1
|
Hajinezhad MR, Roostaee M, Nikfarjam Z, Rastegar S, Sargazi G, Barani M, Sargazi S. Exploring the potential of silymarin-loaded nanovesicles as an effective drug delivery system for cancer therapy: in vivo, in vitro, and in silico experiments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7017-7036. [PMID: 38630254 DOI: 10.1007/s00210-024-03099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations' safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Zahra Nikfarjam
- Department of Physical & Computational Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
Zhao M, Lopes LJS, Sahni H, Yadav A, Do HN, Reddy T, López CA, Neale C, Gnanakaran S. Insertion and Anchoring of HIV-1 Fusion Peptide into Complex Membrane Mimicking Human T-cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606381. [PMID: 39131401 PMCID: PMC11312619 DOI: 10.1101/2024.08.02.606381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A fundamental understanding of how HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a 9-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow timescale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
Collapse
Affiliation(s)
- Mingfei Zhao
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | | | - Harshita Sahni
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Computer Science, University of New Mexico, Albuquerque NM, USA
| | - Anju Yadav
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso TX, USA
| | - Hung N Do
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Tyler Reddy
- CCS-7 Applied Computer Science Group, Los Alamos National Laboratory, Los Alamos NM USA
| | - Cesar A López
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Chris Neale
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - S Gnanakaran
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| |
Collapse
|
3
|
Montgomery JM, Lemkul JA. Quantifying Induced Dipole Effects in Small Molecule Permeation in a Model Phospholipid Bilayer. J Phys Chem B 2024; 128:7385-7400. [PMID: 39038441 DOI: 10.1021/acs.jpcb.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The cell membrane functions as a semipermeable barrier that governs the transport of materials into and out of cells. The bilayer features a distinct dielectric gradient due to the amphiphilic nature of its lipid components. This gradient influences various aspects of small molecule permeation and the folding and functioning of membrane proteins. Here, we employ polarizable molecular dynamics simulations to elucidate the impact of the electronic environment on the permeation process. We simulated eight distinct amino-acid side chain analogs within a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer using the Drude polarizable force field (FF). Our approach includes both unbiased and umbrella sampling simulations. By using a polarizable FF, we sought to investigate explicit dipole responses in relation to local electric fields along the membrane normal. We evaluate molecular dipole moments, which exhibit variation based on their localization within the membrane, and compare the outcomes with analogous simulations using the nonpolarizable CHARMM36 FF. This comparative analysis aims to discern characteristic differences in the free energy surfaces of permeation for the various amino-acid analogs. Our results provide the first systematic quantification of the impact of employing an explicitly polarizable FF in this context compared to the fixed-charge convention inherent to nonpolarizable FFs, which may not fully capture the influence of the membrane dielectric gradient.
Collapse
Affiliation(s)
- Julia M Montgomery
- Department of Biochemistry, Virginia Tech, Blacksburg ,Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg ,Virginia 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg ,Virginia 24061, United States
| |
Collapse
|
4
|
Muscat S, Errico S, Danani A, Chiti F, Grasso G. Leveraging Machine Learning-Guided Molecular Simulations Coupled with Experimental Data to Decipher Membrane Binding Mechanisms of Aminosterols. J Chem Theory Comput 2024. [PMID: 38979909 PMCID: PMC11447954 DOI: 10.1021/acs.jctc.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the molecular mechanisms of the interactions between specific compounds and cellular membranes is essential for numerous biotechnological applications, including targeted drug delivery, elucidation of the drug mechanism of action, pathogen identification, and novel antibiotic development. However, estimation of the free energy landscape associated with solute binding to realistic biological systems is still a challenging task. In this work, we leverage the Time-lagged Independent Component Analysis (TICA) in combination with neural networks (NN) through the Deep-TICA approach for determining the free energy associated with the membrane insertion processes of two natural aminosterol compounds, trodusquemine (TRO), and squalamine (SQ). These compounds are particularly noteworthy because they interact with the outer layer of neuron membranes, protecting them from the toxic action of misfolded proteins involved in neurodegenerative disorders, in both their monomeric and oligomeric forms. We demonstrate how this strategy could be used to generate an effective collective variable for describing solute absorption in the membrane and for estimating free energy landscape of translocation via on-the-fly probability enhanced sampling (OPES) method. In this context, the computational protocol allowed an exhaustive characterization of the aminosterol entry pathway into a neuron-like lipid bilayer. Furthermore, it provided accurate prediction of membrane binding affinities, in close agreement with the experimental binding data obtained by using fluorescently labeled aminosterols and large unilamellar vesicles (LUVs). The findings contribute significantly to our understanding of aminosterol entry pathways and aminosterol-lipid membrane interactions. Finally, the computational methods deployed in this study further demonstrate considerable potential for investigating membrane binding processes.
Collapse
Affiliation(s)
- Stefano Muscat
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| |
Collapse
|
5
|
Ermakova EA, Kurbanov RK. Interaction of Uperin Peptides with Model Membranes: Molecular Dynamics Study. MEMBRANES 2023; 13:370. [PMID: 37103797 PMCID: PMC10146956 DOI: 10.3390/membranes13040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The interaction of antimicrobial and amyloid peptides with cell membranes is a critical step in their activities. Peptides of the uperin family obtained from the skin secretion of Australian amphibians demonstrate antimicrobial and amyloidogenic properties. All-atomic molecular dynamics and an umbrella sampling approach were used to study the interaction of uperins with model bacterial membrane. Two stable configurations of peptides were found. In the bound state, the peptides in helical form were located right under the head group region in parallel orientation with respect to the bilayer surface. Stable transmembrane configuration was observed for wild-type uperin and its alanine mutant in both alpha-helical and extended unstructured forms. The potential of mean force characterized the process of peptide binding from water to the lipid bilayer and its insertion into the membrane, and revealed that the transition of uperins from the bound state to the transmembrane position was accompanied by the rotation of peptides and passes through the energy barrier of 4-5 kcal/mol. Uperins have a weak effect on membrane properties.
Collapse
|
6
|
Sousa CF, Becker RA, Lehr CM, Kalinina OV, Hub JS. Simulated Tempering-Enhanced Umbrella Sampling Improves Convergence of Free Energy Calculations of Drug Membrane Permeation. J Chem Theory Comput 2023; 19:1898-1907. [PMID: 36853966 DOI: 10.1021/acs.jctc.2c01162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Molecular dynamics simulations have been widely used to study solute permeation across biological membranes. The potential of mean force (PMF) for solute permeation is typically computed using enhanced sampling techniques such as umbrella sampling (US). For bulky drug-like permeants, however, obtaining converged PMFs remains challenging and often requires long simulation times, resulting in an unacceptable computational cost. Here, we augmented US with simulated tempering (ST), an extended-ensemble technique that consists in varying the temperature of the system along a pre-defined temperature ladder. Simulated tempering-enhanced US (STeUS) was employed to improve the convergence of PMF calculations for the permeation of methanol and three common drug molecules. To obtain sufficient sampling of the umbrella histograms, which were computed only from the ground temperature, we modified the simulation time fraction spent at the ground temperature between 1/K and 50%, where K is the number of ST temperature states. We found that STeUS accelerates convergence, when compared to standard US, and that the benefit of STeUS is system-dependent. For bulky molecules, for which standard US poorly converged, the application of ST was highly successful, leading to a more than fivefold accelerated convergence of the PMFs. For the small methanol solute, for which conventional US converges moderately, the application of ST is only beneficial if 50% of the STeUS simulation time is spent at the ground temperature. This study establishes STeUS as an efficient and simple method for PMF calculations, thereby strongly reducing the computational cost of routine high-throughput studies of drug permeability.
Collapse
Affiliation(s)
- Carla F Sousa
- Drug Bioinformatics Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Department of Biological Barriers and Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Robert A Becker
- Theoretical Physics and Center for Biophysics (ZBP), Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Biological Barriers and Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Olga V Kalinina
- Drug Bioinformatics Group, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics (ZBP), Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
7
|
Sousa CF, Kamal MAM, Richter R, Elamaldeniya K, Hartmann RW, Empting M, Lehr CM, Kalinina OV. Modeling the Effect of Hydrophobicity on the Passive Permeation of Solutes across a Bacterial Model Membrane. J Chem Inf Model 2022; 62:5023-5033. [PMID: 36214845 DOI: 10.1021/acs.jcim.2c00767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Passive diffusion across biomembranes is an important mechanism of permeation for multiple drugs, including antibiotics. However, this process is frequently neglected while studying drug uptake and, in our view, warrants further investigation. Here, we apply molecular dynamics simulations to investigate the impact of changes in molecular hydrophobicity on the permeability of a series of inhibitors of the quorum sensing of Pseudomonas aeruginosa, previously discovered by us, across a membrane model. Overall, we show that permeation across this membrane model does not correlate with the molecule's hydrophobicity. We demonstrate that using a simple model for permeation, based on the difference between the maximum and minimum of the free energy profile, outperforms the inhomogeneous solubility-diffusion model, yielding a permeability ranking that better agrees with the experimental results, especially for hydrophobic permeants. The calculated differences in permeability could not explain differences in in bacterio activity. Nevertheless, substantial differences in molecular orientation along the permeation pathway correlate with the in bacterio activity, emphasizing the importance of analyzing, at an atomistic level, the permeation pathway of these solutes.
Collapse
Affiliation(s)
- Carla F Sousa
- Drug Bioinformatics Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany
| | - Mohamed A M Kamal
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken66123, Germany
| | - Robert Richter
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany
| | - Kalanika Elamaldeniya
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Center for Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - Rolf W Hartmann
- Department of Pharmacy, Saarland University, Saarbrücken66123, Germany.,German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig, Saarbrücken66123, Germany.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken66123, Germany
| | - Martin Empting
- Department of Pharmacy, Saarland University, Saarbrücken66123, Germany.,Antiviral & Antivirulence Drugs Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig, Saarbrücken66123, Germany
| | - Claus-Michael Lehr
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken66123, Germany
| | - Olga V Kalinina
- Drug Bioinformatics Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Center for Bioinformatics, Saarland University, Saarbrücken66123, Germany.,Medical Faculty, Saarland University, Homburg66421, Germany
| |
Collapse
|
8
|
Sugita M, Fujie T, Yanagisawa K, Ohue M, Akiyama Y. Lipid Composition Is Critical for Accurate Membrane Permeability Prediction of Cyclic Peptides by Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:4549-4560. [PMID: 36053061 PMCID: PMC9516681 DOI: 10.1021/acs.jcim.2c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic peptides have attracted attention as a promising pharmaceutical modality due to their potential to selectively inhibit previously undruggable targets, such as intracellular protein-protein interactions. Poor membrane permeability is the biggest bottleneck hindering successful drug discovery based on cyclic peptides. Therefore, the development of computational methods that can predict membrane permeability and support elucidation of the membrane permeation mechanism of drug candidate peptides is much sought after. In this study, we developed a protocol to simulate the behavior in membrane permeation steps and estimate the membrane permeability of large cyclic peptides with more than or equal to 10 residues. This protocol requires the use of a more realistic membrane model than a single-lipid phospholipid bilayer. To select a membrane model, we first analyzed the effect of cholesterol concentration in the model membrane on the potential of mean force and hydrogen bonding networks along the direction perpendicular to the membrane surface as predicted by molecular dynamics simulations using cyclosporine A. These results suggest that a membrane model with 40 or 50 mol % cholesterol was suitable for predicting the permeation process. Subsequently, two types of membrane models containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 40 and 50 mol % cholesterol were used. To validate the efficiency of our protocol, the membrane permeability of 18 ten-residue peptides was predicted. Correlation coefficients of R > 0.8 between the experimental and calculated permeability values were obtained with both model membranes. The results of this study demonstrate that the lipid membrane is not just a medium but also among the main factors determining the membrane permeability of molecules. The computational protocol proposed in this study and the findings obtained on the effect of membrane model composition will contribute to building a schematic view of the membrane permeation process. Furthermore, the results of this study will eventually aid the elucidation of design rules for peptide drugs with high membrane permeability.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-Based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takuya Fujie
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-Based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Keisuke Yanagisawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-Based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-Based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-Based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Magalhães N, Simões GM, Ramos C, Samelo J, Oliveira AC, Filipe HAL, Ramalho JPP, Moreno MJ, Loura LMS. Interactions between Rhodamine Dyes and Model Membrane Systems—Insights from Molecular Dynamics Simulations. Molecules 2022; 27:molecules27041420. [PMID: 35209208 PMCID: PMC8876248 DOI: 10.3390/molecules27041420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Background: rhodamines are dyes widely used as fluorescent tags in cell imaging, probing of mitochondrial membrane potential, and as P-glycoprotein model substrates. In all these applications, detailed understanding of the interaction between rhodamines and biomembranes is fundamental. Methods: we combined atomistic molecular dynamics (MD) simulations and fluorescence spectroscopy to characterize the interaction between rhodamines 123 and B (Rh123 and RhB, respectively) and POPC bilayers. Results: while the xanthene moiety orients roughly parallel to the membrane plane in unrestrained MD simulations, variations on the relative position of the benzoic ring (below the xanthene for Rh123, above it for RhB) were observed, and related to the structure of the two dyes and their interactions with water and lipids. Subtle distinctions were found among different ionization forms of the probes. Experimentally, RhB displayed a lipid/water partition coefficient more than two orders of magnitude higher than Rh123, in agreement with free energy profiles obtained from umbrella sampling MD. Conclusions: this work provided detailed insights on the similarities and differences in the behavior of bilayer-inserted Rh123 and RhB, related to the structure of the probes. The much higher affinity of RhB for the membranes increases the local concentration and explains its higher apparent affinity for P-glycoprotein reconstituted in model membranes.
Collapse
Affiliation(s)
- Nisa Magalhães
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Guilherme M. Simões
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Cristiana Ramos
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jaime Samelo
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Alexandre C. Oliveira
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hugo A. L. Filipe
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - João P. Prates Ramalho
- Hercules Laboratory, LAQV, REQUIMTE, Department of Chemistry, School of Science and Technology, University of Évora, 7000-671 Evora, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Luís M. S. Loura
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (N.M.); (G.M.S.); (C.R.); (J.S.); (A.C.O.); (H.A.L.F.); (M.J.M.)
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
10
|
Nature of bilayer lipids affects membranes deformation and pore resealing during nanoparticle penetration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112530. [DOI: 10.1016/j.msec.2021.112530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/17/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023]
|
11
|
Ghorbani M, Wang E, Krämer A, Klauda JB. Molecular dynamics simulations of ethanol permeation through single and double-lipid bilayers. J Chem Phys 2021; 153:125101. [PMID: 33003717 DOI: 10.1063/5.0013430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Permeation of small molecules through membranes is a fundamental biological process, and molecular dynamics simulations have proven to be a promising tool for studying the permeability of membranes by providing a precise characterization of the free energy and diffusivity. In this study, permeation of ethanol through three different membranes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), PO-phosphatidylethanolamine (POPE), and PO-phosphatidylcholine (POPC) is studied. Permeabilities are calculated and compared with two different approaches based on Fick's first law and the inhomogeneous solubility-diffusion model. Microsecond simulation of double bilayers of these membranes provided a direct measurement of permeability by a flux-based counting method. These simulations show that a membrane of POPC has the highest permeability, followed by POPE and POPS. Due to the membrane-modulating properties of ethanol, the permeability increases as functions of concentration and saturation of the inner leaflet in a double bilayer setting, as opposed to the customary definition as a proportionality constant. This concentration dependence is confirmed by single bilayer simulations at different ethanol concentrations ranging from 1% to 18%, where permeability estimates are available from transition-based counting and the inhomogeneous solubility-diffusion model. We show that the free energy and diffusion profiles for ethanol lack accuracy at higher permeant concentrations due to non-Markovian kinetics caused by collective behavior. In contrast, the counting method provides unbiased estimates. Finally, the permeabilities obtained from single bilayer simulations are combined to represent natural gradients felt by a cellular membrane, which accurately models the non-equilibrium effects on ethanol permeability from single bilayer simulations in equilibrium.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Andreas Krämer
- Laboratory of Computational Biology, National, Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
12
|
Lochbaum CA, Chew AK, Zhang X, Rotello V, Van Lehn RC, Pedersen JA. Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers. ACS NANO 2021; 15:6562-6572. [PMID: 33818061 PMCID: PMC9153949 DOI: 10.1021/acsnano.0c09732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state model that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption.
Collapse
Affiliation(s)
- Christian A. Lochbaum
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alex K. Chew
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts–Amherst, Amherst, Massachusetts 01003, United States
| | - Vincent Rotello
- Department of Chemistry, University of Massachusetts–Amherst, Amherst, Massachusetts 01003, United States
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Joel A. Pedersen
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Departments of Soil Science and Civil & Environmental Engineering, University of Wisconsin–Madison, 1525 Observatory Dive, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Huynh L, Velásquez J, Rabara R, Basu S, Nguyen HB, Gupta G. Rational design of antimicrobial peptides targeting Gram-negative bacteria. Comput Biol Chem 2021; 92:107475. [PMID: 33813188 DOI: 10.1016/j.compbiolchem.2021.107475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Membrane-targeting host antimicrobial peptides (AMPs) can kill or inhibit the growth of Gram-negative bacteria. However, the evolution of resistance among microbes poses a substantial barrier to the long-term utility of the host AMPs. Combining experiment and molecular dynamics simulations, we show that terminal carboxyl capping enhances both membrane insertion and antibacterial activity of an AMP called P1. Furthermore, we show that a bacterial strain with evolved resistance to this peptide becomes susceptible to P1 variants with either backbone capping or lysine-to-arginine substitutions. Our results suggest that cocktails of closely related AMPs may be useful in overcoming evolved resistance.
Collapse
Affiliation(s)
- Loan Huynh
- New Mexico Consortium, Los Alamos, NM, 87544, USA
| | | | - Roel Rabara
- New Mexico Consortium, Los Alamos, NM, 87544, USA
| | | | - Hau B Nguyen
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Goutam Gupta
- New Mexico Consortium, Los Alamos, NM, 87544, USA.
| |
Collapse
|
14
|
Shearer J, Marzinek JK, Bond PJ, Khalid S. Molecular dynamics simulations of bacterial outer membrane lipid extraction: Adequate sampling? J Chem Phys 2021; 153:044122. [PMID: 32752683 DOI: 10.1063/5.0017734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is almost exclusively composed of lipopolysaccharide in its outer leaflet, whereas the inner leaflet contains a mixture of phospholipids. Lipopolysaccharide diffuses at least an order of magnitude slower than phospholipids, which can cause issues for molecular dynamics simulations in terms of adequate sampling. Here, we test a number of simulation protocols for their ability to achieve convergence with reasonable computational effort using the MARTINI coarse-grained force-field. This is tested in the context both of potential of mean force (PMF) calculations for lipid extraction from membranes and of lateral mixing within the membrane phase. We find that decoupling the cations that cross-link the lipopolysaccharide headgroups from the extracted lipid during PMF calculations is the best approach to achieve convergence comparable to that for phospholipid extraction. We also show that lateral lipopolysaccharide mixing/sorting is very slow and not readily addressable even with Hamiltonian replica exchange. We discuss why more sorting may be unrealistic for the short (microseconds) timescales we simulate and provide an outlook for future studies of lipopolysaccharide-containing membranes.
Collapse
Affiliation(s)
- Jonathan Shearer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
15
|
Sousa CF, Coimbra JTS, Ferreira M, Pereira-Leite C, Reis S, Ramos MJ, Fernandes PA, Gameiro P. Passive Diffusion of Ciprofloxacin and its Metalloantibiotic: A Computational and Experimental study. J Mol Biol 2021; 433:166911. [PMID: 33676927 DOI: 10.1016/j.jmb.2021.166911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Carla F Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Mariana Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Catarina Pereira-Leite
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
16
|
Kabelka I, Brožek R, Vácha R. Selecting Collective Variables and Free-Energy Methods for Peptide Translocation across Membranes. J Chem Inf Model 2021; 61:819-830. [PMID: 33566605 DOI: 10.1021/acs.jcim.0c01312] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective permeability of cellular membranes is a crucial property for controlled transport into and out of cells. Molecules that can bypass the cellular machinery and spontaneously translocate across membranes could be used as therapeutics or drug carriers. Peptides are a prominent class of such molecules, which include natural and man-developed antimicrobial and cell-penetrating peptides. However, the necessary peptide properties for translocation remain elusive. Computer simulations could uncover these properties once we have a good collective variable (CV) that accurately describes the translocation process. Here, we developed a new CV, which includes a description of peptide insertion, local membrane deformation, and peptide internal degrees of freedom related to its charged groups. By comparison of CVs, we demonstrated that all these components are necessary for an accurate description of peptide translocation. Moreover, the advantages and disadvantages of three common methods for free-energy calculations with our CV were evaluated using the MARTINI coarse-grained model: umbrella sampling, umbrella sampling with replica exchange, and metadynamics. The developed CV leads to the reliable and effective calculation of the free energy of peptide translocation, and thus, it could be useful in the design of spontaneously translocating peptides.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radim Brožek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
17
|
Molecular simulations of lipid membrane partitioning and translocation by bacterial quorum sensing modulators. PLoS One 2021; 16:e0246187. [PMID: 33561158 PMCID: PMC7872223 DOI: 10.1371/journal.pone.0246187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing (QS) is a bacterial communication process mediated by both native and non-native small-molecule quorum sensing modulators (QSMs), many of which have been synthesized to disrupt QS pathways. While structure-activity relationships have been developed to relate QSM structure to the activation or inhibition of QS receptors, less is known about the transport mechanisms that enable QSMs to cross the lipid membrane and access intracellular receptors. In this study, we used atomistic MD simulations and an implicit solvent model, called COSMOmic, to analyze the partitioning and translocation of QSMs across lipid bilayers. We performed umbrella sampling at atomistic resolution to calculate partitioning and translocation free energies for a set of naturally occurring QSMs, then used COSMOmic to screen the water-membrane partition and translocation free energies for 50 native and non-native QSMs that target LasR, one of the LuxR family of quorum-sensing receptors. This screening procedure revealed the influence of systematic changes to head and tail group structures on membrane partitioning and translocation free energies at a significantly reduced computational cost compared to atomistic MD simulations. Comparisons with previously determined QSM activities suggest that QSMs that are least likely to partition into the bilayer are also less active. This work thus demonstrates the ability of the computational protocol to interrogate QSM-bilayer interactions which may help guide the design of new QSMs with engineered membrane interactions.
Collapse
|
18
|
Coimbra JTS, Feghali R, Ribeiro RP, Ramos MJ, Fernandes PA. The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Adv 2020; 11:899-908. [PMID: 35423709 PMCID: PMC8693363 DOI: 10.1039/d0ra09995c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
The number of hydrogen bond donors and acceptors is a fundamental molecular descriptor to predict the oral bioavailability of small drug candidates. In fact, the most widely used oral bioavailability rules (such as the Lipinsky's rule-of-five and the Veber rules) make use of this molecular descriptor. It is generally assumed that hydrogen bond donors and acceptors impact on passive diffusion across cell membranes, a fundamental event during drug absorption and distribution. Although the relationship between the number of these motifs and the probability of having good oral bioavailability has been studied and described for more than 20 years, little attention has been given to their spatial distribution in the molecule. In this paper, we used molecular dynamics to describe the effect of intramolecular hydrogen bonding on the passive diffusion of a small drug (piracetam) through a lipid membrane. The results indicated that the formation of an intramolecular hydrogen bond decreases the barrier for translocation by ca. 4 kcal mol-1 and increases the permeability of the tested molecule, partially compensating the desolvation penalty arising from the penetration of the drug into the biological membrane core. This effect was apparent in simulations where the formation of this interaction was prevented with the help of modified potentials, and in simulations with a similar compound to piracetam that was not able to form this intramolecular hydrogen bond due to a larger distance between the hydrogen bond donor and acceptor groups. These results were also supported by coarse-grained methods, which are becoming an important resource for sampling a larger chemical space of molecules, with reduced computational effort. Furthermore, entropy and enthalpy derived profiles were also obtained as the compounds translocated across the membrane, suggesting that, even though the process of formation of internal hydrogen bonds is entropically unfavorable, the enthalpic gain is such that the formation of these interactions is beneficial for the passive diffusion across cell membranes.
Collapse
Affiliation(s)
- João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ralph Feghali
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Rui P Ribeiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
19
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Lee BL, Kuczera K, Lee KH, Childs EW, Jas GS. Unassisted N-acetyl-phenylalanine-amide transport across membrane with varying lipid size and composition: kinetic measurements and atomistic molecular dynamics simulation. J Biomol Struct Dyn 2020; 40:1445-1460. [PMID: 33034537 DOI: 10.1080/07391102.2020.1827037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Biological membranes are essential to preserve structural integrity and regulate functional properties through the permeability of nutrients, pharmaceutical drugs, and neurotransmitters of a living cell. The movement of acetylated and amidated phenylalanine (NAFA) across 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane bilayers is investigated to probe physical transport. The rate of transport is measured experimentally applying parallel artificial membrane permeation assay (PAMPA). At the physiological temperature, 310 K, the measured time constants in the neutral pH were ∼6 h in DOPC and ∼3 h in POPC, while in a more acidic condition, at a pH 4.8, the time constants were ∼8 h in both lipids. Computationally, we have expanded our transport study of three aromatic dipeptides across a bilayer composed of DOPC18. In this study, we have examined the effects of lipid composition and bilayer size on the passive transport of NAFA by simulating the dipeptide in three different bilayers, with 50 DOPC lipids, 50 POPC lipids, and 40 POPC molecules. Specifically, atomistic molecular dynamics simulations with umbrella sampling were used to calculate the potential of mean force for the passive permeation of NAFA across the bilayers. Diffusion constants were then calculated by numerically solving the Smoluchowski equation. Permeability coefficients and mean first passage times were then calculated. Structural properties - Ramachandran plots, sidechain torsions, peptide insertion angles, radial distribution functions, and proximal peptide water molecules - were also examined to determine the effect of system size and lipid type. In terms of systems size, we observed a small decrease in the highest barrier of the potential of mean force and fewer sampled sidechain dihedral angle conformations with 40 versus 50 POPC lipids due to weaker membrane deformations within a smaller lipid bilayer. In terms of lipid type, DOPC contains two monounsaturated acyl chains compared to only one such acyl chain in POPC; therefore, DOPC bilayers are less ordered and more easily deformed, as seen by a much broader potential of mean force profile. The NAFA in DOPC lipid also transitioned to an internally hydrogen-bonded backbone conformation at lower membrane depths than in POPC. Similarly, as for other aromatic dipeptides, NAFA tends to insert into the membrane sidechain-first, remains mostly desolvated in the membrane center, and exhibits slow reorientations within the bilayer in both DOPC and POPC. With a joint experimental and computational study we have gained a new insight into the rate of transport and the underlying microscopic mechanism in different lipid bilayer conditions of the simplest hydrophobic aromatic dipeptide.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Brent L Lee
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Krzysztof Kuczera
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA.,Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
| | - Kyung-Hoon Lee
- Department of Biology, Chowan University, Murfreesboro, NC, USA
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Gouri S Jas
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
21
|
Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC. The cut-off effect of n-alcohols in lipid rafts: A lipid-dependent phenomenon ☆. J Mol Graph Model 2020; 101:107732. [PMID: 32920240 DOI: 10.1016/j.jmgm.2020.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
n-Aliphatic alcohols act as anesthetics only up to a certain chain length, beyond which its biological activity disappears. This is known as the 'cut-off' phenomenon. Although the most accepted explanation is based on action sites in membrane proteins, it is not well understood why alcohols alter their functions. The structural dependence of these protein receptors to lipid domains known as 'lipid rafts', suggests a new approach to tackle the puzzling phenomenon. In this work, by performing molecular dynamic simulations (MDS) to explore the lipid role, we provide relevant molecular details about the membrane-alcohol interaction at the cut-off point regime. Since the high variability of the cut-off points found on protein receptors in neurons may be a consequence of differences in the lipid composition surrounding such proteins, our results could have a clear-cut importance.
Collapse
Affiliation(s)
- Patricio A Zapata-Morin
- Facultad de Ciencias Biológicas, Laboratorio de Micología y Fitopatología, Universidad Autónoma de Nuevo León, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - F J Sierra-Valdez
- Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, Ave. Batallón de San Patricio 112, San Pedro Garza García, 66278, Nuevo León, Mexico; Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, 64849, Mexico
| | | |
Collapse
|
22
|
Zhou S, Pettersson P, Huang J, Brzezinski P, Pomès R, Mäler L, Ädelroth P. NMR Structure and Dynamics Studies of Yeast Respiratory Supercomplex Factor 2. Structure 2020; 29:275-283.e4. [PMID: 32905793 DOI: 10.1016/j.str.2020.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae respiratory supercomplex factor 2 (Rcf2) is a 224-residue protein located in the mitochondrial inner membrane where it is involved in the formation of supercomplexes composed of cytochrome bc1 and cytochrome c oxidase. We previously demonstrated that Rcf2 forms a dimer in dodecylphosphocholine micelles, and here we report the solution NMR structure of this Rcf2 dimer. Each Rcf2 monomer has two soluble α helices and five putative transmembrane (TM) α helices, including an unexpectedly charged TM helix at the C terminus, which mediates dimer formation. The NOE contacts indicate the presence of inter-monomer salt bridges and hydrogen bonds at the dimer interface, which stabilize the Rcf2 dimer structure. Moreover, NMR chemical shift change mapping upon lipid titrations as well as molecular dynamics analysis reveal possible structural changes upon embedding Rcf2 into a native lipid environment. Our results contribute to the understanding of respiratory supercomplex formation and regulation.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pontus Pettersson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Jingjing Huang
- Molecular Medicine, The Hospital for Sick Children, Toronto, Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Régis Pomès
- Molecular Medicine, The Hospital for Sick Children, Toronto, Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
23
|
Bennett WFD, He S, Bilodeau CL, Jones D, Sun D, Kim H, Allen JE, Lightstone FC, Ingólfsson HI. Predicting Small Molecule Transfer Free Energies by Combining Molecular Dynamics Simulations and Deep Learning. J Chem Inf Model 2020; 60:5375-5381. [DOI: 10.1021/acs.jcim.0c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- W. F. Drew Bennett
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Stewart He
- Global Security Computing Applications, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Camille L. Bilodeau
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Derek Jones
- Global Security Computing Applications, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Delin Sun
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Hyojin Kim
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Jonathan E. Allen
- Global Security Computing Applications, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Felice C. Lightstone
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| | - Helgi I. Ingólfsson
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, United States
| |
Collapse
|
24
|
Filipe HAL, Esteves MIM, Henriques CA, Antunes FE. Effect of Protein Flexibility from Coarse-Grained Elastic Network Parameterizations on the Calculation of Free Energy Profiles of Ligand Binding. J Chem Theory Comput 2020; 16:4734-4743. [PMID: 32496775 DOI: 10.1021/acs.jctc.0c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characterization of the affinity and binding mechanism of specific molecules to a protein active site is scientifically and industrially relevant for many applications. In principle, this information can be obtained using molecular dynamics (MD) simulations by calculating the free energy profile of the process. However, this is a computationally demanding calculation. Currently, coarse-grained (CG) force fields are very well implemented for MD simulations of biomolecular systems. These computationally efficient force fields are a major advantage to the study of large model systems and/or those requiring long simulation times. The Martini model is currently one of the most popular CG force fields for these systems. For the specific case of protein simulations, to correctly maintain the macromolecular three-dimensional structure, the Martini model needs to include an elastic network (EN). In this work, the effect of protein flexibility, as induced by three EN models compatible with the Martini force field, was tested on the calculation of free energy profiles for protein-ligand binding. The EN models used were ElNeDyn, GoMartini, and GEN. The binding of triolein (TOG) and triacetin (TAG) to a lipase protein (thermomyces lanuginosa lipase-TLL) was used as a case study. The results show that inclusion of greater flexibility in the CG parameterization of proteins is of high importance in the calculation of the free energy profiles of protein-ligand systems. However, care must be taken in order to avoid unjustified large protein deformations. In addition, due to molecular flexibility there may be no absolute need for the center of the ligand to reach the center of the protein-binding site. The calculation of the energy profile to a distance of about 0.5 nm from the active site center can be sufficient to differentiate the affinity of different ligands to a protein.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, Penela 3230-343, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| |
Collapse
|
25
|
Martinotti C, Ruiz-Perez L, Deplazes E, Mancera RL. Molecular Dynamics Simulation of Small Molecules Interacting with Biological Membranes. Chemphyschem 2020; 21:1486-1514. [PMID: 32452115 DOI: 10.1002/cphc.202000219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Cell membranes protect and compartmentalise cells and their organelles. The semi-permeable nature of these membranes controls the exchange of solutes across their structure. Characterising the interaction of small molecules with biological membranes is critical to understanding of physiological processes, drug action and permeation, and many biotechnological applications. This review provides an overview of how molecular simulations are used to study the interaction of small molecules with biological membranes, with a particular focus on the interactions of water, organic compounds, drugs and short peptides with models of plasma cell membrane and stratum corneum lipid bilayers. This review will not delve on other types of membranes which might have different composition and arrangement, such as thylakoid or mitochondrial membranes. The application of unbiased molecular dynamics simulations and enhanced sampling methods such as umbrella sampling, metadynamics and replica exchange are described using key examples. This review demonstrates how state-of-the-art molecular simulations have been used successfully to describe the mechanism of binding and permeation of small molecules with biological membranes, as well as associated changes to the structure and dynamics of these membranes. The review concludes with an outlook on future directions in this field.
Collapse
Affiliation(s)
- Carlo Martinotti
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Lanie Ruiz-Perez
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
26
|
Treece BW, Heinrich F, Ramanathan A, Lösche M. Steering Molecular Dynamics Simulations of Membrane-Associated Proteins with Neutron Reflection Results. J Chem Theory Comput 2020; 16:3408-3419. [DOI: 10.1021/acs.jctc.0c00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bradley W. Treece
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Arvind Ramanathan
- Data Science and Learning, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
27
|
Hwang H, Hazel A, Lian P, Smith JC, Gumbart JC, Parks JM. A Minimal Membrane Metal Transport System: Dynamics and Energetics of mer Proteins. J Comput Chem 2020; 41:528-537. [PMID: 31721253 PMCID: PMC7263448 DOI: 10.1002/jcc.26098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
The mer operon in bacteria encodes a set of proteins and enzymes that impart resistance to environmental mercury toxicity by importing Hg2+ and reducing it to volatile Hg(0). Because the reduction occurs in the cytoplasm, mercuric ions must first be transported across the cytoplasmic membrane by one of a few known transporters. MerF is the smallest of these, containing only two transmembrane helices and two pairs of vicinal cysteines that coordinate mercuric ions. In this work, we use molecular dynamics simulations to characterize the dynamics of MerF in its apo and Hg2+ -bound states. We find that the apo state positions one of the cysteine pairs closer to the periplasmic side of the membrane, while in the bound state the same pair approaches the cytoplasmic side. This finding is consistent with the functional requirement of accepting Hg2+ from the periplasmic space, sequestering it on acceptance, and transferring it to the cytoplasm. Conformational changes in the TM helices facilitate the functional interaction of the two cysteine pairs. Free-energy calculations provide a barrier of 16 kcal/mol for the association of the periplasmic Hg2+ -bound protein MerP with MerF and 7 kcal/mol for the subsequent association of MerF's two cysteine pairs. Despite the significant conformational changes required to move the binding site across the membrane, coarse-grained simulations of multiple copies of MerF support the expectation that it functions as a monomer. Our results demonstrate how conformational changes and binding thermodynamics could lead to such a small membrane protein acting as an ion transporter. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Peng Lian
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| |
Collapse
|
28
|
Kumari P, Kashyap HK. DMSO induced dehydration of heterogeneous lipid bilayers and its impact on their structures. J Chem Phys 2019; 151:215103. [DOI: 10.1063/1.5127852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
29
|
Guan X, Wei DQ, Hu D. Free Energy Calculations on the Water-Chain-Assisted and the Dehydration Mechanisms of Transmembrane Ion Permeation. J Chem Theory Comput 2019; 16:700-710. [DOI: 10.1021/acs.jctc.9b00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Rózsa ZB, Németh LJ, Jójárt B, Nehéz K, Viskolcz B, Szőri M. Molecular Dynamics and Metadynamics Insights of 1,4-Dioxane-Induced Structural Changes of Biomembrane Models. J Phys Chem B 2019; 123:7869-7884. [DOI: 10.1021/acs.jpcb.9b04313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zsófia Borbála Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Lukács József Németh
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Balázs Jójárt
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Károly Nehéz
- Department of Information Engineering, University of Miskolc, Miskolc-Egyetemváros Informatics Building, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| |
Collapse
|
31
|
Teixeira MH, Arantes GM. Effects of lipid composition on membrane distribution and permeability of natural quinones. RSC Adv 2019; 9:16892-16899. [PMID: 35516391 PMCID: PMC9064471 DOI: 10.1039/c9ra01681c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022] Open
Abstract
Natural quinones are amphiphilic molecules that function as mobile charge carriers in biological energy transduction. Their distribution and permeation across membranes are important for binding to enzymatic complexes and for proton translocation. Here, we employ molecular dynamics simulations and free energy calculations with a carefully calibrated classical force-field to probe quinone distribution and permeation in a multi-component bilayer trying to mimic the composition of membranes involved in bioenergetic processes. Ubiquinone, ubiquinol, plastoquinone and menaquinone molecules with short and long isoprenoid tails are simulated. We find that penetration of water molecules bound to the polar quinone head increases considerably in the less ordered and porous bilayer formed by di-linoleoyl (18:2) phospholipids, resulting in a lower free energy barrier for quinone permeation and faster transversal diffusion. In equilibrium, quinone and quinol heads localize preferentially near lipid glycerol groups, but do not perform specific contacts with lipid polar heads. Quinone distribution is not altered significantly by the quinone head, tail and lipid composition in comparison to a single-component bilayer. This study highlights the role of lipid acyl chain unsaturation for permeation and transversal diffusion of polar molecules across biological membranes.
Collapse
Affiliation(s)
- Murilo Hoias Teixeira
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes 748 05508-900 São Paulo SP Brazil
| | - Guilherme Menegon Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes 748 05508-900 São Paulo SP Brazil
| |
Collapse
|
32
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
33
|
Rivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep 2019; 9:5627. [PMID: 30948733 PMCID: PMC6449338 DOI: 10.1038/s41598-019-41903-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
The composition of the plasma membrane of malignant cells is thought to influence the cellular uptake of cisplatin and to take part in developing resistance to this widespread anti-cancer drug. In this work we study the permeation of cisplatin through the model membranes of normal and cancer cells using molecular dynamics simulations. A special attention is paid to lipid asymmetry and cholesterol content of the membranes. The loss of lipid asymmetry, which is common for cancer cells, leads to a decrease in their permeability to cisplatin by one order of magnitude in comparison to the membranes of normal cells. The change in the cholesterol molar ratio from 0% to 33% also decreases the permeability of the membrane by approximately one order of magnitude. The permeability of pure DOPC membrane is 5-6 orders of magnitude higher than one of the membranes with realistic lipid composition, which makes it as an inadequate model for the studies of drug permeability.
Collapse
Affiliation(s)
- Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.,Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028, Kyiv, Ukraine
| |
Collapse
|
34
|
Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 2019; 35:60. [PMID: 30919119 DOI: 10.1007/s11274-019-2632-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.
Collapse
Affiliation(s)
- Yue Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Mengran Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Jiangong Duan
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, Gansu Province, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China. .,College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
35
|
Issack BB, Peslherbe GH. Accuracy and precision of simulated free energies: water permeation of hydrated DPPC bilayers as a paradigm. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1572141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bilkiss B. Issack
- Centre for Research in Molecular Modeling, and Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
- Département des sciences expérimentales, Université de Saint-Boniface, Winnipeg, Canada
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, and Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
| |
Collapse
|
36
|
Cao Z, Zhang X, Wang C, Liu L, Zhao L, Wang J, Zhou Y. Different effects of cholesterol on membrane permeation of arginine and tryptophan revealed by bias-exchange metadynamics simulations. J Chem Phys 2019; 150:084106. [PMID: 30823753 DOI: 10.1063/1.5082351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Experiments have shown that cholesterol influences the membrane permeability of small molecules, amino acids, and cell-penetrating peptides. However, their exact translocation mechanisms under the influence of cholesterol remain poorly understood. Given the practical importance of cell-penetrating peptides and the existence of varied cholesterol contents in different cell types, it is necessary to examine the permeation of amino acids in cholesterol-containing membranes at atomic level of details. Here, bias-exchange metadynamics simulations were employed to investigate the molecular mechanism of the membrane permeation of two amino acids Arg and Trp important for cell-penetrating peptides in the presence of different concentrations of cholesterol. We found that the free energy barrier of Arg+ (the protonated form) permeation increased linearly as the cholesterol concentration increased, whereas the barrier of Trp permeation had a rapid increase from 0 mol. % to 20 mol. % cholesterol-containing membranes and nearly unchanged from 20 mol. % to 40 mol. % cholesterol-containing membranes. Arg0 becomes slightly more stable than Arg+ at the center of the dipalmitoylphosphatidylcholine (DPPC) membrane with 40 mol. % cholesterol concentrations. As a result, Arg+ has a similar permeability as Trp at 0 mol. % and 20 mol. % cholesterol, but a significantly lower permeability than Trp at 40 mol. % cholesterol. This difference is caused by the gradual reduction of water defects for Arg+ as the cholesterol concentration increases but lack of water defects for Trp in cholesterol-containing membranes. Strong but different orientation dependence between Arg+ and Trp permeations is observed. These results provide an improved microscopic understanding of amino-acid permeation through cholesterol-containing DPPC membrane systems.
Collapse
Affiliation(s)
- Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xiumei Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Chunling Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Liling Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
37
|
Guan X, Wei D, Hu D. Free Energy Calculation of Transmembrane Ion Permeation: Sample with a Single Reaction Coordinate and Analysis along Transition Path. J Chem Theory Comput 2019; 15:1216-1225. [DOI: 10.1021/acs.jctc.8b01096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoqing Guan
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Dan Hu
- School of Mathematical Sciences, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
38
|
Tesei G, Vazdar M, Lund M. Coarse-grained model of titrating peptides interacting with lipid bilayers. J Chem Phys 2018; 149:244108. [PMID: 30599743 DOI: 10.1063/1.5058234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular-level computer simulations of peptide aggregation, translocation, and protonation at and in biomembranes are impeded by the large time and length scales involved. We present a computationally efficient, coarse-grained, and solvent-free model for the interaction between lipid bilayers and peptides. The model combines an accurate description of mechanical membrane properties with a new granular representation of the dielectric mismatch between lipids and the aqueous phase. All-atom force fields can be easily mapped onto the coarse-grained model, and parameters for coarse-grained monopeptides accurately extrapolate to membrane permeation free energies for the corresponding dipeptides and tripeptides. Acid-base equilibria of titratable amino acid residues are further studied using a constant-pH ensemble, capturing protonation state changes upon membrane translocation. Important differences between histidine, lysine, and arginine are observed, which are in good agreement with experimental observations.
Collapse
Affiliation(s)
- Giulio Tesei
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
39
|
Hu D, Guan X, Wang Y. Weighted least square analysis method for free energy calculations. J Comput Chem 2018; 39:2397-2404. [DOI: 10.1002/jcc.25580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Dan Hu
- School of Mathematical Sciences, Institute of Natural Sciences, and MOE-LSC; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Xiaoqing Guan
- Institute of Natural Sciences, Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yukun Wang
- Institute of Natural Sciences, Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
40
|
Ulmschneider JP, Smith JC, White SH, Ulmschneider MB. The importance of the membrane interface as the reference state for membrane protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2539-2548. [PMID: 30293965 DOI: 10.1016/j.bbamem.2018.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/26/2022]
Abstract
The insertion of nascent polypeptide chains into lipid bilayer membranes and the stability of membrane proteins crucially depend on the equilibrium partitioning of polypeptides. For this, the transfer of full sequences of amino-acid residues into the bilayer, rather than individual amino acids, must be understood. Earlier studies have revealed that the most likely reference state for partitioning very hydrophobic sequences is the membrane interface. We have used μs-scale simulations to calculate the interface-to-transmembrane partitioning free energies ΔGS→TM for two hydrophobic carrier sequences in order to estimate the insertion free energy for all 20 amino acid residues when bonded to the center of a partitioning hydrophobic peptide. Our results show that prior single-residue scales likely overestimate the partitioning free energies of polypeptides. The correlation of ΔGS→TM with experimental full-peptide translocon insertion data is high, suggesting an important role for the membrane interface in translocon-based insertion. The choice of carrier sequence greatly modulates the contribution of each single-residue mutation to the overall partitioning free energy. Our results demonstrate the importance of quantifying the observed full-peptide partitioning equilibrium, which is between membrane interface and transmembrane inserted, rather than combining individual water-to-membrane amino acid transfer free energies.
Collapse
Affiliation(s)
- Jakob P Ulmschneider
- School of Physics and Astronomy and the Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | - Jeremy C Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Biochemistry & Cellular Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Stephen H White
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA, USA
| | | |
Collapse
|
41
|
Sun R, Han Y, Swanson JMJ, Tan JS, Rose JP, Voth GA. Molecular transport through membranes: Accurate permeability coefficients from multidimensional potentials of mean force and local diffusion constants. J Chem Phys 2018; 149:072310. [PMID: 30134730 DOI: 10.1063/1.5027004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Estimating the permeability coefficient of small molecules through lipid bilayer membranes plays an important role in the development of effective drug candidates. In silico simulations can produce acceptable relative permeability coefficients for a series of small molecules; however, the absolute permeability coefficients from simulations are usually off by orders of magnitude. In addition to differences between the lipid bilayers used in vitro and in silico, the poor convergence of permeation free energy profiles and over-simplified diffusion models have contributed to these discrepancies. In this paper, we present a multidimensional inhomogeneous solubility-diffusion model to study the permeability of a small molecule drug (trimethoprim) passing through a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) lipid bilayer. Our approach improves the permeation model in three ways: First, the free energy profile (potential of mean force, PMF) is two-dimensional in two key coordinates rather than simply one-dimensional along the direction normal to the bilayer. Second, the 2-D PMF calculation has improved convergence due to application of the recently developed transition-tempered metadynamics with randomly initialized replicas, while third, the local diffusivity coefficient was calculated along the direction of the minimum free energy path on the two-dimensional PMF. The permeability is then calculated as a line integral along the minimum free energy path of the PMF. With this approach, we report a considerably more accurate permeability coefficient (only 2-5 times larger than the experimental value). We also compare our approach with the common practice of computing permeability coefficients based only on the translation of the center of mass of the drug molecule. Our paper concludes with a discussion of approaches for minimizing the computational cost for the purpose of more rapidly screening a large number of drug candidate molecules.
Collapse
Affiliation(s)
- Rui Sun
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jessica M J Swanson
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jeffrey S Tan
- Small Molecule Design and Development, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - John P Rose
- Small Molecule Design and Development, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
42
|
Sajadi F, Rowley CN. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models. PeerJ 2018; 6:e5472. [PMID: 30128211 PMCID: PMC6097494 DOI: 10.7717/peerj.5472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/28/2018] [Indexed: 12/13/2022] Open
Abstract
The CHARMM36 force field for lipids is widely used in simulations of lipid bilayers. The CHARMM family of force fields were developed for use with the mTIP3P water model. This water model has an anomalously high dielectric constant and low viscosity, which limits its accuracy in the calculation of quantities like permeability coefficients. The TIP3P-FB and TIP4P-FB water models are more accurate in terms of the dielectric constant and transport properties, which could allow more accurate simulations of systems containing water and lipids. To test whether the CHARMM36 lipid force field is compatible with the TIP3P-FB and TIP4P-FB water models, we have performed simulations of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. The calculated headgroup area, compressibility, order parameters, and X-ray form factors are in good agreement with the experimental values, indicating that these improved water models can be used with the CHARMM36 lipid force field without modification when calculating membrane physical properties. The water permeability predicted by these models is significantly different; the mTIP3P-model diffusion in solution and at the lipid-water interface is anomalously fast due to the spuriously low viscosity of mTIP3P-model water, but the potential of mean force of permeation is higher for the TIP3P-FB and TIP4P-FB models due to their high excess chemical potentials. As a result, the rates of water permeation calculated the FB water models are slower than the experimental value by a factor of 15-17, while simulations with the mTIP3P model only underestimate the water permeability by a factor of 3.
Collapse
Affiliation(s)
- Fatima Sajadi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
43
|
M Cordeiro R. Reactive Oxygen and Nitrogen Species at Phospholipid Bilayers: Peroxynitrous Acid and Its Homolysis Products. J Phys Chem B 2018; 122:8211-8219. [PMID: 30078319 DOI: 10.1021/acs.jpcb.8b07158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peroxynitrite is a powerful and long-lived oxidant generated in vivo. Peroxynitrous acid (ONOOH), its protonated form, may penetrate into phospholipid bilayers and undergo homolytic cleavage to nitrogen dioxide (·NO2) and hydroxyl radicals (·OH), causing severe nitro-oxidative damage. The membrane environment is thought to influence ONOOH reactions, but the mechanisms remain speculative. Most experimental techniques lack the level of resolution required to keep track of the motion of very reactive species and their interactions with the membrane. Here, we performed molecular dynamics simulations of the permeation, interactions, and dynamics of ONOOH and its homolysis products in the phospholipid membrane environment. We started by developing an ONOOH model that successfully accounted for its conformational equilibria and solvation energies. Membrane permeation of ONOOH was accompanied by conformational changes. ONOOH exhibited a strong tendency to bind to and accumulate at the membrane headgroup region. There, ONOOH homolysis led to ·NO2 radicals, which in turn partitioned to the membrane interior. About one-third of the ·OH radicals readily escaped to the aqueous phase within 1 ns. However, a significant number of ·OH radicals became trapped at the lipid headgroup region for a longer period. The possible implications for membrane-based nitration and oxidation processes were discussed.
Collapse
Affiliation(s)
- Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , Avenida dos Estados 5001 , CEP 09210-580 Santo André , São Paulo , Brazil
| |
Collapse
|
44
|
Menichetti R, Kanekal KH, Kremer K, Bereau T. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force. J Chem Phys 2018; 147:125101. [PMID: 28964031 DOI: 10.1063/1.4987012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The partitioning of small molecules in cell membranes-a key parameter for pharmaceutical applications-typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity-already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.
Collapse
Affiliation(s)
- Roberto Menichetti
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kiran H Kanekal
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
45
|
Gumbart JC, Ulmschneider MB, Hazel A, White SH, Ulmschneider JP. Computed Free Energies of Peptide Insertion into Bilayers are Independent of Computational Method. J Membr Biol 2018; 251:345-356. [PMID: 29520628 PMCID: PMC6030508 DOI: 10.1007/s00232-018-0026-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
We show that the free energy of inserting hydrophobic peptides into lipid bilayer membranes from surface-aligned to transmembrane inserted states can be reliably calculated using atomistic models. We use two entirely different computational methods: high temperature spontaneous peptide insertion calculations as well as umbrella sampling potential-of-mean-force (PMF) calculations, both yielding the same energetic profiles. The insertion free energies were calculated using two different protein and lipid force fields (OPLS protein/united-atom lipids and CHARMM36 protein/all-atom lipids) and found to be independent of the simulation parameters. In addition, the free energy of insertion is found to be independent of temperature for both force fields. However, we find major difference in the partitioning kinetics between OPLS and CHARMM36, likely due to the difference in roughness of the underlying free energy surfaces. Our results demonstrate not only a reliable method to calculate insertion free energies for peptides, but also represent a rare case where equilibrium simulations and PMF calculations can be directly compared.
Collapse
Affiliation(s)
| | | | | | - Stephen H White
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA, USA
| | - Jakob P Ulmschneider
- Department of Physics and the Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
46
|
Klug J, Triguero C, Del Pópolo MG, Tribello GA. Using Intrinsic Surfaces To Calculate the Free-Energy Change When Nanoparticles Adsorb on Membranes. J Phys Chem B 2018; 122:6417-6422. [DOI: 10.1021/acs.jpcb.8b03661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joaquín Klug
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
- CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, CP5500 Mendoza, Argentina
| | - Carles Triguero
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Mario G. Del Pópolo
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
- CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, CP5500 Mendoza, Argentina
| | - Gareth A. Tribello
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
47
|
Metronidazole within phosphatidylcholine lipid membranes: New insights to improve the design of imidazole derivatives. Eur J Pharm Biopharm 2018; 129:204-214. [PMID: 29859282 DOI: 10.1016/j.ejpb.2018.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Metronidazole is a imidazole derivative with antibacterial and antiprotozoal activity. Despite its therapeutic efficacy, several studies have been developing new imidazole derivatives with lower toxicity. Considering that drug-membrane interactions are key factors for drugs pharmacokinetic and pharmacodynamic properties, the aim of this work is to provide new insights into the structure-toxicity relationship of metronidazole within phosphatidylcholine membranes. For that purpose, lipid membrane models (liposomes and monolayers) composed of dipalmitoylphosphatidylcholine were used. Experimental techniques (determination of partition coefficients and Langmuir isotherm measurements) were combined with molecular dynamics simulations. Different pHs and lipid phases were evaluated to enable a better extrapolation for in vivo conditions. The partition of metronidazole depends on the pH and on the biphasic system (octanol/water or DPPC/water system). At pH 1.2, metronidazole is hydrophilic. At pH 7.4, metronidazole disturbs the order and the packing of phospholipids. For this toxic effect, the hydroxyl group of the side chain of metronidazole is crucial by interacting with the water embedded in the membrane and with the phosphate group and the apolar chains of phospholipids.
Collapse
|
48
|
Cordeiro RM. Molecular Structure and Permeability at the Interface between Phase-Separated Membrane Domains. J Phys Chem B 2018; 122:6954-6965. [DOI: 10.1021/acs.jpcb.8b03406] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rodrigo M. Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil
| |
Collapse
|
49
|
Kumari P, Kaur S, Sharma S, Kashyap HK. Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations. J Chem Phys 2018; 148:165102. [DOI: 10.1063/1.5021310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shobha Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
50
|
Dimer Interface of the Human Serotonin Transporter and Effect of the Membrane Composition. Sci Rep 2018; 8:5080. [PMID: 29572541 PMCID: PMC5865177 DOI: 10.1038/s41598-018-22912-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
The oligomeric state of membrane proteins has recently emerged in many cases as having an effect on their function. However, the intrinsic dynamics of their spatial organization in cells and model systems makes it challenging to characterize. Here we use molecular dynamics (MD) simulations at multiple resolutions to determine the dimer conformation of the human serotonin transporter (hSERT). From self-assembly simulations we predict dimer candidates and subsequently quantify their relative strength. We use umbrella sampling (US) replica exchange MD simulations for which we present extensive analysis of their efficiency and improved sampling compared to regular US MD simulations. The data shows that the most stable hSERT dimer interface is symmetrical and involves transmembrane helix 12 (TM12), similar to the crystal structure of the bacterial homologue LeuT, but with a slightly different orientation. We also describe the supramolecular organization of hSERT from a 250 μs self-assembly simulation. Finally, the effects of the presence of phosphatidylinositol bisphosphate or cholesterol in the membrane model has been quantified for the TM12-TM12 predicted interface. Collectively, the presented data bring new insight to the area of protein and lipid interplay in biological membranes.
Collapse
|