1
|
Callea L, Caprai C, Bonati L, Giorgino T, Motta S. Self-organizing maps of unbiased ligand-target binding pathways and kinetics. J Chem Phys 2024; 161:135102. [PMID: 39360688 DOI: 10.1063/5.0225183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
The interpretation of ligand-target interactions at atomistic resolution is central to most efforts in computational drug discovery and optimization. However, the highly dynamic nature of protein targets, as well as possible induced fit effects, makes difficult to sample many interactions effectively with docking studies or even with large-scale molecular dynamics (MD) simulations. We propose a novel application of Self-Organizing Maps (SOMs) to address the sampling and dynamic mapping tasks, particularly in cases involving ligand flexibility and induced fit. The SOM approach offers a data-driven strategy to create a map of the interaction process and pathways based on unbiased MD. Furthermore, we show how the preliminary SOM mapping is complementary to kinetic analysis, with the employment of both network-based approaches and Markov state models. We demonstrate the method by comprehensively mapping a large dataset of 640 μs of unbiased trajectories sampling the recognition process between the phosphorylated YEEI peptide and its high-specificity target lck-SH2. The integration of SOM into unbiased simulation protocols significantly advances our understanding of the ligand binding mechanism. This approach serves as a potent tool for mapping intricate ligand-target interactions with unprecedented detail, thereby enhancing the characterization of kinetic properties crucial to drug design.
Collapse
Affiliation(s)
- Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Camilla Caprai
- Department of Biosciences, University of Milan, via Celoria 26, Milan 20133, Italy
- National Research Council of Italy, Biophysics Institute (CNR-IBF), Via Celoria 26, Milan 20133, Italy
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Toni Giorgino
- National Research Council of Italy, Biophysics Institute (CNR-IBF), Via Celoria 26, Milan 20133, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| |
Collapse
|
2
|
Wang Y, Wu J, Zsolnay V, Pollard TD, Voth GA. Mechanism of phosphate release from actin filaments. Proc Natl Acad Sci U S A 2024; 121:e2408156121. [PMID: 38980907 PMCID: PMC11260136 DOI: 10.1073/pnas.2408156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
After ATP-actin monomers assemble filaments, the ATP's [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| | - Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL60637
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
- Department of Cell Biology, Yale University, New Haven, CT06510
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Xin P, Xu L, Dong W, Mao L, Guo J, Bi J, Zhang S, Pei Y, Chen CP. Synthetic K + Channels Constructed by Rebuilding the Core Modules of Natural K + Channels in an Artificial System. Angew Chem Int Ed Engl 2023; 62:e202217859. [PMID: 36583482 DOI: 10.1002/anie.202217859] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Collapse
Affiliation(s)
- Pengyang Xin
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linqi Xu
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linlin Mao
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, 999078, China
| | - Jingjing Bi
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Shouwei Zhang
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yan Pei
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
4
|
Jäger M, Koslowski T, Wolf S. Predicting Ion Channel Conductance via Dissipation-Corrected Targeted Molecular Dynamics and Langevin Equation Simulations. J Chem Theory Comput 2021; 18:494-502. [PMID: 34928150 DOI: 10.1021/acs.jctc.1c00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion channels are important proteins for physiological information transfer and functional control. To predict the microscopic origins of their voltage-conductance characteristics, here we applied dissipation-corrected targeted molecular dynamics in combination with Langevin equation simulations to potassium diffusion through the gramicidin A channel as a test system. Performing a nonequilibrium principal component analysis on backbone dihedral angles, we find coupled protein-ion dynamics to occur during ion transfer. The dissipation-corrected free energy profiles correspond well to predictions from other biased simulation methods. The incorporation of an external electric field in Langevin simulations enables the prediction of macroscopic observables in the form of I-V characteristics.
Collapse
Affiliation(s)
- Miriam Jäger
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Thorsten Koslowski
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Weng JB, Liao CY, Li Y, Zhang DL, Li GH, Wang AH. Effect of protein dimerization on ion conductivity of gramicidin a channel studied using polarizable force field. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jun-ben Weng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chen-yi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ding-lin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guo-hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - An-hui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Callea L, Bonati L, Motta S. Metadynamics-Based Approaches for Modeling the Hypoxia-Inducible Factor 2α Ligand Binding Process. J Chem Theory Comput 2021; 17:3841-3851. [PMID: 34082524 PMCID: PMC8280741 DOI: 10.1021/acs.jctc.1c00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Several methods based
on enhanced-sampling molecular dynamics have
been proposed for studying ligand binding processes. Here, we developed
a protocol that combines the advantages of steered molecular dynamics
(SMD) and metadynamics. While SMD is proposed for investigating possible
unbinding pathways of the ligand and identifying the preferred one,
metadynamics, with the path collective variable (PCV) formalism, is
suggested to explore the binding processes along the pathway defined
on the basis of SMD, by using only two CVs. We applied our approach
to the study of binding of two known ligands to the hypoxia-inducible
factor 2α, where the buried binding cavity makes simulation
of the process a challenging task. Our approach allowed identification
of the preferred entrance pathway for each ligand, highlighted the
features of the bound and intermediate states in the free-energy surface,
and provided a binding affinity scale in agreement with experimental
data. Therefore, it seems to be a suitable tool for elucidating ligand
binding processes of similar complex systems.
Collapse
Affiliation(s)
- Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
7
|
Yoneda S, Saito T, Nakajima D, Watanabe G. Potential of mean force and umbrella sampling simulation for the transport of 5-oxazolidinone in heterotetrameric sarcosine oxidase. Proteins 2021; 89:811-818. [PMID: 33576049 DOI: 10.1002/prot.26060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/11/2022]
Abstract
The structure of heterotetrameric sarcosine oxidase (HSO) contains a highly complex system composed of a large cavity and tunnels, which are essential for the reaction and migration of the reactants, products, and intermediates. Previous geometrical analysis using the CAVER program has predicted that there are three possible tunnels, T1, T2, and T3, for the exit pathway of the iminium intermediate, 5-oxazolidinone (5-OXA), of the enzyme reaction. Previous molecular dynamics (MD) simulation of HSO has identified the regions containing the water channels from the density distribution of water. The simulation indicated that tunnel T3 is the most probable exit pathway of 5-OXA. In the present study, the potential of mean force (PMF) for the transport of 5-OXA through tunnels T1, T2, and T3 was calculated using umbrella sampling (US) MD simulations and the weighted histogram analysis method. The PMF profiles for the three tunnels support the notion that tunnel T3 is the exit pathway of 5-OXA, and that 5-OXA tends to stay at the middle of the tunnel. The maximum errors of the calculated PMF for the predicted exit pathway, tunnel T3, were estimated by repeating the US simulations using different sets of initial positions. The PMF profile was also calculated for the transport of glycine within T3. The PMF profiles from the US simulations were in good agreement with the previous predictions that 5-OXA escape through tunnel T3 and how glycine is released to the outside of HSO was discussed.
Collapse
Affiliation(s)
- Shigetaka Yoneda
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| | - Takami Saito
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| | - Daisuke Nakajima
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| | - Go Watanabe
- School of Science, Kitasato University, Sagamihara-Shi, Kanagawa-Ken, Japan
| |
Collapse
|
8
|
Kordzadeh A, Ramazani Saadatabadi A, Hadi A. Investigation on penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation. Heliyon 2020; 6:e05681. [PMID: 33344790 PMCID: PMC7733551 DOI: 10.1016/j.heliyon.2020.e05681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023] Open
Abstract
A coronavirus identified as COVID-19 is the reason for an infection outbreak which is started in December 2019. NO completely effective drugs and treatments are not recognized for this virus. Recently, saffron and its compounds were used to treat different viral diseases. Saffron extract and its major ingredients have shown antiviral effects. In this study, the steered molecular dynamics simulation was used for investigating the effect of four main components of saffron that include: crocin, crocetin, safranal, and picrocrocin as candidate for drug molecules, on COVID-19. The binding energies between drug molecules and spike protein and the main protease of the virus were evaluated. The obtained results based on Lennard-Jones and electrostatic potentials demonstrated that crocetin has a high affinity towards spike protein and also the main protease of the virus. Also, the quantum mechanics calculations elucidated that the crocetin could overcome energy barrier of lipid bilayer with strong dipole moment and polarizability. The pharmacokinetic and ADMET properties proved that crocetin could be a suitable drug candidate. So, crocetin could be a promising drug for treatment of COVID-19.
Collapse
Affiliation(s)
- Azadeh Kordzadeh
- Chemial and Petroleum Egineering Department, Sharif University of Technology, Tehran, Iran
| | | | - Amin Hadi
- Cellular and Molecular Research Center, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
9
|
Jakubec D, Vondrášek J. Efficient Estimation of Absolute Binding Free Energy for a Homeodomain-DNA Complex from Nonequilibrium Pulling Simulations. J Chem Theory Comput 2020; 16:2034-2041. [PMID: 32208691 DOI: 10.1021/acs.jctc.0c00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estimation of binding free energies is one of the central aims of simulations of biomolecular complexes. We explore the accuracy and efficiency of setups based on nonequilibrium pulling simulations applied to the estimation of binding affinities of DNA-binding proteins. Absolute binding free energies are calculated over a range of temperatures and compared to results obtained previously using an equilibrium method. We show that realistic binding affinities can be obtained with the presented nonequilibrium approach, which also entails lower computational requirements. Errors of the binding free energy estimates are investigated and are shown to be comparable to those observed previously. Bounds are provided on the convergence of the errors with respect to the number of pulling simulations performed and with respect to the applied pull rate.
Collapse
Affiliation(s)
- David Jakubec
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry of the CAS, 166 10 Praha 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 43 Praha 2, Czech Republic
| | - Jiří Vondrášek
- Bioinformatics Group, Institute of Organic Chemistry and Biochemistry of the CAS, 166 10 Praha 6, Czech Republic
| |
Collapse
|
10
|
Nguyen TH, Ngo V, Castro Zerba JP, Noskov S, Minh DDL. Nonequilibrium path-ensemble averages for symmetric protocols. J Chem Phys 2019; 151:194103. [DOI: 10.1063/1.5121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Van Ngo
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - João Paulo Castro Zerba
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
- Institute of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Sergei Noskov
- SYN: Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
11
|
Arrar M, Boubeta FM, Szretter ME, Sued M, Boechi L, Rodriguez D. On the accurate estimation of free energies using the jarzynski equality. J Comput Chem 2018; 40:688-696. [DOI: 10.1002/jcc.25754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Mehrnoosh Arrar
- Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Fernando Martín Boubeta
- Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Maria Eugenia Szretter
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Mariela Sued
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Leonardo Boechi
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Daniela Rodriguez
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
12
|
Hu G, Yu X, Bian Y, Cao Z, Xu S, Zhao L, Ji B, Wang W, Wang J. Atomistic Analysis of ToxN and ToxI Complex Unbinding Mechanism. Int J Mol Sci 2018; 19:E3524. [PMID: 30423909 PMCID: PMC6275071 DOI: 10.3390/ijms19113524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/14/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
ToxIN is a triangular structure formed by three protein toxins (ToxNs) and three specific noncoding RNA antitoxins (ToxIs). To respond to stimuli, ToxI is preferentially degraded, releasing the ToxN. Thus, the dynamic character is essential in the normal function interactions between ToxN and ToxI. Here, equilibrated molecular dynamics (MD) simulations were performed to study the stability of ToxN and ToxI. The results indicate that ToxI adjusts the conformation of 3' and 5' termini to bind to ToxN. Steered molecular dynamics (SMD) simulations combined with the recently developed thermodynamic integration in 3nD (TI3nD) method were carried out to investigate ToxN unbinding from the ToxIN complex. The potentials of mean force (PMFs) and atomistic pictures suggest the unbinding mechanism as follows: (1) dissociation of the 5' terminus from ToxN, (2) missing the interactions involved in the 3' terminus of ToxI without three nucleotides (G31, A32, and A33), (3) starting to unfold for ToxI, (4) leaving the binding package of ToxN for three nucleotides of ToxI, (5) unfolding of ToxI. This work provides information on the structure-function relationship at the atomistic level, which is helpful for designing new potent antibacterial drugs in the future.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Xiu Yu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Liling Zhao
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Baohua Ji
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Jihua Wang
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
13
|
Na S, Steinbrecher T, Koslowski T. Thermodynamic integration network approach to ion transport through protein channels: Perspectives and limits. J Comput Chem 2018; 39:2539-2550. [DOI: 10.1002/jcc.25615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Sehee Na
- Fakultät für Chemie und Pharmazie, Institut für Physikalische ChemieUniversität Freiburg Albertstraße 23a, 79104, Freiburg im Breisgau Germany
| | | | - Thorsten Koslowski
- Fakultät für Chemie und Pharmazie, Institut für Physikalische ChemieUniversität Freiburg Albertstraße 23a, 79104, Freiburg im Breisgau Germany
| |
Collapse
|
14
|
Bełdowski P, Kruszewska N, Yuvan S, Dendzik Z, Goudoulas T, Gadomski A. Capstan-like mechanism in hyaluronan-phospholipid systems. Chem Phys Lipids 2018; 216:17-24. [PMID: 30144435 DOI: 10.1016/j.chemphyslip.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Functionality of articular cartilage results from complex interactions between its molecular components. Among many biomolecules, two are of prime importance for lubrication: hyaluronic acid (HA) and phospholipids (PL). The purpose of this study is to discuss a mechanism of interaction between these two components and how their synergies contribute to nanobiolubrication of articular cartilage. Preliminary molecular dynamics simulations have been performed to investigate these interactions by adopting a capstan-like mechanism of action. By applying a constant pulling force to both ends of a HA molecule, wrapped around a PL micelle, we viewed the rotation of the PL micelle. The simulations were performed upon two physicochemical constraints: force- and solvent-dependency. The results show the efficiency of rotation from intermolecular bond creation and annihilation. We found a direct relation between the available surface of the micelle and the magnitude of the force, which varies significantly through the unwinding. The movement of the attached molecules is characterized by a slide-to-roll relation, which is affected by the viscosity of the surrounding medium. As a consequence, two solvents were studied for specific force conditions and the molecular dynamics simulation exhibited double the slide-to-roll coefficient for the viscous solvent as compared to its low-viscosity limit.
Collapse
Affiliation(s)
- P Bełdowski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - N Kruszewska
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - S Yuvan
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
| | - Z Dendzik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - T Goudoulas
- Technical University of Munich, School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - A Gadomski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland
| |
Collapse
|
15
|
A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids. Molecules 2017; 23:molecules23010077. [PMID: 29301229 PMCID: PMC6017617 DOI: 10.3390/molecules23010077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.
Collapse
|
16
|
Sensoy O, Almeida JG, Shabbir J, Moreira IS, Morra G. Computational studies of G protein-coupled receptor complexes: Structure and dynamics. Methods Cell Biol 2017; 142:205-245. [PMID: 28964337 DOI: 10.1016/bs.mcb.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are ubiquitously expressed transmembrane proteins associated with a wide range of diseases such as Alzheimer's, Parkinson, schizophrenia, and also implicated in in several abnormal heart conditions. As such, this family of receptors is regarded as excellent drug targets. However, due to the high number of intracellular signaling partners, these receptors have a complex interaction networks and it becomes challenging to modulate their function. Experimentally determined structures give detailed information on the salient structural properties of these signaling complexes but they are far away from providing mechanistic insights into the underlying process. This chapter presents some of the computational tools, namely molecular dynamics, molecular docking, and molecular modeling and related analyses methods that have been used to complement experimental findings.
Collapse
Affiliation(s)
- Ozge Sensoy
- Istanbul Medipol University, The School of Engineering and Natural Sciences, Istanbul, Turkey
| | - Jose G Almeida
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Javeria Shabbir
- Istanbul Medipol University, The School of Engineering and Natural Sciences, Istanbul, Turkey
| | - Irina S Moreira
- CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal; Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Giulia Morra
- Weill-Cornell Medical College, Cornell University, New York, New York, United States; ICRM-CNR Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
17
|
Pohjolainen E, Malola S, Groenhof G, Häkkinen H. Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium Molecular Dynamics Simulations. Bioconjug Chem 2017; 28:2327-2339. [DOI: 10.1021/acs.bioconjchem.7b00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emmi Pohjolainen
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| | - Sami Malola
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| | - Gerrit Groenhof
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| | - Hannu Häkkinen
- Department of Physics and ‡Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland FI-40014
| |
Collapse
|
18
|
Ahmed M, Jalily Hasani H, Ganesan A, Houghton M, Barakat K. Modeling the human Na v1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade. Drug Des Devel Ther 2017; 11:2301-2324. [PMID: 28831242 PMCID: PMC5552146 DOI: 10.2147/dddt.s133944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel's selectivity filters to reach the channel's central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed "state-of-the-art" steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure-property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel.
Collapse
Affiliation(s)
| | | | | | - Michael Houghton
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
- Department of Medical Microbiology and Immunology, Katz Centre for Health Research, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
| |
Collapse
|
19
|
Chu H, Cao L, Peng X, Li G. Polarizable force field development for lipids and their efficient applications in membrane proteins. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Science; Dalian China
| | - Liaoran Cao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Science; Dalian China
| | - Xiangda Peng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Science; Dalian China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Science; Dalian China
| |
Collapse
|
20
|
Sieradzan AK, Jakubowski R. Introduction of steered molecular dynamics into UNRES coarse-grained simulations package. J Comput Chem 2017; 38:553-562. [DOI: 10.1002/jcc.24685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Adam K. Sieradzan
- Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 Gdańsk 80-308 Poland
| | - Rafał Jakubowski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University; Grudziadzka 5 Torun 87-100 Poland
| |
Collapse
|
21
|
Peng X, Zhang Y, Chu H, Li Y, Zhang D, Cao L, Li G. Accurate Evaluation of Ion Conductivity of the Gramicidin A Channel Using a Polarizable Force Field without Any Corrections. J Chem Theory Comput 2016; 12:2973-82. [DOI: 10.1021/acs.jctc.6b00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiangda Peng
- Laboratory
of Molecular Modeling and
Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Chinese
Academy of Science, University of Chinese Academy Sciences, Beijing 100049, P. R. China
| | - Yuebin Zhang
- Laboratory
of Molecular Modeling and
Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Huiying Chu
- Laboratory
of Molecular Modeling and
Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yan Li
- Laboratory
of Molecular Modeling and
Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dinglin Zhang
- Laboratory
of Molecular Modeling and
Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Liaoran Cao
- Laboratory
of Molecular Modeling and
Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guohui Li
- Laboratory
of Molecular Modeling and
Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
22
|
Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods. Sci Rep 2015; 5:16481. [PMID: 26568041 PMCID: PMC4644958 DOI: 10.1038/srep16481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
The 14-3-3σ proteins are a family of ubiquitous conserved eukaryotic regulatory molecules involved in the regulation of mitogenic signal transduction, apoptotic cell death, and cell cycle control. A lot of small-molecule inhibitors have been identified for 14-3-3 protein-protein interactions (PPIs). In this work, we carried out molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method to study the binding mechanism between a 14-3-3σ protein and its eight inhibitors. The ranking order of our calculated binding free energies is in agreement with the experimental results. We found that the binding free energies are mainly from interactions between the phosphate group of the inhibitors and the hydrophilic residues. To improve the binding free energy of Rx group, we designed the inhibitor R9 with group R9 = 4-hydroxypheny. However, we also found that the binding free energy of inhibitor R9 is smaller than that of inhibitor R1. By further using the steer molecular dynamics (SMD) simulations, we identified a new hydrogen bond between the inhibitor R8 and residue Arg64 in the pulling paths. The information obtained from this study may be valuable for future rational design of novel inhibitors, and provide better structural understanding of inhibitor binding to 14-3-3σ proteins.
Collapse
|
23
|
GC JB, Gerstman BS, Chapagain PP. The Role of the Interdomain Interactions on RfaH Dynamics and Conformational Transformation. J Phys Chem B 2015; 119:12750-9. [DOI: 10.1021/acs.jpcb.5b05681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeevan B. GC
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Bernard S. Gerstman
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
24
|
Hu G, Xu S, Wang J. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations. Chem Biol Drug Des 2015; 86:1351-9. [PMID: 26032728 DOI: 10.1111/cbdd.12598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 01/14/2023]
Abstract
Inhibition of p53-MDM2 interaction by small molecules is considered to be a promising approach to re-activate wild-type p53 for tumor suppression. Several inhibitors of the MDM2-p53 interaction were designed and studied by the experimental methods and the molecular dynamics simulation. However, the unbinding mechanism was still unclear. The steered molecular dynamics simulations combined with Brownian dynamics fluctuation-dissipation theorem were employed to obtain the free-energy landscape of unbinding between MDM2 and their four ligands. It was shown that compounds 4 and 8 dissociate faster than compounds 5 and 7. The absolute binding free energies for these four ligands are in close agreement with experimental results. The open movement of helix II and helix IV in the MDM2 protein-binding pocket upon unbinding is also consistent with experimental MDM2-unbound conformation. We further found that different binding mechanisms among different ligands are associated with H-bond with Lys51 and Glu25. These mechanistic results may be useful for improving ligand design.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, China.,College of Physics and Electronic Information, Dezhou University, Dezhou, China
| | - Shicai Xu
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, China.,College of Physics and Electronic Information, Dezhou University, Dezhou, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, China.,College of Physics and Electronic Information, Dezhou University, Dezhou, China
| |
Collapse
|
25
|
Maláč K, Barvík I. Recognition of 2',5'-linked oligoadenylates by human ribonuclease L: molecular dynamics study. J Mol Model 2014; 20:2123. [PMID: 24633766 DOI: 10.1007/s00894-014-2123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/19/2013] [Indexed: 11/29/2022]
Abstract
The capability of current MD simulations to be used as a tool in rational design of agonists of medically interesting enzyme RNase L was tested. Dimerization and enzymatic activity of RNase L is stimulated by 2',5'-linked oligoadenylates (pA₂₅A₂₅A; 2-5A). First, it was necessary to ensure that a complex of monomeric human RNase L and 25A was stable in MD simulations. It turned out that Glu131 had to be protonated. The non-protonated Glu131 caused dissociation of 2-5A from RNase L. Because of the atypical 2'-5' internucleotide linkages and a specific spatial arrangement of the 25A trimer, when a single molecule carries all possible conformers of the glycosidic torsion angle, several versions of the AMBER force field were tested. One that best maintained functionally important interactions of 25A and RNase L was selected for subsequent MD simulations. Furthermore, we wonder whether powerful GPUs are able to produce MD trajectories long enough to convincingly demonstrate effects of subtle perturbations of interactions between 25A and RNase L. Detrimental impacts of various point mutations of RNase L (R155A, F126A, W60A, K89A) on 2-5A binding were observed on a time scale of 200 ns. Finally, 2-5A analogues with a bridged 3'--O,4'--C-alkylene linkage (B) introduced into the adenosine units (A) were used to assess ability of MD simulations to distinguish on the time scale of hundreds of nanoseconds between agonists of RNase L (pA₂₅A₂₅B, pB₂₅A₂₅A, pB₂₅A₂₅B) and inactive analogs (pA₂₅B₂₅A, pA₂₅B₂₅B, pB₂₅B₂₅A, pB₂₅B₂₅B). Agonists were potently bound to RNase L during 200 ns MD runs. For inactive 2-5A analogs, by contrast, significant disruptions of their interactions with RNase L already within 100 ns MD runs were found.
Collapse
Affiliation(s)
- Kamil Maláč
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, Prague, 2, 121 16, Czech Republic
| | | |
Collapse
|
26
|
Ucisik M, Zheng Z, Faver JC, Merz KM. Bringing Clarity to the Prediction of Protein-Ligand Binding Free Energies via "Blurring". J Chem Theory Comput 2014; 10:1314-1325. [PMID: 24803861 PMCID: PMC4006398 DOI: 10.1021/ct400995c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 02/03/2023]
Abstract
We present a method to evaluate the free energies of ligand binding utilizing a Monte Carlo estimation of the configuration integrals concomitant with uncertainty quantification. Ensembles for integration are built through systematically perturbing an initial ligand conformation in a rigid binding pocket, which is optimized separately prior to incorporation of the ligand. We call the procedure producing the ensembles "blurring", and it is carried out using an in-house developed code. The Boltzmann factor contribution of each pose to the configuration integral is computed and from there the free energy is obtained. Potential function uncertainties are estimated using a fragment-based error propagation method. This method has been applied to a set of small aromatic ligands complexed with T4 Lysozyme L99A mutant. Microstate energies have been determined with the force fields ff99SB and ff94, and the semiempirical method PM6DH2 in conjunction with continuum solvation models including Generalized Born (GB), the Conductor-like Screening Model (COSMO), and SMD. Of the methods studied, PM6DH2-based scoring gave binding free energy estimates, which yielded a good correlation to the experimental binding affinities (R2 = 0.7). All methods overestimated the calculated binding affinities. We trace this to insufficient sampling, the single static protein structure, and inaccuracies in the solvent models we have used in this study.
Collapse
Affiliation(s)
- Melek
N. Ucisik
- Department of Chemistry and
the Quantum Theory Project, University of
Florida, Gainesville, Florida 32611, United
States
| | - Zheng Zheng
- Department of Chemistry and
the Quantum Theory Project, University of
Florida, Gainesville, Florida 32611, United
States
| | | | | |
Collapse
|
27
|
Meyer AG, Sawyer SL, Ellington AD, Wilke CO. Analyzing machupo virus-receptor binding by molecular dynamics simulations. PeerJ 2014; 2:e266. [PMID: 24624315 PMCID: PMC3940602 DOI: 10.7717/peerj.266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022] Open
Abstract
In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein-protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host-virus protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein-protein interactions.
Collapse
Affiliation(s)
- Austin G. Meyer
- Department of Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sara L. Sawyer
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O. Wilke
- Department of Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
28
|
Patel JS, Berteotti A, Ronsisvalle S, Rocchia W, Cavalli A. Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. J Chem Inf Model 2014; 54:470-80. [PMID: 24437446 DOI: 10.1021/ci4003574] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we applied steered molecular dynamics (SMD) simulations to investigate the unbinding mechanism of nine inhibitors of the enzyme cyclin-dependent kinase 5 (CDK5). The study had two major objectives: (i) to create a correlation between the unbinding force profiles and the inhibition activities of these compounds expressed as IC50 values; (ii) to investigate the unbinding mechanism and to reveal atomistic insights, which could help identify accessory binding sites and transient interactions. Overall, we carried out 1.35 μs of cumulative SMD simulations. We showed that SMD could qualitatively discriminate binders from nonbinders, while it failed to properly rank series of inhibitors, particularly when IC50 values were too similar. From a mechanistic standpoint, SMD provided useful insights related to transient and dynamical interactions, which could complement static description obtained by X-ray crystallography experiments. In conclusion, the present study represents a further step toward a systematic exploitation of SMD and other dynamical approaches in structure-based drug design and computational medicinal chemistry.
Collapse
Affiliation(s)
- Jagdish Suresh Patel
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | | | | | | | | |
Collapse
|
29
|
Maláč K, Barvík I. Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study. J Mol Graph Model 2013; 44:81-90. [DOI: 10.1016/j.jmgm.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
30
|
Maláč K, Barvík I. Substrate recognition by norovirus polymerase: microsecond molecular dynamics study. J Comput Aided Mol Des 2013; 27:373-88. [PMID: 23619980 DOI: 10.1007/s10822-013-9652-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 04/18/2013] [Indexed: 01/02/2023]
Abstract
Molecular dynamics simulations of complexes between Norwalk virus RNA dependent RNA polymerase and its natural CTP and 2dCTP (both containing the O5'-C5'-C4'-O4' sequence of atoms bridging the triphosphate and sugar moiety) or modified coCTP (C5'-O5'-C4'-O4'), cocCTP (C5'-O5'-C4'-C4'') substrates were produced by means of CUDA programmable graphical processing units and the ACEMD software package. It enabled us to gain microsecond MD trajectories clearly showing that similar nucleoside triphosphates can bind surprisingly differently into the active site of the Norwalk virus RNA dependent RNA polymerase. It corresponds to their different modes of action (CTP-substrate, 2dCTP-poor substrate, coCTP-chain terminator, cocCTP-inhibitor). Moreover, extremely rare events-as repetitive pervasion of Arg182 into a potentially reaction promoting arrangement-were captured.
Collapse
Affiliation(s)
- Kamil Maláč
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, Prague 2, 121 16, Czech Republic
| | | |
Collapse
|
31
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|