• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4665853)   Today's Articles (2563)   Subscriber (51694)
For: Brorsen KR, Zahariev F, Nakata H, Fedorov DG, Gordon MS. Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method. J Chem Theory Comput 2014;10:5297-307. [DOI: 10.1021/ct500808p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Gregorovič A. Ab initio calculations of electric field gradients in H-bond rich molecular crystals with nearly experimental accuracy. J Chem Phys 2025;162:034105. [PMID: 39812250 DOI: 10.1063/5.0237730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]  Open
2
Sun Y. Accelerating Density Matrix Embedding with Stochastic Density Fitting Theory: An Application to Hydrogen Bonded Clusters. J Chem Theory Comput 2024. [PMID: 39029091 DOI: 10.1021/acs.jctc.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
3
Bowling PE, Broderick DR, Herbert JM. Fragment-Based Calculations of Enzymatic Thermochemistry Require Dielectric Boundary Conditions. J Phys Chem Lett 2023;14:3826-3834. [PMID: 37061921 DOI: 10.1021/acs.jpclett.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
4
Nakata H, Kitoh-Nishioka H, Sakai W, Choi CH. Toward Accurate Prediction of Ion Mobility in Organic Semiconductors by Atomistic Simulation. J Chem Theory Comput 2023;19:1517-1528. [PMID: 36757219 DOI: 10.1021/acs.jctc.2c01221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
5
Nakata H, Fedorov DG. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method. J Chem Theory Comput 2023;19:1276-1285. [PMID: 36753486 DOI: 10.1021/acs.jctc.2c01177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
6
Kumar A, DeGregorio N, Iyengar SS. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions. J Chem Theory Comput 2021;17:6671-6690. [PMID: 34623129 DOI: 10.1021/acs.jctc.1c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
7
Ricard TC, Iyengar SS. Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. J Chem Theory Comput 2020;16:4790-4812. [DOI: 10.1021/acs.jctc.9b01089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
8
Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020;152:154102. [PMID: 32321259 DOI: 10.1063/5.0005188] [Citation(s) in RCA: 581] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
9
Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. Methods Mol Biol 2020. [PMID: 32016888 DOI: 10.1007/978-1-0716-0282-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
10
Kumar A, Iyengar SS. Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies. J Chem Theory Comput 2019;15:5769-5786. [DOI: 10.1021/acs.jctc.9b00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
11
Lee SJR, Ding F, Manby FR, Miller TF. Analytical gradients for projection-based wavefunction-in-DFT embedding. J Chem Phys 2019. [DOI: 10.1063/1.5109882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
12
Liu J, Rana B, Liu KY, Herbert JM. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics. J Phys Chem Lett 2019;10:3877-3886. [PMID: 31251619 DOI: 10.1021/acs.jpclett.9b01214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
13
Nakata H, Fedorov DG. Simulations of infrared and Raman spectra in solution using the fragment molecular orbital method. Phys Chem Chem Phys 2019;21:13641-13652. [DOI: 10.1039/c9cp00940j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
14
Meitei OR, Heßelmann A. Geometry optimizations with the incremental molecular fragmentation method. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
15
Ricard TC, Haycraft C, Iyengar SS. Adaptive, Geometric Networks for Efficient Coarse-Grained Ab Initio Molecular Dynamics with Post-Hartree–Fock Accuracy. J Chem Theory Comput 2018;14:2852-2866. [DOI: 10.1021/acs.jctc.8b00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
16
DeGregorio N, Iyengar SS. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions. J Chem Theory Comput 2017;14:30-47. [DOI: 10.1021/acs.jctc.7b00927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
17
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
18
Haycraft C, Li J, Iyengar SS. Efficient, “On-the-Fly”, Born–Oppenheimer and Car–Parrinello-type Dynamics with Coupled Cluster Accuracy through Fragment Based Electronic Structure. J Chem Theory Comput 2017;13:1887-1901. [DOI: 10.1021/acs.jctc.6b01107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
19
Pruitt SR, Steinmann C. Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method. J Phys Chem A 2017;121:1797-1807. [DOI: 10.1021/acs.jpca.6b12830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Nakata H, Nishimoto Y, Fedorov DG. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method. J Chem Phys 2016;145:044113. [DOI: 10.1063/1.4959231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
21
Li J, Haycraft C, Iyengar SS. Hybrid Extended Lagrangian, Post-Hartree–Fock Born–Oppenheimer ab Initio Molecular Dynamics Using Fragment-Based Electronic Structure. J Chem Theory Comput 2016;12:2493-508. [DOI: 10.1021/acs.jctc.6b00001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
22
Fedorov DG, Kitaura K. Subsystem Analysis for the Fragment Molecular Orbital Method and Its Application to Protein-Ligand Binding in Solution. J Phys Chem A 2016;120:2218-31. [PMID: 26949816 DOI: 10.1021/acs.jpca.6b00163] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
23
Pruitt SR, Nakata H, Nagata T, Mayes M, Alexeev Y, Fletcher G, Fedorov DG, Kitaura K, Gordon MS. Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method. J Chem Theory Comput 2016;12:1423-35. [DOI: 10.1021/acs.jctc.5b01208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
24
Nishimoto Y, Fedorov DG. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Phys Chem Chem Phys 2016;18:22047-61. [DOI: 10.1039/c6cp02186g] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Nishimoto Y, Nakata H, Fedorov DG, Irle S. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. J Phys Chem Lett 2015;6:5034-9. [PMID: 26623658 DOI: 10.1021/acs.jpclett.5b02490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
26
Liu J, Zhu T, Wang X, He X, Zhang JZH. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins. J Chem Theory Comput 2015;11:5897-905. [PMID: 26642993 DOI: 10.1021/acs.jctc.5b00558] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
27
Willow SY, Salim MA, Kim KS, Hirata S. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction. Sci Rep 2015;5:14358. [PMID: 26400690 PMCID: PMC4585828 DOI: 10.1038/srep14358] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/28/2015] [Indexed: 11/24/2022]  Open
28
Li J, Iyengar SS. Ab Initio Molecular Dynamics Using Recursive, Spatially Separated, Overlapping Model Subsystems Mixed within an ONIOM-Based Fragmentation Energy Extrapolation Technique. J Chem Theory Comput 2015;11:3978-91. [DOI: 10.1021/acs.jctc.5b00433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
29
Extension of the fragment molecular orbital method to treat large open-shell systems in solution. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method. J Chem Phys 2015;142:124101. [DOI: 10.1063/1.4915068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
31
A Mini-review on Chemoinformatics Approaches for Drug Discovery. JOURNAL OF COMPUTER AIDED CHEMISTRY 2015. [DOI: 10.2751/jcac.16.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA