1
|
Lemay AC, Sontarp EJ, Martinez D, Maruri P, Mohammed R, Neapole R, Wiese M, Willemsen JAR, Bourg IC. Molecular Dynamics Simulation Prediction of the Partitioning Constants ( KH, Kiw, Kia) of 82 Legacy and Emerging Organic Contaminants at the Water-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6296-6308. [PMID: 37014786 DOI: 10.1021/acs.est.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The tendency of organic contaminants (OCs) to partition between different phases is a key set of properties that underlie their human and ecological health impacts and the success of remediation efforts. A significant challenge associated with these efforts is the need for accurate partitioning data for an ever-expanding list of OCs and breakdown products. All-atom molecular dynamics (MD) simulations have the potential to help generate these data, but existing studies have applied these techniques only to a limited variety of OCs. Here, we use established MD simulation approaches to examine the partitioning of 82 OCs, including many compounds of critical concern, at the water-air interface. Our predictions of the Henry's law constant (KH) and interfacial adsorption coefficients (Kiw, Kia) correlate strongly with experimental results, indicating that MD simulations can be used to predict KH, Kiw, and Kia values with mean absolute deviations of 1.1, 0.3, and 0.3 logarithmic units after correcting for systematic bias, respectively. A library of MD simulation input files for the examined OCs is provided to facilitate future investigations of the partitioning of these compounds in the presence of other phases.
Collapse
Affiliation(s)
- Amélie C Lemay
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ethan J Sontarp
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniela Martinez
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Maruri
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Raneem Mohammed
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan Neapole
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Morgan Wiese
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jennifer A R Willemsen
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Gonçalves YMH, Horta BAC. gmak: A Parameter-Space Mapping Strategy for Force-Field Calibration. J Chem Theory Comput 2023; 19:605-618. [PMID: 36634285 DOI: 10.1021/acs.jctc.2c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the context of classical molecular simulations, the accuracy of a force field is highly influenced by the values of the relevant simulation parameters. In this work, a parameter-space mapping (PSM) workflow is proposed to aid in the calibration of force-field parameters, based mainly on the following features: (i) regular-grid discretization of the search space; (ii) partial sampling of the search-space grid; (iii) training of surrogate models to predict the estimates of the target properties for nonsampled parameter sets; (iv) post hoc interpretation of the results in terms of multiobjective optimization concepts; (v) attenuation of statistical errors achieved via empiric extension of the duration of the simulations; (vi) iterative search-space translation according to a user-defined scalar objective function that measures the accuracy of the force field (e.g., the weighted root-mean-square deviation of the target properties relative to the reference data). This combination of features results in a hybrid of a single- and a multiobjective optimization strategy, allowing for the approximate determination of both a local minimum of the chosen objective function and its neighboring Pareto efficient points. The PSM workflow is implemented in the extensible Python program gmak, which is made available in the Git repository at http://github.com/mssm-labmmol/gmak. Using this implementation, the PSM workflow was tested in a proof-of-concept fashion in the recalibration of the Lennard-Jones parameters of the 3-point Optimal Point Charge (OPC3) water model for compatibility with the GROMOS treatment of nonbonded interactions. The recalibrated model reproduces typical pure-liquid properties with an accuracy similar to the original OPC3 model and represents a significant improvement relative to the Simple Point Charge (SPC) model, which is the official recommendation for simulations using GROMOS force fields.
Collapse
Affiliation(s)
- Yan M H Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Peers Consulting & Technology, Av. Ibirapuera, 1753-18° andar, Moema, São Paulo, São Paulo 04029-90, Brazil
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Peers Consulting & Technology, Av. Ibirapuera, 1753-18° andar, Moema, São Paulo, São Paulo 04029-90, Brazil
- Laboratory of Applied Intelligence, University of Vale do Itajaí, Itajaí, Santa Catarina 88302-901, Brazil
| |
Collapse
|
3
|
Oliveira MP, Gonçalves YMH, Ol Gheta SK, Rieder SR, Horta BAC, Hünenberger PH. Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set. J Chem Theory Comput 2022; 18:6757-6778. [PMID: 36190354 DOI: 10.1021/acs.jctc.2c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔHvap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard-Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κT, the isobaric thermal-expansion coefficient αP, the isobaric heat capacity cP, the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔGwat, and the free energy of solvation ΔGche in cyclohexane. For the target properties ρliq and ΔHvap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κT, αP, ϵ, D, and ΔGche; and less accurate results in terms of cP and ΔGwat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution.
Collapse
Affiliation(s)
- Marina P Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Yan M H Gonçalves
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - S Kashef Ol Gheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A C Horta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
P. Oliveira M, Hünenberger PH. Systematic optimization of a fragment-based force field against experimental pure-liquid properties considering large compound families: application to oxygen and nitrogen compounds. Phys Chem Chem Phys 2021; 23:17774-17793. [PMID: 34350931 PMCID: PMC8386690 DOI: 10.1039/d1cp02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022]
Abstract
The CombiFF approach is a workflow for the automated refinement of force-field parameters against experimental condensed-phase data, considering entire classes of organic molecules constructed using a fragment library via combinatorial isomer enumeration. One peculiarity of this approach is that it relies on an electronegativity-equalization scheme to account for induction effects within molecules, with values of the atomic hardness and electronegativity as electrostatic parameters, rather than the partial charges themselves. In a previous article [M. P. Oliveira, M. Andrey, S. R. Rieder, L. Kern, D. F. Hahn, S. Riniker, B. A. C. Horta and P. H. Hünenberger, J. Chem. Theory. Comput. 2020, 16, 7525], CombiFF was introduced and applied to calibrate a GROMOS-compatible united-atom force field for the saturated acyclic (halo-)alkane family. Here, this scheme is employed for the construction of a corresponding force field for saturated acyclic compounds encompassing eight common chemical functional groups involving oxygen and/or nitrogen atoms, namely: ether, aldehyde, ketone, ester, alcohol, carboxylic acid, amine, and amide. Monofunctional as well as homo-polyfunctional compounds are considered. A total of 1712 experimental liquid densities ρliq and vaporization enthalpies ΔHvap concerning 1175 molecules are used for the calibration (339 molecules) and validation (836 molecules) of the 102 non-bonded interaction parameters of the force field. Using initial parameter values based on the GROMOS 2016H66 parameter set, convergence is reached after five iterations. Given access to one processor per simulated system, this operation only requires a few days of wall-clock computing time. After optimization, the root-mean-square deviations from experiment are 29.9 (22.4) kg m-3 for ρliq and 4.1 (5.5) kJ mol-1 for ΔHvap for the calibration (validation) set. Thus, a very good level of agreement with experiment is achieved in terms of these two properties, although the errors are inhomogeneously distributed across the different chemical functional groups.
Collapse
Affiliation(s)
- Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 5503
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 5503
| |
Collapse
|
5
|
Spoel D, Zhang J, Zhang H. Quantitative predictions from molecular simulations using explicit or implicit interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
| | - Jin Zhang
- Department of Chemistry Southern University of Science and Technology Shenzhen China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
6
|
Abraham MH, Acree WE, Liu X. Descriptors for High‐Energy Nitro Compounds; Estimation of Thermodynamic, Physicochemical and Environmental Properties. PROPELLANTS EXPLOSIVES PYROTECHNICS 2021. [DOI: 10.1002/prep.202000117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael H. Abraham
- Department of Chemistry University College London, 20 Gordon St London WC1H, 0AJ UK
| | - William E. Acree
- Department of Chemistry 1155 Union Circle Drive #305070 University of North Texas Denton, TX 76203-5017 USA
| | - Xiangli Liu
- School of Pharmacy and Medical Sciences Faculty of Life Sciences University of Bradford Bradford BD7 1DP UK
| |
Collapse
|
7
|
Oliveira MP, Andrey M, Rieder SR, Kern L, Hahn DF, Riniker S, Horta BAC, Hünenberger PH. Systematic Optimization of a Fragment-Based Force Field against Experimental Pure-Liquid Properties Considering Large Compound Families: Application to Saturated Haloalkanes. J Chem Theory Comput 2020; 16:7525-7555. [DOI: 10.1021/acs.jctc.0c00683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Maurice Andrey
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R. Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Leyla Kern
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - David F. Hahn
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
8
|
Kashefolgheta S, Oliveira MP, Rieder SR, Horta BAC, Acree WE, Hünenberger PH. Evaluating Classical Force Fields against Experimental Cross-Solvation Free Energies. J Chem Theory Comput 2020; 16:7556-7580. [DOI: 10.1021/acs.jctc.0c00688] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sadra Kashefolgheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R. Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - William E. Acree
- Department of Chemistry, University of North Texas, 1155 Union Circle Drive #305070, Denton, Texas 76203, United States
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
9
|
He X, Man VH, Yang W, Lee TS, Wang J. A fast and high-quality charge model for the next generation general AMBER force field. J Chem Phys 2020; 153:114502. [PMID: 32962378 DOI: 10.1063/5.0019056] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The General AMBER Force Field (GAFF) has been broadly used by researchers all over the world to perform in silico simulations and modelings on diverse scientific topics, especially in the field of computer-aided drug design whose primary task is to accurately predict the affinity and selectivity of receptor-ligand binding. The atomic partial charges in GAFF and the second generation of GAFF (GAFF2) were originally developed with the quantum mechanics derived restrained electrostatic potential charge, but in practice, users usually adopt an efficient charge method, Austin Model 1-bond charge corrections (AM1-BCC), based on which, without expensive ab initio calculations, the atomic charges could be efficiently and conveniently obtained with the ANTECHAMBER module implemented in the AMBER software package. In this work, we developed a new set of BCC parameters specifically for GAFF2 using 442 neutral organic solutes covering diverse functional groups in aqueous solution. Compared to the original BCC parameter set, the new parameter set significantly reduced the mean unsigned error (MUE) of hydration free energies from 1.03 kcal/mol to 0.37 kcal/mol. More excitingly, this new AM1-BCC model also showed excellent performance in the solvation free energy (SFE) calculation on diverse solutes in various organic solvents across a range of different dielectric constants. In this large-scale test with totally 895 neutral organic solvent-solute systems, the new parameter set led to accurate SFE predictions with the MUE and the root-mean-square-error of 0.51 kcal/mol and 0.65 kcal/mol, respectively. This newly developed charge model, ABCG2, paved a promising path for the next generation GAFF development.
Collapse
Affiliation(s)
- Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Viet H Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Tai-Sung Lee
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
10
|
Applicability of a thermodynamic cycle approach for a force field parametrization targeting non-aqueous solvation free energies. J Comput Aided Mol Des 2019; 34:71-82. [PMID: 31781991 DOI: 10.1007/s10822-019-00261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Accurate solvation free energy ΔGsolv predictions require well parametrized force fields. In order to refit Lennard-Jones (LJ) parameters for improved ΔGsolv predictions for a variety of compound classes and chemical environments, a large number of ΔGsolv calculations is required. As the calculation of ΔGsolv is computational expensive, there is need for efficient but precise calculation methods. In this work, we focus on the computation of non-aqueous solvation free energies. We compare ΔGsolv results from highly precise reference simulations for transferring a solute from the vacuum into a condensed phase and results obtained from a thermodynamic cycle implementation. As test systems, we alter LJ parameters ε and σ of widely used GAFF atom types ca, cl, n1, oh and os in various solute/solvent combinations. We examine the degree of configurational space overlap and find an impact by hydrogen bonds and the solvent accessible surface area. We conclude that the application of a thermodynamic cycle for the parametrization of force fields targeting ΔGsolv is useful if the adaptation of LJ parameters is limited to atom types in the solute or if only ε is changed.
Collapse
|
11
|
Affiliation(s)
| | - Chloe Luyet
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Jeffrey J. Potoff
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| |
Collapse
|
12
|
Mecklenfeld A, Raabe G. Comparison of RESP and IPolQ-Mod Partial Charges for Solvation Free Energy Calculations of Various Solute/Solvent Pairs. J Chem Theory Comput 2017; 13:6266-6274. [PMID: 29125770 DOI: 10.1021/acs.jctc.7b00692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calculation of solvation free energies ΔGsolv by molecular simulations is of great interest as they are linked to other physical properties such as relative solubility, partition coefficient, and activity coefficient. However, shortcomings in molecular models can lead to ΔGsolv deviations from experimental data. Various studies have demonstrated the impact of partial charges on free energy results. Consequently, calculation methods for partial charges aimed at more accurate ΔGsolv predictions are the subject of various studies in the literature. Here we compare two methods to derive partial charges for the general AMBER force field (GAFF), i.e. the default RESP as well as the physically motivated IPolQ-Mod method that implicitly accounts for polarization costs. We study 29 solutes which include characteristic functional groups of drug-like molecules, and 12 diverse solvents were examined. In total, we consider 107 solute/solvent pairs including two water models TIP3P and TIP4P/2005. Comparison with experimental results yields better agreement for TIP3P, regardless of the partial charge scheme. The overall performance of GAFF/RESP and GAFF/IPolQ-Mod is similar, though specific shortcomings in the description of ΔGsolv for both RESP and IPolQ-Mod can be identified. However, the high correlation between free energies obtained with GAFF/RESP and GAFF/IPolQ-Mod demonstrates the compatibility between the modified charges and remaining GAFF parameters.
Collapse
Affiliation(s)
- Andreas Mecklenfeld
- Institut für Thermodynamik, Technische Universität Braunschweig , Hans-Sommer-Strasse 5, 38106 Braunschweig, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig , Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Gabriele Raabe
- Institut für Thermodynamik, Technische Universität Braunschweig , Hans-Sommer-Strasse 5, 38106 Braunschweig, Germany
| |
Collapse
|
13
|
Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 2017; 31:201-211. [PMID: 28074360 DOI: 10.1007/s10822-016-0005-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/22/2016] [Indexed: 02/01/2023]
Abstract
The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.
Collapse
|
14
|
Horta BAC, Merz PT, Fuchs PFJ, Dolenc J, Riniker S, Hünenberger PH. A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set. J Chem Theory Comput 2016; 12:3825-50. [DOI: 10.1021/acs.jctc.6b00187] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno A. C. Horta
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Pascal T. Merz
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Patrick F. J. Fuchs
- Institut Jacques Monod, UMR 7592 CNRS, Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jozica Dolenc
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Chemistry,
Biology and Pharmacy Information Center, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
15
|
Zafar A, Reynisson J. Hydration Free Energy as a Molecular Descriptor in Drug Design: A Feasibility Study. Mol Inform 2016; 35:207-14. [PMID: 27492087 DOI: 10.1002/minf.201501035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/11/2016] [Indexed: 01/29/2023]
Abstract
In this work the idea was investigated whether calculated hydration energy (ΔGhyd ) can be used as a molecular descriptor in defining promising regions of chemical space for drug design. Calculating ΔGhyd using the Density Solvation Model (SMD) in conjunction with the density functional theory (DFT) gave an excellent correlation with experimental values. Furthermore, calculated ΔGhyd correlates reasonably well with experimental water solubility (r(2) =0.545) and also log P (r(2) =0.530). Three compound collections were used: Known drugs (n=150), drug-like compounds (n=100) and simple organic compounds (n=140). As an approximation only molecules, which do not de/protonate at physiological pH were considered. A relatively broad distribution was seen for the known drugs with an average at -15.3 kcal/mol and a standard deviation of 7.5 kcal/mol. Interestingly, much lower averages were found for the drug-like compounds (-7.5 kcal/mol) and the simple organic compounds (-3.1 kcal/mol) with tighter distributions; 4.3 and 3.2 kcal/mol, respectively. This trend was not observed for these collections when calculated log P and log S values were used. The considerable greater exothermic ΔGhyd average for the known drugs clearly indicates in order to develop a successful drug candidate value of ΔGhyd <-5 kcal/mol or less is preferable.
Collapse
Affiliation(s)
- Ayesha Zafar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, Tel. +64-9-373-7599 ext. 83746, Fax. +64-9-373-7422
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, Tel. +64-9-373-7599 ext. 83746, Fax. +64-9-373-7422.
| |
Collapse
|
16
|
Zhang J, Tuguldur B, van der Spoel D. Force Field Benchmark of Organic Liquids. 2. Gibbs Energy of Solvation. J Chem Inf Model 2015; 55:1192-201. [DOI: 10.1021/acs.jcim.5b00106] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Uppsala Center for Computational Chemistry, Science for Life Laboratory,
Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - Badamkhatan Tuguldur
- Uppsala Center for Computational Chemistry, Science for Life Laboratory,
Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
- Department of Biology,
School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory,
Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
17
|
Hansen N, van Gunsteren WF. Practical Aspects of Free-Energy Calculations: A Review. J Chem Theory Comput 2014; 10:2632-47. [PMID: 26586503 DOI: 10.1021/ct500161f] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Free-energy calculations in the framework of classical molecular dynamics simulations are nowadays used in a wide range of research areas including solvation thermodynamics, molecular recognition, and protein folding. The basic components of a free-energy calculation, that is, a suitable model Hamiltonian, a sampling protocol, and an estimator for the free energy, are independent of the specific application. However, the attention that one has to pay to these components depends considerably on the specific application. Here, we review six different areas of application and discuss the relative importance of the three main components to provide the reader with an organigram and to make nonexperts aware of the many pitfalls present in free energy calculations.
Collapse
Affiliation(s)
- Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany.,Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| |
Collapse
|
18
|
Jackson NE, Chen LX, Ratner MA. Solubility of Nonelectrolytes: A First-Principles Computational Approach. J Phys Chem B 2014; 118:5194-202. [DOI: 10.1021/jp5024197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nicholas E. Jackson
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X. Chen
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mark A. Ratner
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|