39037338 PMCID: PMC11290063 DOI: 10.1039/d4cp01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Vibrational spectroscopy serves as a powerful tool for characterizing intermediate states within the Kok-Joliot cycle. In this study, we employ a QM/MM molecular dynamics framework to calculate the room temperature infrared absorption spectra of the S1, S2, and S3 states via the Fourier transform of the dipole time auto-correlation function. To better analyze the computational data and assign spectral peaks, we introduce an approach based on dipole-dipole correlation function of cluster moieties of the reaction center. Our analysis reveals variation in the infrared signature of the Mn4Ca cluster along the Kok-Joliot cycle, attributed to its increasing symmetry and rigidity resulting from the rising oxidation state of the Mn ions. Furthermore, we successfully assign the debated contributions in the frequency range around 600 cm-1. This computational methodology provides valuable insights for deciphering experimental infrared spectra and understanding the water oxidation process in both biological and artificial systems.
Collapse
Affiliation(s)
- Matteo Capone
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Gianluca Parisse
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Daniele Narzi
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Leonardo Guidoni
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| |
Collapse
|
3
|
Dong W, Blasius J, Fan Z, Wylie L. Vibrational Spectra Simulations in Amino Acid-Based Imidazolium Ionic Liquids. J Phys Chem B 2024; 128:6560-6566. [PMID: 38943623 DOI: 10.1021/acs.jpcb.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
We present maximally localized Wannier functions and Voronoi tessellation to obtain dipole moment distributions for vibrational spectra in several important ionic liquids calculated by using ab initio molecular dynamics simulations. IR and Raman spectra of various imidazolium-based ionic liquids (ILs) paired with six amino acid anions are shown herein. For IR spectra, two approaches (Wannier and Voronoi) are in agreement with respect to the relative intensities and the overall shapes for the main peaks. Under Raman spectra, the polarizability of the covalent bonds is shown to affect the strength of the Raman scattering signal. The advantage of the Voronoi tessellation method, being that it does not have strong spikes in its time development, is demonstrated by the comparison of two theoretical methods (Wannier and Voronoi) with experimental data. We analyze the errors between theoretical and experimental spectroscopic data, with the Voronoi method shown to accurately reproduce experimental values. In addition, theoretical spectroscopy shows the ability to accurately separate components of a mixture. The combination of theoretical and experimental methods is utilized to understand the spectroscopic properties of amino acid-based imidazolium ILs.
Collapse
Affiliation(s)
- Wenbo Dong
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany
| | - Zhijie Fan
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany
| |
Collapse
|
4
|
Coppola F, Cimino P, Petrone A, Rega N. Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex. J Phys Chem A 2024; 128:1620-1633. [PMID: 38381887 DOI: 10.1021/acs.jpca.3c08366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation. Our protocol provides an accurate description that facilitates a direct comparison between transient vibrational analysis and time-resolved spectroscopic signals. This molecular level perspective enhances our understanding of photorelaxation processes confined in the adiabatic regime and offers an improved interpretation of vibrational spectra. Furthermore, it enables the quantification of anharmonic vibrational couplings between high- and low-frequency modes, specifically the TCNQ "rocking" and "bending" modes. Additionally, it identifies the primary vibrational mode that governs the adiabaticity between the ground state and the CT state. This comprehensive understanding of photorelaxation processes holds significant importance in the rational design and precise control of more efficient photovoltaic and sensor devices.
Collapse
Affiliation(s)
- Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Paola Cimino
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| |
Collapse
|
5
|
Hanna FE, Root AJ, Hunter CA. Polarisation effects on the H-bond acceptor properties of secondary amides. Chem Sci 2023; 14:11151-11157. [PMID: 37860643 PMCID: PMC10583693 DOI: 10.1039/d3sc03823h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
H-bonding interactions in networks are stabilised by cooperativity, but the relationship between the chemical structures of the interacting functional groups and the thermodynamic consequences is not well-understood. We have used compounds with an intramolecular H-bond between a pyridine H-bond acceptor and an amide NH group to quantify cooperative effects on the H-bond acceptor properties of the amide carbonyl group. 1H NMR experiments in n-octane confirm the presence of the intramolecular H-bond and show that this interaction is intact in the 1 : 1 complex formed with perfluoro-tert-butanol (PFTB). UV-vis absorption titrations were used to measure the relationship between the association constant for formation of this complex and the H-bond acceptor properties of the pyridine involved in the intramolecular H-bond. Electron-donating substituents on the pyridine increase the strength of the intermolecular H-bond between PFTB and the amide. There is a linear relationship between the H-bond acceptor parameter β measured for the amide carbonyl group and the H-bond acceptor parameter for the pyridine. The cooperativity parameter κ determined from this relationship is 0.2, i.e. β for an amide carbonyl group is increased by one fifth of the value of β of an acceptor that interacts with the NH group. This result is reproduced by DFT calculations of H-bond parameters for the individual molecules in the gas phase, which implies that the observed cooperativity can be understood as polarisation of the electron density in the amide π-system in response to formation of a H-bond. The cooperativity parameter κ measured for the secondary amide H-bond donor and H-bond acceptor is identical, which implies that polarisation of an amide mediates the interaction between an external donor or acceptor in a reciprocal manner.
Collapse
Affiliation(s)
- Fergal E Hanna
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alexander J Root
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
6
|
Paschoal VH, Ribeiro MCC. DFT and ab initio molecular dynamics simulation study of the infrared spectrum of the protic ionic liquid 2-hydroxyethylammonium formate. Phys Chem Chem Phys 2023; 25:26475-26485. [PMID: 37753589 DOI: 10.1039/d3cp02914j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Protic ionic liquids (PILs) typically show a complex band shape in their infrared (IR) spectra in the high-frequency range due to the hydrogen stretching vibrations of functional groups forming rather strong hydrogen bonds (H-bonds). In the low-frequency range, the intermolecular stretching mode of the H-bond leaves a mark in the far-IR spectrum of PILs. In this study, the IR spectrum of the PIL 2-hydroxyethylammonium formate, [HOCH2CH2NH3][HCOO], is investigated in order to identify the different modes that contribute to the high-frequency band shape, i.e. the cation ν(NH), ν(OH), and ν(CH) modes, and the anion ν(CH) mode, as well as the intermolecular mode of the strongest H-bond in the far-IR spectrum. The assignment is validated by quantum chemistry calculations of clusters at the density functional theory (DFT) level for four ionic pairs and by ab initio molecular dynamics (AIMD) simulations of ten ionic pairs. There is good agreement between the vibrational frequencies obtained from DFT and AIMD simulations for both the high- and low-frequency ranges. Based on the calculations, the strong H-bond interaction between the cation -NH3 group and [HCOO]- gives a broad band envelope associated with the ν(NH) mode in the high-frequency range of the IR spectrum on which there are narrower peaks corresponding to the ν(OH) and ν(CH) modes. In the far-IR (FIR) spectrum, the anions' rattling motion gives a broad feature with a maximum at 160 cm-1, while the H-bond's intermolecular NH⋯O stretching mode appears as a peak at 255 cm-1.
Collapse
Affiliation(s)
- Vitor Hugo Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970, São Paulo, SP, Brazil.
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Masaya TW, Goulay F. A Molecular Dynamic Study of the Effects of Surface Partitioning on the OH Radical Interactions with Solutes in Multicomponent Aqueous Aerosols. J Phys Chem A 2023; 127:751-764. [PMID: 36639126 DOI: 10.1021/acs.jpca.2c07419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The surface-bulk partitioning of small saccharide and amide molecules in aqueous droplets was investigated using molecular dynamics. The air-particle interface was modeled using a 80 Å cubic water box containing a series of organic molecules and surrounded by gaseous OH radicals. The properties of the organic solutes within the interface and the water bulk were examined at a molecular level using density profiles and radial pair distribution functions. Molecules containing only polar functional groups such as urea and glucose are found predominantly in the water bulk, forming an exclusion layer near the water surface. Substitution of a single polar group by an alkyl group in sugars and amides leads to the migration of the molecule toward the interface. Within the first 2 nm from the water surface, surface-active solutes lose their rotational freedom and adopt a preferred orientation with the alkyl group pointing toward the surface. The different packing within the interface leads to different solvation shell structures and enhanced interaction between the organic molecules and absorbed OH radicals. The simulations provide quantitative information about the dimension, composition, and organization of the air-water interface as well as about the nonreactive interaction of the OH radicals with the organic solutes. It suggests that increased concentrations, preferred orientations, and decreased solvation near the air-water surface may lead to differences in reactivities between surface-active and surface-inactive molecules. The results are important to explain how heterogeneous oxidation mechanisms and kinetics within interfaces may differ from those of the bulk.
Collapse
Affiliation(s)
- Tadini Wenyika Masaya
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
8
|
Hou L, Wang J, Wang H, Yang L, Shi W. Experimental Detection and Simulation of Terahertz Spectra of Aqueous L-Arginine. BIOSENSORS 2022; 12:1029. [PMID: 36421147 PMCID: PMC9688293 DOI: 10.3390/bios12111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Terahertz (THz) wave is a good candidate for biological sample detection, because vibration and rotation energy levels of biomolecule are in THz band. However, the strong absorption of THz wave by water in biological samples hinders its development. In this paper, a method for direct detection of THz absorption spectra of L-arginine suspension was proposed by using a strong field THz radiation source combined with a polyethylene cell with micrometer thickness in a THz time-domain spectroscopy system. And the THz absorption spectrum of L-arginine solution was simulated by the density functional theory and the simulation result is in good agreement with the experimental results. Finally, the types of chemical bond interaction that cause the absorption peak are identified based on the experimental and simulation results. This work paves a way to investigate the THz absorption spectra and intramolecular interactions of aqueous biological samples.
Collapse
Affiliation(s)
- Lei Hou
- Department of Physics, Xi’an University of Technology, Xi’an 710048, China
- School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Junnan Wang
- School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Haiqing Wang
- Department of Physics, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Lei Yang
- School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Wei Shi
- Department of Physics, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
9
|
Soloviev DO, Hanna FE, Misuraca MC, Hunter CA. H-bond cooperativity: polarisation effects on secondary amides. Chem Sci 2022; 13:11863-11868. [PMID: 36320903 PMCID: PMC9580511 DOI: 10.1039/d2sc04271a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Formation of a H-bond with an amide carbonyl oxygen atom increases the strength of subsequent H-bonds formed by the amide NH, due to polarisation of the bond. The magnitude of this effect has been quantified by measuring association constants for the formation of 1 : 1 complexes of 2-hydroxylbenzamides with tri-n-butyl phosphine oxide. In 2-hydroxybenzamides, there is an intramolecular H-bond between the phenol OH group and the carbonyl oxygen atom. Comparison of the association constants measured for compounds with and without the 2-hydroxy group allows direct quantification of the effect of the intramolecular H-bond on the H-bond donor properties of the amide NH group. Substituents were used to modulate the strength of the intramolecular and intermolecular H-bonds. The presence of an intramolecular H-bond increases the strength of the intermolecular H-bond by more than one order of magnitude in n-octane solution. The increase in the H-bond donor parameter used to describe the amide NH group is directly proportional to the H-bond donor parameter of the phenol OH group that makes the intramolecular H-bond. These polarisation effects will lead to substantial cooperativity in complex systems that feature networks of non-covalent interactions, and the measurements described here provide a quantitative basis for understanding such phenomena. Formation of an intramolecular phenol-amide H-bond leads to a dramatic increase in the H-bond donor strength of the amide NH group. Polarisation of the amide group is directly proportional to the polarity of the phenol H-bond donor.![]()
Collapse
Affiliation(s)
- Daniil O. Soloviev
- Yusuf Hamied Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK
| | - Fergal E. Hanna
- Yusuf Hamied Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK
| | - Maria Cristina Misuraca
- Yusuf Hamied Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK
| | - Christopher A. Hunter
- Yusuf Hamied Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK
| |
Collapse
|
10
|
Laity PR, Holland C. Seeking Solvation: Exploring the Role of Protein Hydration in Silk Gelation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020551. [PMID: 35056868 PMCID: PMC8781151 DOI: 10.3390/molecules27020551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.
Collapse
|
11
|
Taherivardanjani S, Elfgen R, Reckien W, Suarez E, Perlt E, Kirchner B. Benchmarking the Computational Costs and Quality of Vibrational Spectra from Ab Initio Simulations. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry Beringstr. 4 Bonn D‐53115 Germany
| | - Roman Elfgen
- Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry Beringstr. 4 Bonn D‐53115 Germany
| | - Werner Reckien
- Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry Beringstr. 4 Bonn D‐53115 Germany
| | - Estela Suarez
- Institute for Advanced Simulation Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH Wilhelm‐Johnen‐Straße Jülich D‐52425 Germany
| | - Eva Perlt
- Otto Schott Institute of Materials Research Faculty of Physics and Astronomy Friedrich‐Schiller‐Universität Jena Löbdergraben 32 Jena D‐07743 Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Institute for Physical and Theoretical Chemistry Beringstr. 4 Bonn D‐53115 Germany
| |
Collapse
|
12
|
Mondal P, Cazade PA, Das AK, Bereau T, Meuwly M. Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine Trimer. J Phys Chem B 2021; 125:10928-10938. [PMID: 34559531 DOI: 10.1021/acs.jpcb.1c05423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics and spectroscopy of N-methyl-acetamide (NMA) and trialanine in solution are characterized from molecular dynamics simulations using different energy functions, including a conventional point charge (PC)-based force field, one based on a multipolar (MTP) representation of the electrostatics, and a semiempirical DFT method. For the 1D infrared spectra, the frequency splitting between the two amide-I groups is 10 cm-1 from the PC, 13 cm-1 from the MTP, and 47 cm-1 from self-consistent charge density functional tight-binding (SCC-DFTB) simulations, compared with 25 cm-1 from experiment. The frequency trajectory required for the frequency fluctuation correlation function (FFCF) is determined from individual normal mode (INM) and full normal mode (FNM) analyses of the amide-I vibrations. The spectroscopy, time-zero magnitude of the FFCF C(t = 0), and the static component Δ02 from simulations using MTP and analysis based on FNM are all consistent with experiments for (Ala)3. Contrary to this, for the analysis excluding mode-mode coupling (INM), the FFCF decays to zero too rapidly and for simulations with a PC-based force field, the Δ02 is too small by a factor of two compared with experiments. Simulations with SCC-DFTB agree better with experiment for these observables than those from PC-based simulations. The conformational ensemble sampled from simulations using PCs is consistent with the literature (including PII, β, αR, and αL), whereas that covered by the MTP-based simulations is dominated by PII with some contributions from β and αR. This agrees with and confirms recently reported Bayesian-refined populations based on 1D infrared experiments. FNM analysis together with a MTP representation provides a meaningful model to correctly describe the dynamics of hydrated trialanine.
Collapse
Affiliation(s)
- Padmabati Mondal
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Tristan Bereau
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.,Department of Chemistry, Brown University, Providence/RI 02912, United States
| |
Collapse
|
13
|
Hassan I, Ferraro F, Imhof P. Effect of the Hydration Shell on the Carbonyl Vibration in the Ala-Leu-Ala-Leu Peptide. Molecules 2021; 26:2148. [PMID: 33917998 PMCID: PMC8068333 DOI: 10.3390/molecules26082148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
The vibrational spectrum of the Ala-Leu-Ala-Leu peptide in solution, computed from first-principles simulations, shows a prominent band in the amide I region that is assigned to stretching of carbonyl groups. Close inspection reveals combined but slightly different contributions by the three carbonyl groups of the peptide. The shift in their exact vibrational signature is in agreement with the different probabilities of these groups to form hydrogen bonds with the solvent. The central carbonyl group has a hydrogen bond probability intermediate to the other two groups due to interchanges between different hydrogen-bonded states. Analysis of the interaction energies of individual water molecules with that group shows that shifts in its frequency are directly related to the interactions with the water molecules in the first hydration shell. The interaction strength is well correlated with the hydrogen bond distance and hydrogen bond angle, though there is no perfect match, allowing geometrical criteria for hydrogen bonds to be used as long as the sampling is sufficient to consider averages. The hydrogen bond state of a carbonyl group can therefore serve as an indicator of the solvent's effect on the vibrational frequency.
Collapse
Affiliation(s)
- Irtaza Hassan
- Institute for Theoretical Physics, Freie Universtiät Berlin, Arnimallee 14, 14195 Berlin, Germany;
| | - Federica Ferraro
- Computer Chemistry Center, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany;
| | - Petra Imhof
- Institute for Theoretical Physics, Freie Universtiät Berlin, Arnimallee 14, 14195 Berlin, Germany;
- Computer Chemistry Center, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany;
| |
Collapse
|
14
|
Stasiulewicz M, Panuszko A, Śmiechowski M, Bruździak P, Maszota P, Stangret J. Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Abstract
Recently, AIMD (ab initio molecular dynamics) has been extensively employed to explore the dynamical information of electronic systems. However, it remains extremely challenging to reliably predict the properties of nanosystems with a radical nature using conventional electronic structure methods (e.g., Kohn-Sham density functional theory) due to the presence of static correlation. To address this challenge, we combine the recently formulated TAO-DFT (thermally-assisted-occupation density functional theory) with AIMD. The resulting TAO-AIMD method is employed to investigate the instantaneous/average radical nature and infrared spectra of n-acenes containing n linearly fused benzene rings (n = 2-8) at 300 K. According to the TAO-AIMD simulations, on average, the smaller n-acenes (up to n = 5) possess a nonradical nature, and the larger n-acenes (n = 6-8) possess an increasing radical nature, showing remarkable similarities to the ground-state counterparts at 0 K. Besides, the infrared spectra of n-acenes obtained with the TAO-AIMD simulations are in qualitative agreement with the existing experimental data.
Collapse
Affiliation(s)
- Shaozhi Li
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - Jeng-Da Chai
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Center for Theoretical Physics and Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Apostolidou C. Vibrational Spectra of the OH Radical in Water: Ab Initio Molecular Dynamics Simulations and Quantum Chemical Calculations Using Hybrid Functionals. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Apostolidou
- Mulliken Center for Theoretical Chemistry Institute of Physical and Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstraße 4 Bonn 53115 Germany
| |
Collapse
|
17
|
Biswas S, Mallik BS. Probing the vibrational dynamics of amide bands of N-methylformamide, N, N-dimethylacetamide, and N-methylacetamide in water. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Donati G, Petrone A, Rega N. Multiresolution continuous wavelet transform for studying coupled solute-solvent vibrations via ab initio molecular dynamics. Phys Chem Chem Phys 2020; 22:22645-22661. [PMID: 33015693 DOI: 10.1039/d0cp02495c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibrational analysis in solution and the theoretical determination of infrared and Raman spectra are of key importance in many fields of chemical interest. Vibrational band dynamics of molecules and their sensitivity to the environment can also be captured by these spectroscopies in their time dependent version. However, it is often difficult to provide an interpretation of the experimental data at the molecular scale, such as molecular mechanisms or the processes hidden behind them. In this work, we present a theoretical-computational protocol based on ab initio molecular dynamics simulations and a combination of normal-like (generalized) mode analysis of solute-solvent clusters with a wavelet transform, for the first time. The case study is the vibrational dynamics of N-methyl-acetamide (NMA) in water solution, a well-known model of hydration of peptides and proteins. Amide modes are typical bands of peptide and protein backbone, and their couplings with the environment are very challenging in terms of the accurate prediction of solvent induced intensity and frequency shifts. The contribution of water molecules surrounding NMA to the composition of generalized and time resolved modes is introduced in our vibrational analysis, showing unequivocally its influence on the amide mode spectra. It is also shown that such mode compositions need the inclusion of the first shell solvent molecules to be accurately described. The wavelet analysis is proven to be strongly recommended to follow the time evolution of the spectra, and to capture vibrational band couplings and frequency shifts over time, preserving at the same time a well-balanced time-frequency resolution. This peculiar feature also allows one to perform a combined structural-vibrational analysis, where the different strengths of hydrogen bond interactions can quantitatively affect the amide bands over time at finite temperature. The proposed method allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, in this case the peptide backbone, and its hydration layouts.
Collapse
Affiliation(s)
- Greta Donati
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M. S. Angelo, Via Cintia, I-80126 Napoli, Italy.
| | | | | |
Collapse
|
19
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
20
|
Baronio CM, Barth A. The Amide I Spectrum of Proteins-Optimization of Transition Dipole Coupling Parameters Using Density Functional Theory Calculations. J Phys Chem B 2020; 124:1703-1714. [PMID: 32040320 PMCID: PMC7307917 DOI: 10.1021/acs.jpcb.9b11793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The
amide I region of the infrared spectrum is related to the protein
backbone conformation and can provide important structural information.
However, the interpretation of the experimental results is hampered
because the theoretical description of the amide I spectrum is still
under development. Quantum mechanical calculations, for example, using
density functional theory (DFT), can be used to study the amide I
spectrum of small systems, but the high computational cost makes them
inapplicable to proteins. Other approaches that solve the eigenvalues
of the coupled amide I oscillator system are used instead. An important
interaction to be considered is transition dipole coupling (TDC).
Its calculation depends on the parameters of the transition dipole
moment. This work aims to find the optimal parameters for TDC in three
major secondary structures: α-helices, antiparallel β-sheets,
and parallel β-sheets. The parameters were suggested through
a comparison between DFT and TDC calculations. The comparison showed
a good agreement for the spectral shape and for the wavenumbers of
the normal modes for all secondary structures. The matching between
the two methods improved when hydrogen bonding to the amide oxygen
was considered. Optimal parameters for individual secondary structures
were also suggested.
Collapse
Affiliation(s)
- Cesare M Baronio
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
21
|
Dvores MP, Çarçabal P, Maître P, Simons JP, Gerber RB. Gas phase dynamics, conformational transitions and spectroscopy of charged saccharides: the oxocarbenium ion, protonated anhydrogalactose and protonated methyl galactopyranoside. Phys Chem Chem Phys 2020; 22:4144-4157. [PMID: 32039431 DOI: 10.1039/c9cp06572e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protonated intermediates are postulated to be involved in the rate determining step of many sugar reactions. This paper presents a study of protonated sugar species, isolated in the gas phase, using a combination of infrared multiple photon dissociation (IRMPD) spectroscopy, classical ab initio molecular dynamics (AIMD) and quantum mechanical vibrational self-consistent field (VSCF) calculations. It provides a likely identification of the reactive intermediate oxocarbenium ion structure in a d-galactosyl system as well as the saccharide pyrolysis product anhydrogalactose (that suggests oxocarbenium ion stabilization), along with the spectrum of the protonated parent species: methyl d-galactopyranoside-H+. Its vibrational fingerprint indicates intramolecular proton sharing. Classical AIMD simulations for galactosyl oxocarbenium ions, conducted in the temperature range ∼300-350 K (using B3LYP potentials on-the-fly) reveal efficient transitions on the picosecond timescale. Multiple conformers are likely to exist under the experimental conditions and along with static VSCF calculations, they have facilitated the identification of the individual structural motifs of the galactosyl oxocarbenium ion and protonated anhydrogalactose ion conformers that contribute to the observed experimental spectra. These results demonstrate the power of experimental IRMPD spectroscopy combined with dynamics simulations and with computational spectroscopy at the anharmonic level to unravel conformer structures of protonated saccharides, and to provide information on their lifetimes.
Collapse
Affiliation(s)
- M P Dvores
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel.
| | - P Çarçabal
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - P Maître
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - J P Simons
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK
| | - R B Gerber
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel. and Department of Chemistry, University of California Irvine, CA 92697, USA
| |
Collapse
|
22
|
Bakels S, Gaigeot MP, Rijs AM. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem Rev 2020; 120:3233-3260. [PMID: 32073261 PMCID: PMC7146864 DOI: 10.1021/acs.chemrev.9b00547] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Gas-phase, double
resonance IR spectroscopy has proven to be an
excellent approach to obtain structural information on peptides ranging
from single amino acids to large peptides and peptide clusters. In
this review, we discuss the state-of-the-art of infrared action spectroscopy
of peptides in the far-IR and THz regime. An introduction to the field
of far-IR spectroscopy is given, thereby highlighting the opportunities
that are provided for gas-phase research on neutral peptides. Current
experimental methods, including spectroscopic schemes, have been reviewed.
Structural information from the experimental far-IR spectra can be
obtained with the help of suitable theoretical approaches such as
dynamical DFT techniques and the recently developed Graph Theory.
The aim of this review is to underline how the synergy between far-IR
spectroscopy and theory can provide an unprecedented picture of the
structure of neutral biomolecules in the gas phase. The far-IR signatures
of the discussed studies are summarized in a far-IR map, in order
to gain insight into the origin of the far-IR localized and delocalized
motions present in peptides and where they can be found in the electromagnetic
spectrum.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Université d'Evry val d'Essonne, Blvd F. Mitterrand, Bât Maupertuis, 91025 Evry, France
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
23
|
Brehm M, Thomas M. Computing Bulk Phase Resonance Raman Spectra from ab Initio Molecular Dynamics and Real-Time TDDFT. J Chem Theory Comput 2019; 15:3901-3905. [PMID: 31246025 DOI: 10.1021/acs.jctc.9b00512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present our novel approach for computing resonance Raman (RR) spectra of periodic bulk phase systems from ab initio molecular dynamics, including solvent influence and some anharmonic effects. Based on real-time time-dependent density functional theory, we obtain the RR spectra for all laser wavelengths in one pass. We compute the RR spectrum of uracil in aqueous solution, which is in good agreement with experiment. This is the first simulation of a bulk phase RR spectrum.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie - Theoretische Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Martin Thomas
- Institut für Chemie - Theoretische Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
24
|
Zhang B, Altarawy D, Barnes T, Turney JM, Schaefer HF. Janus: An Extensible Open-Source Software Package for Adaptive QM/MM Methods. J Chem Theory Comput 2019; 15:4362-4373. [DOI: 10.1021/acs.jctc.9b00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boyi Zhang
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Doaa Altarawy
- The Molecular Sciences Software Institute, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Computer and Systems Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Taylor Barnes
- The Molecular Sciences Software Institute, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Justin M. Turney
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Qu C, Bowman JM. A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide. J Chem Phys 2019; 150:141101. [PMID: 30981221 DOI: 10.1063/1.5092794] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe and apply a method to extend permutationally invariant polynomial (PIP) potential energy surface (PES) fitting to molecules with more than 10 atoms. The method creates a compact basis of PIPs as the union of PIPs obtained from fragments of the molecule. An application is reported for trans-N-methyl acetamide, where B3LYP/cc-pVDZ electronic energies and gradients are used to develop a full-dimensional potential for this prototype peptide molecule. The performance of several fragmented bases is verified against a benchmark PES using all (66) Morse variables. The method appears feasible for much larger molecules.
Collapse
Affiliation(s)
- Chen Qu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
26
|
Panuszko A, Nowak M, Bruździak P, Stasiulewicz M, Stangret J. Amides as models to study the hydration of proteins and peptides — spectroscopic and theoretical approach on hydration in various temperatures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Gupta PK, Esser A, Forbert H, Marx D. Toward theoretical terahertz spectroscopy of glassy aqueous solutions: partially frozen solute-solvent couplings of glycine in water. Phys Chem Chem Phys 2019; 21:4975-4987. [PMID: 30758388 DOI: 10.1039/c8cp07489e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular-level understanding of THz spectra of aqueous solutions under ambient conditions has been greatly advanced in recent years. Here, we go beyond previous analyses by performing ab initio molecular dynamics simulations of glycine in water with artificially frozen solute or solvent molecules, respectively, while computing the total THz response as well as its decomposition into mode-specific resonances based on the "supermolecular solvation complex" technique. Clamping the water molecules and keeping glycine moving breaks the coupling of glycine to the structural dynamics of the solvent, however, the polarization and dielectric solvation effects in the static solvation cage are still at work since the full electronic structure of the quenched solvent is taken into account. The complementary approach of fixing glycine reveals both the dynamical and electronic response of the solvation cage at the level of its THz response. Moreover, to quantitatively account for the electronic contribution solely due to solvent embedding, the solute species is "vertically desolvated", thus preserving the fully coupled solute-solvent motion in terms of the solute's structural dynamics in solution, while its electronic structure is no longer subject to solute-solvent polarization and charge transfer effects. When referenced to the free simulation of Gly(aq), this three-fold approach allows us to decompose the THz spectral contributions due to the correlated solute-solvent dynamics into entirely structural and purely electronic effects. Beyond providing hitherto unknown insights, the observed systematic changes of THz spectra in terms of peak shifts and lineshape modulations due to conformational freezing and frozen solvation cages might be useful to investigate the solvation of molecules in highly viscous H-bonding solvents such as ionic liquids and even in cryogenic ices as relevant to polar stratospheric and dark interstellar clouds.
Collapse
Affiliation(s)
- Prashant Kumar Gupta
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
28
|
Galimberti DR, Bougueroua S, Mahé J, Tommasini M, Rijs AM, Gaigeot MP. Conformational assignment of gas phase peptides and their H-bonded complexes using far-IR/THz: IR-UV ion dip experiment, DFT-MD spectroscopy, and graph theory for mode assignment. Faraday Discuss 2019; 217:67-97. [DOI: 10.1039/c8fd00211h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graph theory based vibrational modes as new entities for vibrational THz spectroscopy.
Collapse
Affiliation(s)
| | | | - Jérôme Mahé
- LAMBE UMR8587
- Univ Evry
- Université Paris-Saclay
- CNRS
- 91025 Evry
| | - Matteo Tommasini
- Department of Chemistry, Materials, Chemical Engineering “G. Natta” Politecnico di Milano
- 20133 Milano
- Italy
| | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|
29
|
Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of formaldehyde: a first principles molecular dynamics study. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2333-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
León-Pimentel CI, Amaro-Estrada JI, Hernández-Cobos J, Saint-Martin H, Ramírez-Solís A. Aqueous solvation of Mg(ii) and Ca(ii): A Born-Oppenheimer molecular dynamics study of microhydrated gas phase clusters. J Chem Phys 2018; 148:144307. [PMID: 29655339 DOI: 10.1063/1.5021348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hydration features of [Mg(H2O)n]2+ and [Ca(H2O)n]2+ clusters with n = 3-6, 8, 18, and 27 were studied by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/6-31+G** level of theory. For both ions, it is energetically more favorable to have all water molecules in the first hydration shell when n ≤ 6, but stable lower coordination average structures with one water molecule not directly interacting with the ion were found for Mg2+ at room temperature, showing signatures of proton transfer events for the smaller cation but not for the larger one. A more rigid octahedral-type structure for Mg2+ than for Ca2+ was observed in all simulations, with no exchange of water molecules to the second hydration shell. Significant thermal effects on the average structure of clusters were found: while static optimizations lead to compact, spherically symmetric hydration geometries, the effects introduced by finite-temperature dynamics yield more prolate configurations. The calculated vibrational spectra are in agreement with infrared spectroscopy results. Previous studies proposed an increase in the coordination number (CN) from six to eight water molecules for [Ca(H2O)n]2+ clusters when n ≥ 12; however, in agreement with recent measurements of binding energies, no transition to a larger CN was found when n > 8. Moreover, the excellent agreement found between the calculated extended X-ray absorption fine structure spectroscopy spectra for the larger cluster and the experimental data of the aqueous solution supports a CN of six for Ca2+.
Collapse
Affiliation(s)
- C I León-Pimentel
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - J I Amaro-Estrada
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - J Hernández-Cobos
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - H Saint-Martin
- Instituto de Ciencias Físicas, Universidad Autónoma de México, Apdo. Postal 48-3, Cuernavaca, Morelos 62251, Mexico
| | - A Ramírez-Solís
- Departamento de Física, Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| |
Collapse
|
31
|
Hassan I, Donati L, Stensitzki T, Keller BG, Heyne K, Imhof P. The vibrational spectrum of the hydrated alanine-leucine peptide in the amide region from IR experiments and first principles calculations. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Taleb Bendiab W, Benomrane B, Bounaceur B, Dauchez M, Krallafa AM. Structure and dynamics of the peptide strand KRFK from the thrombospondin TSP-1 in water. J Mol Model 2018; 24:54. [PMID: 29442182 DOI: 10.1007/s00894-018-3583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Theoretical investigations of a solute in liquid water at normal temperature and pressure can be performed at different levels of theory. Static quantum calculations as well as classical and ab initio molecular dynamics are used to completely explore the conformational space for large solvated molecular systems. In the classical approach, it is essential to describe all of the interactions of the solute and the solvent in detail. Water molecules are very often described as rigid bodies when the most commonly used interaction potentials, such as the SPCE and the TIP4P models, are employed. Recently, a physical model based upon a cluster of rigid water molecules with a tetrahedral architecture (AB4) was proposed that describes liquid water as a mixture of both TIP4P and SPCE molecular species that occur in the proportions implied by the tetrahedral architecture (one central molecule versus four outer molecules; i.e., 20% TIP4P versus 80% SPCE molecules). In this work, theoretical spectroscopic data for a peptide strand were correlated with the structural properties of the peptide strand solvated in water, based on data calculated using different theoretical approaches and physical models. We focused on a particular peptide strand, KRFK (lysine-arginine-phenylalanine-lysine), found in the thrombospondin TSP-1, due to its interesting properties. As the activity and electronic structure of this system is strongly linked to its structure, we correlated its structure with charge-density maps obtained using different semi-empirical charge Qeq equations. The structural and thermodynamic properties obtained from classical simulations were correlated with ab initio molecular dynamics (AIMD) data. Structural changes in the peptide strand were rationalized in terms of the motions of atoms and groups of atoms. To achieve this, conformational changes were investigated using calculated infrared spectra for the peptide in the gas phase and in water solvent. The calculated AIMD infrared spectrum for the peptide was correlated with static quantum calculations of the molecular system based on a harmonic approach as well as the VDOS (vibrational density of states) spectra obtained using various classical solvent models (SPCE, TIP4P, and AB4) and charge maps.
Collapse
Affiliation(s)
- W Taleb Bendiab
- LCPM, Dpt of Chemistry, Faculty of Sciences, University Oran 1 Ahmed Benbella, 31000, Oran, Algeria
| | - B Benomrane
- LCPM, Dpt of Chemistry, Faculty of Sciences, University Oran 1 Ahmed Benbella, 31000, Oran, Algeria
| | - B Bounaceur
- LCPM, Dpt of Chemistry, Faculty of Sciences, University Oran 1 Ahmed Benbella, 31000, Oran, Algeria
| | - M Dauchez
- SirMa CNRS UMR 7369, MEDyC, University of Reims Champagne Ardenne, Reims, France
| | - A M Krallafa
- LCPM, Dpt of Chemistry, Faculty of Sciences, University Oran 1 Ahmed Benbella, 31000, Oran, Algeria.
| |
Collapse
|
33
|
Yadav VK. Formaldehyde-mediated spectroscopic properties of heavy water from first principles simulation. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Feng CJ, Tokmakoff A. The dynamics of peptide-water interactions in dialanine: An ultrafast amide I 2D IR and computational spectroscopy study. J Chem Phys 2017; 147:085101. [PMID: 28863528 PMCID: PMC5593305 DOI: 10.1063/1.4991871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 11/14/2022] Open
Abstract
We present a joint experimental and computational study of the dynamic interactions of dialanine (Ala-Ala) with water, comparing the results of ultrafast 2D IR and infrared transient absorption spectroscopy of its amide I vibration with spectra modeled from molecular dynamics (MD) simulations. The experimental data are analyzed to describe vibrational frequency fluctuations, vibrational energy relaxation, and chemical exchange processes. The origin of these processes in the same underlying fluctuating forces allows a common description in terms of the fluctuations and conformational dynamics of the peptide and associated solvent. By comparing computational spectroscopy from MD simulations with multiple force fields and water models, we describe how the dynamics of water hydrogen bond fluctuations and switching processes act as a source of friction that governs the dephasing and vibrational relaxation, and provide a description of coupled water and peptide motions that give rise to spectroscopic exchange processes.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
35
|
Galimberti DR, Milani A, Gaigeot MP, Radice S, Tonelli C, Picozzi R, Castiglioni C. Static vs dynamic DFT prediction of IR spectra of flexible molecules in the condensed phase: The (ClCF 2CF(CF 3)OCF 2CH 3) liquid as a test case. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:195-203. [PMID: 28448957 DOI: 10.1016/j.saa.2017.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
First-principles molecular dynamics (FPMD) simulations in the framework of Density Functional Theory (DFT) are carried out for the prediction of the infrared spectrum of the fluorinated molecule ClCF2CF(CF3)OCF2CH3 in liquid and gas phase. This molecule is characterized by a flexible structure, allowing the co-existence of several stable conformers, that differ by values of the torsional angles. FPMD computed spectra are compared to the experimental ones, and to Boltzmann weighted IR spectra based on gas phase calculations.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Politecnico di Milano - Dip. Chimica, Materiali, Ing. Chimica "G. Natta", Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Alberto Milani
- Politecnico di Milano - Dip. Chimica, Materiali, Ing. Chimica "G. Natta", Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry val d'Essonne, Boulevard F. Mitterrand, Bat Maupertuis, 91025 Evry, France
| | - Stefano Radice
- Solvay Specialty Polymers RD&T Center, Viale Lombardia 20, 20021 Bollate, MI, Italy
| | - Claudio Tonelli
- Solvay Specialty Polymers RD&T Center, Viale Lombardia 20, 20021 Bollate, MI, Italy
| | - Rosaldo Picozzi
- Solvay Specialty Polymers RD&T Center, Viale Lombardia 20, 20021 Bollate, MI, Italy
| | - Chiara Castiglioni
- Politecnico di Milano - Dip. Chimica, Materiali, Ing. Chimica "G. Natta", Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
36
|
Brehm M, Thomas M. Computing Bulk Phase Raman Optical Activity Spectra from ab initio Molecular Dynamics Simulations. J Phys Chem Lett 2017; 8:3409-3414. [PMID: 28685571 DOI: 10.1021/acs.jpclett.7b01616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present our novel methodology for computing Raman optical activity (ROA) spectra of liquid systems from ab initio molecular dynamics (AIMD) simulations. The method is built upon the recent developments to obtain magnetic dipole moments from AIMD and to integrate molecular properties by using radical Voronoi tessellation. These techniques are used to calculate optical activity tensors for large and complex periodic bulk phase systems. Only AIMD simulations are required as input, and no time-consuming perturbation theory is involved. The approach relies only on the total electron density in each time step and can readily be combined with a wide range of electronic structure methods. To the best of our knowledge, these are the first computed ROA spectra for a periodic bulk phase system. As an example, the experimental ROA spectrum of liquid (R)-propylene oxide is reproduced very well.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Thomas
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
37
|
Galimberti DR, Milani A, Tommasini M, Castiglioni C, Gaigeot MP. Combining Static and Dynamical Approaches for Infrared Spectra Calculations of Gas Phase Molecules and Clusters. J Chem Theory Comput 2017; 13:3802-3813. [DOI: 10.1021/acs.jctc.7b00471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Daria R. Galimberti
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
- LAMBE
CNRS UMR8587, Université d’Evry val d’Essonne, 91025 Evry, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alberto Milani
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Matteo Tommasini
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Chiara Castiglioni
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Marie-Pierre Gaigeot
- LAMBE
CNRS UMR8587, Université d’Evry val d’Essonne, 91025 Evry, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| |
Collapse
|
38
|
Schienbein P, Schwaab G, Forbert H, Havenith M, Marx D. Correlations in the Solute-Solvent Dynamics Reach Beyond the First Hydration Shell of Ions. J Phys Chem Lett 2017; 8:2373-2380. [PMID: 28488865 DOI: 10.1021/acs.jpclett.7b00713] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While the real-space structure of solvation shells has been explored for decades, a dynamical perspective that directly relies on changes in the H-bond network became accessible more recently mainly via far-infrared (THz) spectroscopies. A remaining key question is how many hydration shells are affected by ion-induced network perturbations. We disclose that theoretical THz difference spectra of aqueous salt solutions can be deciphered in terms of only a handful of dipolar auto- and cross-correlations, including the second solvation shell. This emphasizes the importance of cross-correlations being often neglected in multicomponent models. Analogously, experimental THz responses of simple ions can be deciphered in a similar way. Dramatic intensity cancellations due to large positive and negative contributions are found to effectively shift intensity maxima. Thus, THz spectroscopy provides an unprecedented view on the details of hydration dynamics, which can be understood by a combination of experiment and theory.
Collapse
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, ‡Lehrstuhl für Physikalische Chemie II, and §Center for Solvation Science ZEMOS, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Theoretische Chemie, ‡Lehrstuhl für Physikalische Chemie II, and §Center for Solvation Science ZEMOS, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Harald Forbert
- Lehrstuhl für Theoretische Chemie, ‡Lehrstuhl für Physikalische Chemie II, and §Center for Solvation Science ZEMOS, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Martina Havenith
- Lehrstuhl für Theoretische Chemie, ‡Lehrstuhl für Physikalische Chemie II, and §Center for Solvation Science ZEMOS, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, ‡Lehrstuhl für Physikalische Chemie II, and §Center for Solvation Science ZEMOS, Ruhr-Universität Bochum , 44780 Bochum, Germany
| |
Collapse
|
39
|
Ab initio molecular dynamics study for C–Br dissociation within BrH2C–C≡C(ads) adsorbed on an Ag(111) surface: a short-time Fourier transform approach. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-016-2441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Gabas F, Conte R, Ceotto M. On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum. J Chem Theory Comput 2017; 13:2378-2388. [PMID: 28489368 PMCID: PMC5472367 DOI: 10.1021/acs.jctc.6b01018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present an on-the-fly ab initio semiclassical study of vibrational
energy levels of glycine, calculated by Fourier transform of the wavepacket
correlation function. It is based on a multiple coherent states approach
integrated with monodromy matrix regularization for chaotic dynamics.
All four lowest-energy glycine conformers are investigated by means
of single-trajectory semiclassical spectra obtained upon classical
evolution of on-the-fly trajectories with harmonic zero-point energy.
For the most stable conformer I, direct dynamics trajectories are
also run for each vibrational mode with energy equal to the first
harmonic excitation. An analysis of trajectories evolved up to 50 000
atomic time units demonstrates that, in this time span, conformers
II and III can be considered as isolated species, while conformers
I and IV show a pretty facile interconversion. Therefore, previous
perturbative studies based on the assumption of isolated conformers
are often reliable but might be not completely appropriate in the
case of conformer IV and conformer I for which interconversion occurs
promptly.
Collapse
Affiliation(s)
- Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
41
|
Massarczyk M, Rudack T, Schlitter J, Kuhne J, Kötting C, Gerwert K. Local Mode Analysis: Decoding IR Spectra by Visualizing Molecular Details. J Phys Chem B 2017; 121:3483-3492. [PMID: 28092441 DOI: 10.1021/acs.jpcb.6b09343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integration of experimental and computational approaches to investigate chemical reactions in proteins has proven to be very successful. Experimentally, time-resolved FTIR difference-spectroscopy monitors chemical reactions at atomic detail. To decode detailed structural information encoded in IR spectra, QM/MM calculations are performed. Here, we present a novel method which we call local mode analysis (LMA) for calculating IR spectra and assigning spectral IR-bands on the basis of movements of nuclei and partial charges from just a single QM/MM trajectory. Through LMA the decoding of IR spectra no longer requires several simulations or optimizations. The novel approach correlates the motions of atoms of a single simulation with the corresponding IR bands and provides direct access to the structural information encoded in IR spectra. Either the contributions of a particular atom or atom group to the complete IR spectrum of the molecule are visualized, or an IR-band is selected to visualize the corresponding structural motions. Thus, LMA decodes the detailed information contained in IR spectra and provides an intuitive approach for structural biologists and biochemists. The unique feature of LMA is the bidirectional analysis connecting structural details to spectral features and vice versa spectral features to molecular motions.
Collapse
Affiliation(s)
- M Massarczyk
- Department of Biophysics, Ruhr-University , 44801 Bochum, Germany
| | - T Rudack
- Department of Biophysics, Ruhr-University , 44801 Bochum, Germany.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States.,Chinese Academy of Sciences-Max-Planck Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences (SIBS) , Shanghai 200031, China
| | - J Schlitter
- Department of Biophysics, Ruhr-University , 44801 Bochum, Germany
| | - J Kuhne
- Department of Biophysics, Ruhr-University , 44801 Bochum, Germany
| | - C Kötting
- Department of Biophysics, Ruhr-University , 44801 Bochum, Germany
| | - K Gerwert
- Department of Biophysics, Ruhr-University , 44801 Bochum, Germany.,Chinese Academy of Sciences-Max-Planck Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences (SIBS) , Shanghai 200031, China
| |
Collapse
|
42
|
Izgorodina EI, Seeger ZL, Scarborough DLA, Tan SYS. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem Rev 2017; 117:6696-6754. [PMID: 28139908 DOI: 10.1021/acs.chemrev.6b00528] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accurate prediction of physicochemical properties of condensed systems is a longstanding goal of theoretical (quantum) chemistry. Ionic liquids comprising entirely of ions provide a unique challenge in this respect due to the diverse chemical nature of available ions and the complex interplay of intermolecular interactions among them, thus resulting in the wide variability of physicochemical properties, such as thermodynamic, transport, and spectroscopic properties. It is well understood that intermolecular forces are directly linked to physicochemical properties of condensed systems, and therefore, an understanding of this relationship would greatly aid in the design and synthesis of functionalized materials with tailored properties for an application at hand. This review aims to give an overview of how electronic structure properties obtained from quantum chemical methods such as interaction/binding energy and its fundamental components, dipole moment, polarizability, and orbital energies, can help shed light on the energetic, physical, and spectroscopic properties of semi-Coulomb systems such as ionic liquids. Particular emphasis is given to the prediction of their thermodynamic, transport, spectroscopic, and solubilizing properties.
Collapse
Affiliation(s)
- Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Zoe L Seeger
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - David L A Scarborough
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Samuel Y S Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
43
|
Forsting T, Gottschalk HC, Hartwig B, Mons M, Suhm MA. Correcting the record: the dimers and trimers of trans-N-methylacetamide. Phys Chem Chem Phys 2017; 19:10727-10737. [DOI: 10.1039/c6cp07989j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman jet spectroscopy reveals three N-methylacetamide molecules organizing into a ring structure, previously overlooked in computations.
Collapse
Affiliation(s)
- Thomas Forsting
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | | | - Beppo Hartwig
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Michel Mons
- LIDYL; CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Martin A. Suhm
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| |
Collapse
|
44
|
Yatsyna V, Bakker DJ, Salén P, Feifel R, Rijs AM, Zhaunerchyk V. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure. PHYSICAL REVIEW LETTERS 2016; 117:118101. [PMID: 27661721 DOI: 10.1103/physrevlett.117.118101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800 cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Daniël J Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Peter Salén
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Vitali Zhaunerchyk
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| |
Collapse
|
45
|
Scherrer A, Vuilleumier R, Sebastiani D. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase. J Chem Phys 2016; 145:084101. [DOI: 10.1063/1.4960653] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Schwörer M, Wichmann C, Tavan P. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water. J Chem Phys 2016; 144:114504. [PMID: 27004884 DOI: 10.1063/1.4943972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.
Collapse
Affiliation(s)
- Magnus Schwörer
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München, Germany
| | - Christoph Wichmann
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München, Germany
| | - Paul Tavan
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München, Germany
| |
Collapse
|
47
|
First-principle investigation of the structure and vibrational spectra of the local structures in LiF–BeF2 Molten Salts. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.10.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Baldauf C, Rossi M. Going clean: structure and dynamics of peptides in the gas phase and paths to solvation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:493002. [PMID: 26598600 DOI: 10.1088/0953-8984/27/49/493002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.
Collapse
Affiliation(s)
- Carsten Baldauf
- Fritz Haber Institute, Faradayweg 4-6, 14195 Berlin, Germany
| | | |
Collapse
|
49
|
Yadav VK, Chandra A. First-Principles Simulation Study of Vibrational Spectral Diffusion and Hydrogen Bond Fluctuations in Aqueous Solution of N-Methylacetamide. J Phys Chem B 2015; 119:9858-67. [DOI: 10.1021/acs.jpcb.5b03836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| |
Collapse
|
50
|
Yamada T, Aida M. Fundamental frequency from classical molecular dynamics. Phys Chem Chem Phys 2015; 17:3227-40. [PMID: 25519091 DOI: 10.1039/c4cp04068f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give a theoretical validation for calculating fundamental frequencies of a molecule from classical molecular dynamics (MD) when its anharmonicity is small enough to be treated by perturbation theory. We specifically give concrete answers to the following questions: (1) What is the appropriate initial condition of classical MD to calculate the fundamental frequency? (2) From that condition, how accurately can we extract fundamental frequencies of a molecule? (3) What is the benefit of using ab initio MD for frequency calculations? Our analytical approaches to those questions are classical and quantum normal form theories. As numerical examples we perform two types of MD to calculate fundamental frequencies of H2O with MP2/aug-cc-pVTZ: one is based on the quartic force field and the other one is direct ab initio MD, where the potential energies and the gradients are calculated on the fly. From those calculations, we show comparisons of the frequencies from MD with the post vibrational self-consistent field calculations, second- and fourth-order perturbation theories, and experiments. We also apply direct ab initio MD to frequency calculations of C-H vibrational modes of tetracene and naphthalene. We conclude that MD can give the same accuracy in fundamental frequency calculation as second-order perturbation theory but the computational cost is lower for large molecules.
Collapse
Affiliation(s)
- Tomonori Yamada
- Center for Quantum Life Sciences and Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | | |
Collapse
|