1
|
Veiko VP, Antipov AN, Mordkovich NN, Okorokova NA, Safonova TN, Polyakov KM. The Thermostability of Nucleoside Phosphorylases from Prokaryotes. I. The Role of the Primary Structure of the N-terminal fragment of the Protein in the Thermostability of Uridine Phosphorylases. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractMutant uridine phosphorylase genes from Shewanella oneidensis MR-1 (S. oneidensis) were constructed by site-directed mutagenesis and strains-producers of the corresponding recombinant (F5I and F5G) proteins were obtained on the basis of Escherichia coli cells. The mutant proteins were purified and their physicochemical and enzymatic properties were studied. It was shown that the N-terminal fragment of uridine phosphorylase plays an important role in the thermal stabilization of the enzyme as a whole. The role of the aminoacid (a.a.) residue phenylalanine (F5) in the formation of thermotolerance of uridine phosphorylases from gamma-proteobacteria was revealed.
Collapse
|
2
|
Baul U, Bley M, Dzubiella J. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules 2020; 21:3523-3538. [DOI: 10.1021/acs.biomac.0c00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Michael Bley
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS@FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
3
|
Ma Y, Ma K, Wang H, Geng X, Gao J, Zhu Z, Wang Y. QSPR modeling of azeotropic temperatures and compositions for binary azeotropes containing lower alcohols using a genetic function approximation. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Lake PT, McCullagh M. Implicit Solvation Using the Superposition Approximation (IS-SPA): An Implicit Treatment of the Nonpolar Component to Solvation for Simulating Molecular Aggregation. J Chem Theory Comput 2017; 13:5911-5924. [PMID: 29120632 DOI: 10.1021/acs.jctc.7b00698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonpolar solute-solvent interactions are the driving force for aggregation in important chemical and biological phenomena including protein folding, peptide self-assembly, and oil-water emulsion formation. Currently, the most accurate and computationally efficient description of these processes requires an explicit treatment of all solvent and solute atoms. Previous computationally feasible implicit solvent models, such as solute surface area approaches, are unsuccessful at capturing aggregation features including both structural and energetic trends while more theoretically rigorous approaches, such as Reference Interaction Site Model (RISM), are accurate but extremely computationally demanding. Our approach, denoted Implicit Solvation using the Superposition Approximation (IS-SPA), builds on previous theory utilizing the Kirkwood superposition approximation to approximate the mean force of the solvent from solute parameters. We introduce and verify a parabolic first solvation shell truncation of atomic solvation, fitting water distributions around a molecule, and a Monte Carlo integration of the mean solvent force. These extensions allow this method to be implemented as an efficient nonpolar implicit solvent model for molecular simulation. The approximations in IS-SPA are first explored and justified for the homodimerization of an array of different sized Lennard-Jones spheres. The accuracy and transferability of the approach are demonstrated by its ability to capture the position and relative energies of the desolvation barrier and free energy minimum of alkane homodimers. The model is then shown to reproduce the phase separation and solubility of cyclohexane and water. These promising results, coupled with 2 orders of magnitude speed-up for dilute systems as compared to explicit solvent simulations, demonstrate that IS-SPA is an appealing approach to boost the time- and length-scale of molecular aggregation simulations.
Collapse
Affiliation(s)
- Peter T Lake
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Martin McCullagh
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Grishin DV, Pokrovskaya MV, Podobed OV, Gladilina JA, Pokrovsky VS, Aleksandrova SS, Sokolov NN. [Prediction of protein thermostability from their primary structure: the current state and development factors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:124-131. [PMID: 28414283 DOI: 10.18097/pbmc20176302124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The construction of proteins and peptides with desired properties, including resistance to high temperatures, as well as optimization of their amino acid composition, is an important and complex task, which attracts much attention in various branches of the basic sciences, and also in biomedicine and biotechnology. This raises the question: what method is more relevant for the at the pilot stage of research in order to estimate the influence of the planned amino acid substitutions on the thermostability of the resultant protein construct? In this brief review we have classified existing basic practical and theoretical approaches used in studies and predicting the thermal stability of native and recombinant polypeptides. Particular attention has been paid to the predictive potential of statistical methods for studying the thermodynamic parameters of the primary protein structure and prospects of their use.
Collapse
Affiliation(s)
- D V Grishin
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - O V Podobed
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Andrews CT, Campbell BA, Elcock AH. Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1794-1811. [PMID: 28288277 DOI: 10.1021/acs.jctc.6b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Collapse
Affiliation(s)
- Casey T Andrews
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Brady A Campbell
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
BIKKINA SWETHA, BHATI AGASTYAP, PADHI SILADITYA, PRIYAKUMAR UDEVA. Temperature Dependence of the Stability of Ion Pair Interactions, and its Implications on the Thermostability of Proteins from Thermophiles. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1231-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Ou SC, Cui D, Wezowicz M, Taufer M, Patel S. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations. J Comput Chem 2015; 36:1196-212. [PMID: 25868455 PMCID: PMC4445429 DOI: 10.1002/jcc.23906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 11/06/2022]
Abstract
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Di Cui
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Matthew Wezowicz
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Michela Taufer
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
9
|
Ashbaugh HS, Weiss K, Williams SM, Meng B, Surampudi LN. Temperature and Pressure Dependence of Methane Correlations and Osmotic Second Virial Coefficients in Water. J Phys Chem B 2015; 119:6280-94. [DOI: 10.1021/acs.jpcb.5b02056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henry S. Ashbaugh
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Katie Weiss
- Alfred University, Alfred, New York 14802, United States
| | - Steven M. Williams
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bin Meng
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Lalitanand N. Surampudi
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
10
|
Haxton TK, Mannige RV, Zuckermann RN, Whitelam S. Modeling Sequence-Specific Polymers Using Anisotropic Coarse-Grained Sites Allows Quantitative Comparison with Experiment. J Chem Theory Comput 2014; 11:303-15. [DOI: 10.1021/ct5010559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Thomas K. Haxton
- Molecular
Foundry, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Ranjan V. Mannige
- Molecular
Foundry, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- Molecular
Foundry, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Stephen Whitelam
- Molecular
Foundry, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Ou SC, Patel S. Electrostatic contribution from solvent in modulating single-walled carbon nanotube association. J Chem Phys 2014; 141:114906. [PMID: 25240371 PMCID: PMC4187323 DOI: 10.1063/1.4892566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/28/2014] [Indexed: 11/14/2022] Open
Abstract
We perform all-atom molecular dynamics simulations to compute the potential of mean force (PMF) between two (10,10) single-walled carbon nanotubes solvated in pure nonpolarizable SPC/E and polarizable TIP4P-FQ water, at various temperatures. In general, the reversible work required to bring two nanotubes from a dissociated state (free energy reference) to contact state (free energy minimum) is more favorable and less temperature-dependent in TIP4P-FQ than in SPC/E water models. In contrast, molecular properties and behavior of water such as the spatially-resolved water number density (intertube, intratube, or outer regions), for TIP4P-FQ are more sensitive to temperature than SPC/E. Decomposition of the solvent-induced PMF into different spatial regions suggests that TIP4P-FQ has stronger temperature dependence; the opposing destabilizing/stabilizing contributions from intertube water and more distal water balance each other and suppress the temperature dependence of total association free energy. Further investigation of hydrogen bonding network in intertube water reveals that TIP4P-FQ retains fewer hydrogen bonds than SPC/E, which correlates with the lower water number density in this region. This reduction of hydrogen bonds affects the intertube water dipoles. As the intertube volume decreases, TIP4P-FQ dipole moment approaches the gas phase value; the distribution of dipole magnitude also becomes narrower due to less average polarization/perturbation from other water molecules. Our results imply that the reduction of water under confinement may seem trivial, but underlying effects to structure and free energetics are non-negligible.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
12
|
Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface. Proc Natl Acad Sci U S A 2014; 111:8729-34. [PMID: 24889634 DOI: 10.1073/pnas.1403294111] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.
Collapse
|
13
|
Debiec KT, Gronenborn AM, Chong LT. Evaluating the strength of salt bridges: a comparison of current biomolecular force fields. J Phys Chem B 2014; 118:6561-9. [PMID: 24702709 PMCID: PMC4064690 DOI: 10.1021/jp500958r] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Recent advances in computer hardware
and software have made rigorous
evaluation of current biomolecular force fields using microsecond-scale
simulations possible. Force fields differ in their treatment of electrostatic
interactions, including the formation of salt bridges in proteins.
Here we conducted an extensive evaluation of salt bridge interactions
in the latest AMBER, CHARMM, and OPLS force fields, using microsecond-scale
molecular dynamics simulations of amino acid analogues in explicit
solvent. We focused on salt bridges between three different pairs
of oppositely charged amino acids: Arg/Asp, Lys/Asp, and His(+)/Asp.
Our results reveal considerable variability in the predicted KA values of the salt bridges for these force
fields, as well as differences from experimental data: almost all
of the force fields overestimate the strengths of the salt bridges.
When amino acids are represented by side-chain analogues, the AMBER
ff03 force field overestimates the KA values
the least, while for complete amino acids, the AMBER ff13α force
field yields the lowest KA value, most
likely caused by an altered balance of side-chain/side-chain and side-chain/backbone
contacts. These findings confirm the notion that the implicit incorporation
of solvent polarization improves the accuracy of modeling salt bridge
interactions.
Collapse
Affiliation(s)
- Karl T Debiec
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University , Pittsburgh, Pennsylvania 15260/15213, United States
| | | | | |
Collapse
|
14
|
Zare-Shahabadi V, Lotfizadeh M, Gandomani ARA, Papari MM. Determination of boiling points of azeotropic mixtures using quantitative structure–property relationship (QSPR) strategy. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Andrews CT, Elcock AH. Molecular dynamics simulations of highly crowded amino acid solutions: comparisons of eight different force field combinations with experiment and with each other. J Chem Theory Comput 2013; 9. [PMID: 24409104 DOI: 10.1021/ct400371h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although it is now commonly accepted that the highly crowded conditions encountered inside biological cells have the potential to significantly alter the thermodynamic properties of biomolecules, it is not known to what extent the thermodynamics of fundamental types of interactions such as salt bridges and hydrophobic interactions are strengthened or weakened by high biomolecular concentrations. As one way of addressing this question we have performed a series of all-atom explicit solvent molecular dynamics (MD) simulations to investigate the effect of increasing solute concentration on the behavior of four types of zwitterionic amino acids in aqueous solution. We have simulated systems containing glycine, valine, phenylalanine or asparagine at concentrations of 50, 100, 200 and 300 mg/ml. Each molecular system has been simulated for 1 μs in order to obtain statistically converged estimates of thermodynamic parameters, and each has been conducted with 8 different force fields and water models; the combined simulation time is 128 μs. The density, viscosity, and dielectric increments of the four amino acids calculated from the simulations have been compared to corresponding experimental measurements. While all of the force fields perform well at reproducing the density increments, discrepancies for the viscosity and dielectric increments raise questions both about the accuracy of the simulation force fields and, in certain cases, the experimental data. We also observe large differences between the various force fields' descriptions of the interaction thermodynamics of salt bridges and, surprisingly, these differences also lead to qualitatively different predictions of their dependences on solute concentration. For the aliphatic interactions of valine sidechains, fewer differences are observed between the force fields, but significant differences are again observed for aromatic interactions of phenylalanine sidechains. Taken together, the results highlight the potential power of using explicit-solvent simulation methods to understand behavior in concentrated systems but also hint at potential difficulties in using these methods to obtain consistent views of behavior in intracellular environments.
Collapse
Affiliation(s)
- Casey T Andrews
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
16
|
Molinero V. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water. J Chem Phys 2013; 139:054511. [DOI: 10.1063/1.4816005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Cheng RP, Wang WR, Girinath P, Yang PA, Ahmad R, Li JH, Hart P, Kokona B, Fairman R, Kilpatrick C, Argiros A. Effect of Glutamate Side Chain Length on Intrahelical Glutamate–Lysine Ion Pairing Interactions. Biochemistry 2012; 51:7157-72. [DOI: 10.1021/bi300655z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Richard P. Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ren Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Prashant Girinath
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Po-An Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Raheel Ahmad
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jhe-Hao Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pier Hart
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United
States
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United
States
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United
States
| | - Casey Kilpatrick
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Annmarie Argiros
- Department of Chemistry, University
at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
18
|
Ou S, Patel S, Bauer BA. Free energetics of carbon nanotube association in pure and aqueous ionic solutions. J Phys Chem B 2012; 116:8154-68. [PMID: 22780909 PMCID: PMC3562760 DOI: 10.1021/jp3025717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbon nanotubes are a promising platform across a broad spectrum of applications ranging from separations technology, drug delivery, to bio(electronic) sensors. Proper dispersion of carbon nanotube materials is important to retaining the electronic properties of nanotubes. Experimentally it has been shown that salts can regulate the dispersing properties of CNTs in aqueous system with surfactants (Niyogi, S.; Densmore, C. G.; Doorn, S. K. J. Am. Chem. Soc.2009, 131, 1144-1153); details of the physicochemical mechanisms underlying such effects continue to be explored. We address the effects of inorganic monovalent salts (NaCl and NaI) on dispersion stability of carbon nanotubes.We perform all-atom molecular dynamics simulations using nonpolarizable interaction models to compute the potential of mean force between two (10,10) single-walled carbon nanotubes (SWNTs) in the presence of NaCl/NaI and compare to the potential of mean force between SWNTs in pure water. Addition of salts enhances stability of the contact state between two SWNT's on the order of 4 kcal/mol. The ion-specific spatial distribution of different halide anions gives rise to starkly different contributions to the free energy stability of nanotubes in the contact state. Iodide anion directly stabilizes the contact state to a much greater extent than chloride anion. The enhanced stability arises from the locally repulsive forces imposed on nanotubes by the surface-segregated iodide anion. Within the time scale of our simulations, both NaI and NaCl solutions stabilize the contact state by equivalent amounts. The marginally higher stability for contact state in salt solutions recapitulates results for small hydrophobic solutes in NaCl solutions (Athawale, M. V.; Sarupria, S.; Garde, S. J. Phys. Chem. B2008, 112, 5661-5670) as well as single-walled carbon nanotubes in NaCl and CaCl2 aqueous solutions.
Collapse
Affiliation(s)
- Shuching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Brad A. Bauer
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, New York 12203, USA
| |
Collapse
|
19
|
Salari R, Chong LT. Effects of High Temperature on Desolvation Costs of Salt Bridges Across Protein Binding Interfaces: Similarities and Differences between Implicit and Explicit Solvent Models. J Phys Chem B 2012; 116:2561-7. [DOI: 10.1021/jp210172b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reza Salari
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Bauer BA, Ou S, Patel S. Role of spatial ionic distribution on the energetics of hydrophobic assembly and properties of the water/hydrophobe interface. Phys Chem Chem Phys 2012; 14:1892-906. [PMID: 22231014 DOI: 10.1039/c1cp20839j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present results from all-atom molecular dynamics simulations of large-scale hydrophobic plates solvated in NaCl and NaI salt solutions. As observed in studies of ions at the air-water interface, the density of iodide near the water-plate interface is significantly enhanced relative to chloride and in the bulk. This allows for the partial hydration of iodide while chloride remains more fully hydrated. In 1 M solutions, iodide directly pushes the hydrophobes together (contributing -2.51 kcal mol(-1)) to the PMF. Chloride, however, strengthens the water-induced contribution to the PMF by ~-2.84 kcal mol(-1). These observations are enhanced in 3 M solutions, consistent with the increased ion density in the vicinity of the hydrophobes. The different salt solutions influence changes in the critical hydrophobe separation distance and characteristic wetting/dewetting transitions. These differences are largely influenced by the ion-specific expulsion of iodide from bulk water. Results of this study are of general interest to the study of ions at interfaces and may lend insight to the mechanisms underlying the Hofmeister series.
Collapse
Affiliation(s)
- Brad A Bauer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
21
|
Papaleo E, Pasi M, Tiberti M, De Gioia L. Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insights into distal effects induced by the mutations. PLoS One 2011; 6:e24214. [PMID: 21915299 PMCID: PMC3168468 DOI: 10.1371/journal.pone.0024214] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
Networks and clusters of intramolecular interactions, as well as their "communication" across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site) should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme.
Collapse
Affiliation(s)
- Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | |
Collapse
|
22
|
Katritzky AR, Stoyanova-Slavova IB, Tämm K, Tamm T, Karelson M. Application of the QSPR Approach to the Boiling Points of Azeotropes. J Phys Chem A 2011; 115:3475-9. [DOI: 10.1021/jp104287p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alan R. Katritzky
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Iva B. Stoyanova-Slavova
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Tarmo Tamm
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
23
|
Thomas AS, Elcock AH. Molecular Dynamics Simulations Predict a Favorable and Unique Mode of Interaction between Lithium (Li+) Ions and Hydrophobic Molecules in Aqueous Solution. J Chem Theory Comput 2011; 7:818-24. [DOI: 10.1021/ct100521v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew S. Thomas
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Multiscale coarse-graining of the protein energy landscape. PLoS Comput Biol 2010; 6:e1000827. [PMID: 20585614 PMCID: PMC2891700 DOI: 10.1371/journal.pcbi.1000827] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/21/2010] [Indexed: 12/05/2022] Open
Abstract
A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states. Biological function originates from the dynamical motions of proteins in response to cellular stimuli. Protein dynamics arise from physical interactions that are well-predicted by detailed atomistic simulations. In order to examine large protein complexes on long timescales of biological importance, however, coarse-grained simulation approaches are needed to complement experiment. Previous coarse-grained models have proved successful for investigations involving a given protein's native structure, including protein folding and structure prediction. We construct a model capable of simulating proteins regardless of their sequence or structure. The present coarse-grained model was, however, developed rigorously from the underlying atomistic forces as opposed to knowledge-based or ad hoc parameterizations. Examination of the model predictions on various accessible timescales reveals successes and limitations of the model. While functionally relevant conformational transitions can be studied, the coarse-grained representation has some difficulty with the ab initio folding of the peptide chain into its proper structure. Our observations highlight the complex molecular nature of a protein's underlying energy landscape, offering rigorous insight into the information missing in reduced representations of the peptide chain. With these caveats in mind, the physical interaction–based, coarse-grained model will find application in simulations of a wide variety of proteins and continue to guide future coarse-graining efforts.
Collapse
|