1
|
Cordova M, Moutzouri P, Nilsson Lill SO, Cousen A, Kearns M, Norberg ST, Svensk Ankarberg A, McCabe J, Pinon AC, Schantz S, Emsley L. Atomic-level structure determination of amorphous molecular solids by NMR. Nat Commun 2023; 14:5138. [PMID: 37612269 PMCID: PMC10447443 DOI: 10.1038/s41467-023-40853-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Structure determination of amorphous materials remains challenging, owing to the disorder inherent to these materials. Nuclear magnetic resonance (NMR) powder crystallography is a powerful method to determine the structure of molecular solids, but disorder leads to a high degree of overlap between measured signals, and prevents the unambiguous identification of a single modeled periodic structure as representative of the whole material. Here, we determine the atomic-level ensemble structure of the amorphous form of the drug AZD4625 by combining solid-state NMR experiments with molecular dynamics (MD) simulations and machine-learned chemical shifts. By considering the combined shifts of all 1H and 13C atomic sites in the molecule, we determine the structure of the amorphous form by identifying an ensemble of local molecular environments that are in agreement with experiment. We then extract and analyze preferred conformations and intermolecular interactions in the amorphous sample in terms of the stabilization of the amorphous form of the drug.
Collapse
Affiliation(s)
- Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sten O Nilsson Lill
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Alexander Cousen
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Martin Kearns
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Stefan T Norberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Anna Svensk Ankarberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - James McCabe
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Arthur C Pinon
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Chandy SK, Raghavachari K. Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2023; 19:544-561. [PMID: 36630261 DOI: 10.1021/acs.jctc.2c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have developed, implemented, and assessed an efficient protocol for the prediction of NMR chemical shifts of large nucleic acids using our molecules-in-molecules (MIM) fragment-based quantum chemical approach. To assess the performance of our approach, MIM-NMR calculations are calibrated on a test set of three nucleic acids, where the structure is derived from solution-phase NMR studies. For DNA systems with multiple conformers, the one-layer MIM method with trimer fragments (MIM1trimer) is benchmarked to get the lowest energy structure, with an average error of only 0.80 kcal/mol with respect to unfragmented full molecule calculations. The MIMI-NMRdimer calibration with respect to unfragmented full molecule calculations shows a mean absolute deviation (MAD) of 0.06 and 0.11 ppm, respectively, for 1H and 13C nuclei, but the performance with respect to experimental NMR chemical shifts is comparable to the more expensive MIM1-NMR and MIM2-NMR methods with trimer subsystems. To compare with the experimental chemical shifts, a standard protocol is derived using DNA systems with Protein Data Bank (PDB) IDs 1SY8, 1K2K, and 1KR8. The effect of structural minimizations is employed using a hybrid mechanics/semiempirical approach and used for computations in solution with implicit and explicit-implicit solvation models in our MIM1-NMRdimer methodology. To demonstrate the applicability of our protocol, we tested it on seven nucleic acids, including structures with nonstandard residues, heteroatom substitutions (F and B atoms), and side chain mutations with a size ranging from ∼300 to 1100 atoms. The major improvement for predicted MIM1-NMRdimer calculations is obtained from structural minimizations and implicit solvation effects. A significant improvement with the explicit-implicit solvation model is observed only for two smaller nucleic acid systems (1KR8 and 7NBK), where the expensive first solvation shell is replaced by the microsolvation model, in which a single water molecule is added for each solvent-exposed amino and imino protons, along with the implicit solvation. Overall, our target accuracy of ∼0.2-0.3 ppm for 1H and ∼2-3 ppm for 13C has been achieved for large nucleic acids. The proposed MIM-NMR approach is accurate and cost-effective (linear scaling with system size), and it can aid in the structural assignments of a wide range of complex biomolecules.
Collapse
Affiliation(s)
- Sruthy K Chandy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Wijesiri K, Gascón JA. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin. J Phys Chem B 2022; 126:5803-5809. [PMID: 35894868 DOI: 10.1021/acs.jpcb.2c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heliorhodopsins (HeR) are a new category of heptahelical transmembrane photoactive proteins with a covalently linked all-trans retinal. The protonated Schiff base (PSB) nitrogen in the retinal is stabilized by a negatively charged counterion. It is well-known that stronger or weaker electrostatic interactions with the counterion cause a significant spectral blue- or red-shift, respectively, in both microbial and animal rhodopsins. In HeR, however, while Glu107 acts as the counterion, mutations of this residue are not directly correlated with a spectral shift. A molecular dynamics analysis revealed that a water cluster pocket produces a microsolvation effect on the Schiff base, compensating to various extents the replacement of the native counterion. Using a combination of molecular dynamics and quantum mechanical/molecular mechanics (QM/MM), we study this microsolvation effect on the electronic absorption of the retinylidene Schiff base chromophore of HeR.
Collapse
Affiliation(s)
- Kithmini Wijesiri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Klein A, Rovó P, Sakhrani VV, Wang Y, Holmes JB, Liu V, Skowronek P, Kukuk L, Vasa SK, Güntert P, Mueller LJ, Linser R. Atomic-resolution chemical characterization of (2x)72-kDa tryptophan synthase via four- and five-dimensional 1H-detected solid-state NMR. Proc Natl Acad Sci U S A 2022; 119:e2114690119. [PMID: 35058365 PMCID: PMC8795498 DOI: 10.1073/pnas.2114690119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the β-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the β-subunit from solution.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Petra Rovó
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Varun V Sakhrani
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Patricia Skowronek
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Laura Kukuk
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rasmus Linser
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany;
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Holmes JB, Liu V, Caulkins BG, Hilario E, Ghosh RK, Drago VN, Young RP, Romero JA, Gill AD, Bogie PM, Paulino J, Wang X, Riviere G, Bosken YK, Struppe J, Hassan A, Guidoulianov J, Perrone B, Mentink-Vigier F, Chang CEA, Long JR, Hooley RJ, Mueser TC, Dunn MF, Mueller LJ. Imaging active site chemistry and protonation states: NMR crystallography of the tryptophan synthase α-aminoacrylate intermediate. Proc Natl Acad Sci U S A 2022; 119:e2109235119. [PMID: 34996869 PMCID: PMC8764694 DOI: 10.1073/pnas.2109235119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate β-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue βLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cβ and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.
Collapse
Affiliation(s)
- Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Bethany G Caulkins
- Department of Chemistry, University of California, Riverside, CA 92521
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rittik K Ghosh
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Victoria N Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Robert P Young
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jennifer A Romero
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Adam D Gill
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Paul M Bogie
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joana Paulino
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
| | - Gwladys Riviere
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Yuliana K Bosken
- Department of Biochemistry, University of California, Riverside, CA 92521
| | | | - Alia Hassan
- Bruker Switzerland AG 8117 Fällanden, Switzerland
| | | | | | | | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610
| | - Richard J Hooley
- Department of Chemistry, University of California, Riverside, CA 92521
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Timothy C Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606
| | - Michael F Dunn
- Department of Biochemistry, University of California, Riverside, CA 92521;
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521;
| |
Collapse
|
7
|
Burger S, Lipparini F, Gauss J, Stopkowicz S. NMR chemical shift computations at second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals and Cholesky-decomposed two-electron integrals. J Chem Phys 2021; 155:074105. [PMID: 34418917 DOI: 10.1063/5.0059633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report on a formulation and implementation of a scheme to compute nuclear magnetic resonance (NMR) shieldings at second-order Møller-Plesset (MP2) perturbation theory using gauge-including atomic orbitals (GIAOs) to ensure gauge-origin independence and Cholesky decomposition (CD) to handle unperturbed and perturbed two-electron integrals. We investigate the accuracy of the CD for the derivatives of the two-electron integrals with respect to an external magnetic field and for the computed NMR shieldings, before we illustrate the applicability of our CD-based GIAO-MP2 scheme in calculations involving up to about 100 atoms and more than 1000 basis functions.
Collapse
Affiliation(s)
- Sophia Burger
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
8
|
Chandy SK, Thapa B, Raghavachari K. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method. Phys Chem Chem Phys 2020; 22:27781-27799. [PMID: 33244526 DOI: 10.1039/d0cp05064d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an efficient protocol using our two-layer Molecules-in-Molecules (MIM2) fragmentation-based quantum chemical method for the prediction of NMR chemical shifts of large biomolecules. To investigate the performance of our fragmentation approach and demonstrate its applicability, MIM-NMR calculations are first calibrated on a test set of six proteins. The MIM2-NMR method yields a mean absolute deviation (MAD) from unfragmented full molecule calculations of 0.01 ppm for 1H and 0.06 ppm for 13C chemical shifts. Thus, the errors from fragmentation are only about 3% of our target accuracy of ∼0.3 ppm for 1H and 2-3 ppm for 13C chemical shifts. To compare with experimental chemical shifts, a standard protocol is first derived using two smaller proteins 2LHY (176 atoms) and 2LI1 (146 atoms) for obtaining an appropriate protein structure for NMR chemical shift calculations. The effect of the solvent environment on the calculated NMR chemical shifts is incorporated through implicit, explicit, or explicit-implicit solvation models. The expensive first solvation shell calculations are replaced by a micro-solvation model in which only the immediate interaction between the protein and the explicit solvation environment is considered. A single explicit water molecule for each amine and amide proton is found to be sufficient to yield accurate results for 1H chemical shifts. The 1H and 13C NMR chemical shifts calculated using our protocol give excellent agreement with experiments for two larger proteins, 2MC5 (the helical part with 265 atoms) and 3UMK (33 residue slice with 547 atoms). Overall, our target accuracy of ∼0.3 ppm for 1H and ∼2-3 ppm for 13C has been achieved for the larger proteins. The proposed MIM-NMR method is accurate and computationally cost-effective and should be applicable to study a wide range of large proteins.
Collapse
Affiliation(s)
- Sruthy K Chandy
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| | | | | |
Collapse
|
9
|
Brinkmann A, Sternberg U, Bovee-Geurts PHM, Fernández Fernández I, Lugtenburg J, Kentgens APM, DeGrip WJ. Insight into the chromophore of rhodopsin and its Meta-II photointermediate by 19F solid-state NMR and chemical shift tensor calculations. Phys Chem Chem Phys 2018; 20:30174-30188. [PMID: 30484791 DOI: 10.1039/c8cp05886e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
19F nuclei are useful labels in solid-state NMR studies, since their chemical shift and tensor elements are very sensitive to the electrostatic and space-filling properties of their local environment. In this study we have exploited a fluorine substituent, strategically placed at the C-12-position of 11-cis retinal, the chromophore of visual rhodopsins. This label was used to explore the local environment of the chromophore in the ground state of bovine rhodopsin and its active photo-intermediate Meta II. In addition, the chemical shift and tensor elements of the chromophore in the free state in a membrane environment and the bound state in the protein were determined. Upon binding of the chromophore into rhodopsin and Meta II, the isotropic chemical shift changes in the opposite direction by +9.7 and -8.4 ppm, respectively. An unusually large isotropic shift difference of 35.9 ppm was observed between rhodopsin and Meta II. This partly originates in the light-triggered 11-cis to all-trans isomerization of the chromophore. The other part reflects the local conformational rearrangements in the chromophore and the binding pocket. These NMR data were correlated with the available X-ray structures of rhodopsin and Meta II using bond polarization theory. For this purpose hydrogen atoms have to be inserted and hereto a family of structures were derived that best correlated with the well-established 13C chemical shifts. Based upon these structures, a 12-F derivative was obtained that best corresponded with the experimentally determined 19F chemical shifts and tensor elements. The combined data indicate strong changes in the local environment of the C-12 position and a substantially different interaction pattern with the protein in Meta II as compared to rhodopsin.
Collapse
Affiliation(s)
- Andreas Brinkmann
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | |
Collapse
|
10
|
Berraud-Pache R, Garcia-Iriepa C, Navizet I. Modeling Chemical Reactions by QM/MM Calculations: The Case of the Tautomerization in Fireflies Bioluminescent Systems. Front Chem 2018; 6:116. [PMID: 29719820 PMCID: PMC5913368 DOI: 10.3389/fchem.2018.00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022] Open
Abstract
In less than half a century, the hybrid QM/MM method has become one of the most used technique to model molecules embedded in a complex environment. A well-known application of the QM/MM method is for biological systems. Nowadays, one can understand how enzymatic reactions work or compute spectroscopic properties, like the wavelength of emission. Here, we have tackled the issue of modeling chemical reactions inside proteins. We have studied a bioluminescent system, fireflies, and deciphered if a keto-enol tautomerization is possible inside the protein. The two tautomers are candidates to be the emissive molecule of the bioluminescence but no outcome has been reached. One hypothesis is to consider a possible keto-enol tautomerization to treat this issue, as it has been already observed in water. A joint approach combining extensive MD simulations as well as computation of key intermediates like TS using QM/MM calculations is presented in this publication. We also emphasize the procedure and difficulties met during this approach in order to give a guide for this kind of chemical reactions using QM/MM methods.
Collapse
Affiliation(s)
- Romain Berraud-Pache
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR 8208 CNRS, UPEM, Marne-la-Vallée, France
| | - Cristina Garcia-Iriepa
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR 8208 CNRS, UPEM, Marne-la-Vallée, France
| | - Isabelle Navizet
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR 8208 CNRS, UPEM, Marne-la-Vallée, France
| |
Collapse
|
11
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
12
|
Videla PE, Markmann A, Batista VS. Floquet Study of Quantum Control of the Cis-Trans Photoisomerization of Rhodopsin. J Chem Theory Comput 2018; 14:1198-1205. [PMID: 29425032 DOI: 10.1021/acs.jctc.7b01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how to control reaction dynamics of polyatomic systems by using ultrafast laser technology is a fundamental challenge of great technological interest. Here, we report a Floquet theoretical study of the effect of light-induced potentials on the ultrafast cis-trans photoisomerization dynamics of rhodopsin. The Floquet Hamiltonian involves an empirical 3-state 25-mode model with frequencies and excited-state gradients parametrized to reproduce the rhodopsin electronic vertical excitation energy, the resonance Raman spectrum, and the photoisomerization time and efficiency as probed by ultrafast spectroscopy. We simulate the excited state relaxation dynamics using the time-dependent self-consistent field method, as described by a 3-state 2-mode nuclear wavepacket coupled to a Gaussian ansatz of 23 vibronic modes. We analyze the reaction time and product yield obtained with pulses of various widths and intensity profiles, defining 'dressed states' where the perturbational effect of the pulses is naturally decoupled along the different reaction channels. We find pulses that delay the excited-state photoisomerization for hundreds of femtoseconds, and we gain insights on the underlying control mechanisms. The reported findings provide understanding of quantum control, particularly valuable for the development of ultrafast optical switches based on visual pigments.
Collapse
Affiliation(s)
- Pablo E Videla
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| | - Andreas Markmann
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| | - Victor S Batista
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| |
Collapse
|
13
|
Jose KVJ, Raghavachari K. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. J Chem Theory Comput 2017; 13:1147-1158. [DOI: 10.1021/acs.jctc.6b00922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K. V. Jovan Jose
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. QM/MM Models of the O2-Evolving Complex of Photosystem II. J Chem Theory Comput 2015; 2:1119-34. [PMID: 26633071 DOI: 10.1021/ct060018l] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper introduces structural models of the oxygen-evolving complex of photosystem II (PSII) in the dark-stable S1 state, as well as in the reduced S0 and oxidized S2 states, with complete ligation of the metal-oxo cluster by amino acid residues, water, hydroxide, and chloride. The models are developed according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, applied in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus, recently reported at 3.5 Å resolution. Manganese and calcium ions are ligated consistently with standard coordination chemistry assumptions, supported by biochemical and spectroscopic data. Furthermore, the calcium-bound chloride ligand is found to be bound in a position consistent with pulsed electron paramagnetic resonance data obtained from acetate-substituted PSII. The ligation of protein ligands includes monodentate coordination of D1-D342, CP43-E354, and D1-D170 to Mn(1), Mn(3), and Mn(4), respectively; η(2) coordination of D1-E333 to both Mn(3) and Mn(2); and ligation of D1-E189 and D1-H332 to Mn(2). The resulting QM/MM structural models are consistent with available mechanistic data and also are compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements of PSII. It is, therefore, conjectured that the proposed QM/MM models are particularly relevant to the development and validation of catalytic water-oxidation intermediates.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - José A Gascón
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Gary W Brudvig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| |
Collapse
|
15
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 788] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
16
|
Sproviero EM. Opsin Effect on the Electronic Structure of the Retinylidene Chromophore in Rhodopsin. J Chem Theory Comput 2015; 11:1206-19. [PMID: 26579769 DOI: 10.1021/ct500612n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Direct examination of experimental NMR parameters combined with electronic structure analysis was used to provide a first-principle interpretation of NMR experiments and give a precise evaluation of how the electronic perturbation of the protein environment affects the electronic properties of the retinylidene chromophere in rhodopsin. To this end, we pursued a theoretical analysis using a combination of tools including quantum mechanics/molecular mechanics (QM/MM) at the Density Functional Theory (DFT) level, in conjunction with gauge independent atomic orbital (GIAO) calculations of (13)C NMR chemical shieldings and (1)J(CC) spin-spin coupling constants obtained with the Coupled Perturbed DFT (CPDFT) method. The opsin effect on the retinylidene chromophere is interpreted as an inductive effect of Glu-113 which readjusts the weighting factors of resonance substructures of the conjugated chain of the chromophere. These changes give a rationalization to the alternating effect of the (13)C chemical shifts magnitudes when comparing the retinylidene chromophere in the presence and absence of the protein environment. Conversely, perturbation of π orbitals has little to no effect over (1)J (13)C-(13)C spin-spin coupling constants, as they are mainly dominated by the Fermi contact term, and hence the counteraion effect is restricted to the vicinity of the perturbation. Thus, the apparent contradiction between experimental findings based on chemical shifts (deep penetration) and one-bond J-couplings (localized effects of the protonated Schiff base at the chain terminus) is in fact a consequence of different properties responding differently to the same external perturbation.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia , 600 South 43rd Street, Philadelphia, Pennsylvania 19104-4495, United States
| |
Collapse
|
17
|
Sekharan S, Mooney VL, Rivalta I, Kazmi MA, Neitz M, Neitz J, Sakmar TP, Yan ECY, Batista VS. Spectral tuning of ultraviolet cone pigments: an interhelical lock mechanism. J Am Chem Soc 2013; 135:19064-7. [PMID: 24295328 DOI: 10.1021/ja409896y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet (UV) cone pigments can provide insights into the molecular evolution of vertebrate vision since they are nearer to ancestral pigments than the dim-light rod photoreceptor rhodopsin. While visible-absorbing pigments contain an 11-cis retinyl chromophore with a protonated Schiff-base (PSB11), UV pigments uniquely contain an unprotonated Schiff-base (USB11). Upon F86Y mutation in model UV pigments, both the USB11 and PSB11 forms of the chromophore are found to coexist at physiological pH. The origin of this intriguing equilibrium remains to be understood at the molecular level. Here, we address this phenomenon and the role of the USB11 environment in spectral tuning by combining mutagenesis studies with spectroscopic (UV-vis) and theoretical [DFT-QM/MM (SORCI+Q//B3LYP/6-31G(d): Amber96)] analysis. We compare structural models of the wild-type (WT), F86Y, S90A and S90C mutants of Siberian hamster ultraviolet (SHUV) cone pigment to explore structural rearrangements that stabilize USB11 over PSB11. We find that the PSB11 forms upon F86Y mutation and is stabilized by an "inter-helical lock" (IHL) established by hydrogen-bonding networks between transmembrane (TM) helices TM6, TM2, and TM3 (including water w2c and amino acid residues Y265, F86Y, G117, S118, A114, and E113). The findings implicate the involvement of the IHL in constraining the displacement of TM6, an essential component of the activation of rhodopsin, in the spectral tuning of UV pigments.
Collapse
Affiliation(s)
- Sivakumar Sekharan
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107 United States
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Colherinhas G, Fonseca TL, Castro MA, Coutinho K, Canuto S. Isotropic magnetic shielding constants of retinal derivatives in aprotic and protic solvents. J Chem Phys 2013; 139:094502. [PMID: 24028122 DOI: 10.1063/1.4819694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the nuclear isotropic shielding constants σ((13)C) and σ((17)O) of isomers of retinoic acid and retinal in gas-phase and in chloroform, acetonitrile, methanol, and water solutions via Monte Carlo simulation and quantum mechanics calculations using the GIAO-B3LYP∕6-311++G(2d,2p) approach. Electronic solute polarization effects due to protic and aprotic solvents are included iteratively and play an important role in the quantitative determination of oxygen shielding constants. Our MP2∕6-31G+(d) results show substantial increases of the dipole moment of both retinal derivatives in solution as compared with the gas-phase results (between 22% and 26% in chloroform and between 55% and 99% in water). For the oxygen atoms the influence of the solute polarization is mild for σ((17)O) of hydroxyl group, even in protic solvents, but it is particularly important for σ((17)O) of carbonyl group. For the latter, there is a sizable increase in the magnitude with increasing solvent polarity. For the carbon atoms, the solvent effects on the σ((13)C) values are in general small, being more appreciable in carbon atoms of the polyene chain than in the carbon atoms of the β-ionone ring and methyl groups. The results also show that isomeric changes on the backbones of the polyene chains have marked influence on the (13)C chemical shifts of carbon atoms near to the structural distortions, in good agreement with the experimental results measured in solution.
Collapse
Affiliation(s)
- G Colherinhas
- Instituto de Física, Universidade Federal de Goiás, CP 131, 74001-970 Goia^nia, GO, Brazil
| | | | | | | | | |
Collapse
|
19
|
Hernández-Rodríguez EW, Montero-Alejo AL, López R, Sánchez-García E, Montero-Cabrera LA, García de la Vega JM. Electron density deformations provide new insights into the spectral shift of rhodopsins. J Comput Chem 2013; 34:2460-71. [DOI: 10.1002/jcc.23414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ana Lilian Montero-Alejo
- Laboratorio de Química Computacional y Teórica; Departamento de Química Física; Universidad de La Habana; Havana; 10400; Cuba
| | - Rafael López
- Departamento de Química Física Aplicada; Facultad de Ciencias, Universidad Autónoma de Madrid; Madrid; 28049; Spain
| | - Elsa Sánchez-García
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1; Mülheim an der Ruhr; 45470; Germany
| | - Luis Alberto Montero-Cabrera
- Laboratorio de Química Computacional y Teórica; Departamento de Química Física; Universidad de La Habana; Havana; 10400; Cuba
| | | |
Collapse
|
20
|
Pal R, Sekharan S, Batista VS. Spectral Tuning in Halorhodopsin: The Chloride Pump Photoreceptor. J Am Chem Soc 2013; 135:9624-7. [DOI: 10.1021/ja404600z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rhitankar Pal
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| | - Sivakumar Sekharan
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| |
Collapse
|
21
|
Comparative study of spectroscopic properties of the low-lying electronic states of 2,4-pentadien-1-iminium cation and its N-substituted analogues. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0311-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Schiffmann C, Sebastiani D. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations. J Chem Theory Comput 2011; 7:1307-15. [DOI: 10.1021/ct1007108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christoph Schiffmann
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Daniel Sebastiani
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
23
|
Akinaga Y, Jung J, Ten-no S. QM/MM calculation of protein magnetic shielding tensors with generalized hybrid-orbital method: A GIAO approach. Phys Chem Chem Phys 2011; 13:14490-9. [DOI: 10.1039/c1cp21001g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Frähmcke JS, Wanko M, Phatak P, Mroginski MA, Elstner M. The protonation state of Glu181 in rhodopsin revisited: interpretation of experimental data on the basis of QM/MM calculations. J Phys Chem B 2010; 114:11338-52. [PMID: 20698519 DOI: 10.1021/jp104537w] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structure and spectroscopy of rhodopsin have been intensely studied in the past decade both experimentally and theoretically; however, important issues still remain unresolved. Of central interest is the protonation state of Glu181, where controversial and contradictory experimental evidence has appeared. While FTIR measurements indicate this residue to be unprotonated, preresonance Raman and UV-vis spectra have been interpreted in favor of a protonated Glu181. Previous computational approaches were not able to resolve this issue, providing contradicting data as well. Here, we perform hybrid QM/MM calculations using DFT methods for the electronic ground state, MRCI methods for the electronically excited states, and a polarization model for the MM part in order to investigate this issue systematically. We constructed various active-site models for protonated as well as unprotonated Glu181, which were evaluated by computing NMR, IR, Raman, and UV-vis spectroscopic data. The resulting differences in the UV-vis and Raman spectra between protonated and unprotonated models are very subtle, which has two major consequences. First, the common interpretation of prior Raman and UV-vis experiments in favor of a neutral Glu181 appears questionable, as it is based on the assumption that a charge at the Glu181 location would have a sizable impact. Second, also theoretical results should be interpreted with care. Spectroscopic differences between the structural models must be related to modeling uncertainties and intrinsic methodological errors. Despite a detailed comparison of various rhodopsins and mutants and consistently favorite results with charged Glu181 models, we find merely weak evidence from UV-vis and Raman calculations. On the contrary, difference FTIR and NMR chemical shift measurements on Rh mutants are indicative of the protonation state of Glu181. Supported by our results, they provide strong and independent evidence for a charged Glu181.
Collapse
Affiliation(s)
- Jan S Frähmcke
- Institute for Physical and Theoretical Chemistry, TU Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
25
|
Kurland MD, Newcomer MB, Peterlin Z, Ryan K, Firestein S, Batista VS. Discrimination of saturated aldehydes by the rat I7 olfactory receptor. Biochemistry 2010; 49:6302-4. [PMID: 20608641 DOI: 10.1021/bi100976w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discrimination of n-alkyl-saturated aldehydes during the early stage of odorant recognition by the rat I7 olfactory receptor (OR-I7) is investigated. The concentrations of odorants necessary for 50% activation (or inhibition) of the OR-I7 are measured by calcium imaging recordings of dissociated rat olfactory sensory neurons, expressing the recombinant OR-I7 from an adenoviral vector. These are correlated with the corresponding binding free energies computed for a homology structural model of the OR-I7 built from the crystal structure of bovine visual rhodopsin at 2.2 A resolution.
Collapse
Affiliation(s)
- Michael D Kurland
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
26
|
Truflandier LA, Boucher F, Payen C, Hajjar R, Millot Y, Bonhomme C, Steunou N. DFT-NMR Investigation and 51V 3QMAS Experiments for Probing Surface OH Ligands and the Hydrogen-Bond Network in a Polyoxovanadate Cluster: The Case of Cs4[H2V10O28]·4H2O. J Am Chem Soc 2010; 132:4653-68. [DOI: 10.1021/ja908973y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel A. Truflandier
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Florent Boucher
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Christophe Payen
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Redouane Hajjar
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Yannick Millot
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Christian Bonhomme
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Nathalie Steunou
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44340 Nantes Cedex 3, France, Laboratoire des Systèmes Interfaciaux à l’Echelle Nanométrique (SIEN), UMR CNRS 7142, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, UPMC Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
27
|
Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S. Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems. J Chem Theory Comput 2010. [DOI: 10.1021/ct100006n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Gao
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Satoshi Yokojima
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Dmitri G. Fedorov
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Kazuo Kitaura
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Minoru Sakurai
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Shinichiro Nakamura
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| |
Collapse
|
28
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
29
|
Gansmüller A, Concistrè M, McLean N, Johannessen OG, Marín-Montesinos I, Bovee-Geurts PHM, Verdegem P, Lugtenburg J, Brown RCD, Degrip WJ, Levitt MH. Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1350-7. [PMID: 19265671 DOI: 10.1016/j.bbamem.2009.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Photoisomerization of the membrane-bound light receptor protein rhodopsin leads to an energy-rich photostate called bathorhodopsin, which may be trapped at temperatures of 120 K or lower. We recently studied bathorhodopsin by low-temperature solid-state NMR, using in situ illumination of the sample in a purpose-built NMR probe. In this way we acquired (13)C chemical shifts along the retinylidene chain of the chromophore. Here we compare these results with the chemical shifts of the dark state chromophore in rhodopsin, as well as with the chemical shifts of retinylidene model compounds in solution. An earlier solid-state NMR study of bathorhodopsin found only small changes in the (13)C chemical shifts upon isomerization, suggesting only minor perturbations of the electronic structure in the isomerized retinylidene chain. This is at variance with our recent measurements which show much larger perturbations of the (13)C chemical shifts. Here we present a tentative interpretation of our NMR results involving an increased charge delocalization inside the polyene chain of the bathorhodopsin chromophore. Our results suggest that the bathochromic shift of bathorhodopsin is due to modified electrostatic interactions between the chromophore and the binding pocket, whereas both electrostatic interactions and torsional strain are involved in the energy storage mechanism of bathorhodopsin.
Collapse
Affiliation(s)
- Axel Gansmüller
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnson ER, DiLabio GA. Convergence of calculated nuclear magnetic resonance chemical shifts in a protein with respect to quantum mechanical model size. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
|
32
|
Three-Layer ONIOM Studies of the Dark State of Rhodopsin: The Protonation State of Glu181. J Mol Biol 2008; 383:106-21. [DOI: 10.1016/j.jmb.2008.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/29/2008] [Accepted: 08/01/2008] [Indexed: 11/18/2022]
|
33
|
Suresh CH, Vargheese AM, Vijayalakshmi KP, Mohan N, Koga N. Role of structural water molecule in HIV protease-inhibitor complexes: A QM/MM study. J Comput Chem 2008; 29:1840-9. [DOI: 10.1002/jcc.20961] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II. J Am Chem Soc 2008; 130:3428-42. [DOI: 10.1021/ja076130q] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo M. Sproviero
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - José A. Gascón
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - James P. McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| |
Collapse
|
35
|
Röhrig UF, Sebastiani D. NMR Chemical Shifts of the Rhodopsin Chromophore in the Dark State and in Bathorhodopsin: A Hybrid QM/MM Molecular Dynamics Study. J Phys Chem B 2008; 112:1267-74. [DOI: 10.1021/jp075662q] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ute F. Röhrig
- Ludwig Institute for Cancer Research and Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building CH-1015 Lausanne, Switzerland, and Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Sebastiani
- Ludwig Institute for Cancer Research and Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building CH-1015 Lausanne, Switzerland, and Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
36
|
Chen X, Batista VS. The MP/SOFT methodology for simulations of quantum dynamics: Model study of the photoisomerization of the retinyl chromophore in visual rhodopsin. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2007.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Pérez M, Peakman TM, Alex A, Higginson PD, Mitchell JC, Snowden MJ, Morao I. Accuracy vs Time Dilemma on the Prediction of NMR Chemical Shifts: A Case Study (Chloropyrimidines). J Org Chem 2006; 71:3103-10. [PMID: 16599606 DOI: 10.1021/jo0600149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nuclear magnetic shieldings of two chloropyrimidine species have been predicted and analyzed by means of ab initio and DFT methods. The results have been compared with the experimental values and with those from other database-related approaches. These dataset-based techniques are found to be particularly valuable because of the accurate and instantaneous prediction of the 13C chemical shifts. On the other hand, only a few quantum chemistry based approaches were showed to be the most precise to predict 1H chemical shifts and to elucidate unequivocally the 1H NMR spectra of the regioisomeric mixture under study. Special emphasis was put on incorporating the solvent effect, implicitly, or explicitly. The influence of the level of theory and basis set in the predicted values has also been discussed.
Collapse
Affiliation(s)
- Manuel Pérez
- Pfizer Ltd., Global Research and Development, Sandwich Laboratories, Sandwich, Kent, CT13 9NJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Gascón JA, Sproviero EM, Batista VS. Computational studies of the primary phototransduction event in visual rhodopsin. Acc Chem Res 2006; 39:184-93. [PMID: 16548507 DOI: 10.1021/ar050027t] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Account addresses recent advances in the elucidation of the detailed molecular rearrangements due to the primary photochemical event in rhodopsin, a prototypical G-protein-coupled receptor (GPCR) responsible for the signal transmission cascade in the vertebrate vision process. The reviewed studies provide fundamental insight on long-standing problems regarding the assembly and function of the individual residues and bound water molecules that form the rhodopsin active site, a center that catalyzes the 11-cis/all-trans isomerization of the retinyl chromophore in the primary step of the phototransduction mechanism. Emphasis is placed on the authors' recent computational studies, based on state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, addressing the structural refinement of the retinyl chromophore binding site in high-resolution X-ray structures of bovine visual rhodopsin, the energy storage mechanism, and the molecular origin of spectroscopic changes due to the primary photochemical event.
Collapse
Affiliation(s)
- José A Gascón
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|