1
|
Zhao D, Zhao Y, He X, Li Y, Ayers PW, Liu S. Accurate and Efficient Prediction of Post-Hartree-Fock Polarizabilities of Condensed-Phase Systems. J Chem Theory Comput 2023; 19:6461-6470. [PMID: 37676647 DOI: 10.1021/acs.jctc.3c00646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
To accurately and efficiently predict the molecular response properties (such as polarizability) at post-Hartree-Fock levels for condensed-phase systems under periodic boundary conditions (PBC) is still an unaccomplished and ongoing task. We demonstrate that static isotropic polarizabilities can be cost-effectively predicted at post-Hartree-Fock levels by combining the linear-scaling generalized energy-based fragmentation (GEBF) and information-theoretic approach (ITA) quantities. In PBC-GEBF, the total molecular polarizability of an extended system is obtained as a linear combination of the corresponding quantities of a series of small embedded subsystems of several monomers. Here, we show that in the PBC-GEBF-ITA framework, one can obtain the molecular polarizabilities and establish linear relations to ITA quantities. Once these relations are established for smaller subsystems, one can predict the polarizabilities of larger subsystems directly from the molecular wavefunction (or electron density) via ITA quantities. Alternatively, one can determine the total molecular polarizability via a linear combination equation in PBC-GEBF. We have corroborated that this newly proposed PBC-GEBF-ITA protocol is much more efficient than the original PBC-GEBF approach but is not much less accurate and that this conclusion holds for both many-body perturbation theory and the coupled cluster calculations. Good efficiency and transferability of the PBC-GEBF-ITA protocol are demonstrated for periodic systems with several hundred atoms in a unit cell.
Collapse
Affiliation(s)
- Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Yilin Zhao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, P. R. China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
2
|
Huo J, Chen J, Liu P, Hong B, Zhang J, Dong H, Li S. Microscopic Mechanism of Proton Transfer in Pure Water under Ambient Conditions. J Chem Theory Comput 2023. [PMID: 37365994 DOI: 10.1021/acs.jctc.3c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Water molecules and the associated proton transfer (PT) are prevalent in chemical and biological systems and have been a hot research topic. Spectroscopic characterization and ab initio molecular dynamics (AIMD) simulations have previously revealed insights into acidic and basic liquids. Presumably, the situation in the acidic/basic solution is not necessarily the same as in pure water; in addition, the autoionization constant for water is only 10-14 under ambient conditions, making the study of PT in pure water challenging. To overcome this issue, we modeled periodic water box systems containing 1000 molecules for tens of nanoseconds based on a neural network potential (NNP) with quantum mechanical accuracy. The NNP was generated by training a dataset containing the energies and atomic forces of 17 075 configurations of periodic water box systems, and these data points were calculated at the MP2 level that considers electron correlation effects. We found that the size of the system and the duration of the simulation have a significant impact on the convergence of the results. With these factors considered, our simulations showed that hydronium (H3O+) and hydroxide (OH-) ions in water have distinct hydration structures, thermodynamic and kinetic properties, e.g., the longer-lasting and more stable hydrated structure of OH- ions than that of H3O+, as well as a significantly higher free energy barrier for the OH--associated PT than that of H3O+, leading the two to exhibit completely different PT behaviors. Given these characteristics, we further found that PT via OH- ions tends not to occur multiple times or between many molecules. In contrast, PT via H3O+ can synergistically occur among multiple molecules and prefers to adopt a cyclic pattern among three water molecules, while it occurs mostly in a chain pattern when more water molecules are involved. Therefore, our studies provide a detailed and solid microscopic explanation for the PT process in pure water.
Collapse
Affiliation(s)
- Jun Huo
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Jianghao Chen
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Pei Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Benkun Hong
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Chen B, Xu X. Discriminating and understanding molecular crystal polymorphism. J Comput Chem 2023; 44:969-979. [PMID: 36585855 DOI: 10.1002/jcc.27057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 01/01/2023]
Abstract
Polymorph discrimination for a molecular crystal has long been a challenging task, which, nonetheless, is a major concern in the pharmaceutical industry. In this work, we have investigated polymorph discrimination on three different molecular crystals, tetrolic acid, oxalic acid, and oxalyl dihydrazide, covering both packing polymorphism and conformational polymorphism. To gain more understanding, we have performed energy decomposition analysis based on many-body expansion, and have compared the results from the XO-PBC method, that is, the eXtended ONIOM method (XO) with the periodic boundary condition (PBC), with those from some commonly used dispersion corrected density functional theory (DFT-D) methods. It is shown here that, with the XYG3 doubly hybrid functional chosen as the target high level to capture the intra- and short-range intermolecular interactions, and the periodic PBE as the basic low level to take long range interactions into account, the XO-PBC(XYG3:PBE) method not only obtains the correct experimental stability orderings, but also predicts reasonable polymorph energy ranges for all three cases. Our results have demonstrated the usefulness of the present theoretical methods, in particular XO-PBC, while highlighted the importance of a better treatment of different kinds of interactions to be beneficial to polymorph control.
Collapse
Affiliation(s)
- Bozhu Chen
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, China
| | - Xin Xu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, China.,Hefei National Laboratory, Hefei, China
| |
Collapse
|
4
|
Hong B, Fang T, Li W, Li S. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach. J Chem Phys 2023; 158:044117. [PMID: 36725497 DOI: 10.1063/5.0137072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The generalized energy-based fragmentation (GEBF) approach under periodic boundary conditions (PBCs) has been developed to facilitate calculations of molecular crystals containing large molecules. The PBC-GEBF approach can help predict structures and properties of molecular crystals at different theory levels by performing molecular quantum chemistry calculations on a series of non-periodic subsystems constructed from the studied systems. A more rigorous formula of the forces on translational vectors of molecular crystals was proposed and implemented, enabling more reliable predictions of crystal structures. Our benchmark results on several typical molecular crystals show that the PBC-GEBF approach could reproduce the forces on atoms and the translational vectors and the optimized crystal structures from the corresponding conventional periodic methods. The improved PBC-GEBF approach is then applied to predict the crystal structures and vibrational spectra of two molecular crystals containing large molecules. The PBC-GEBF approach can provide a satisfactory description on the crystal structure of a molecular crystal containing 312 atoms in a unit cell at density-fitting second-order Møller-Plesset perturbation theory and density functional theory (DFT) levels and the infrared vibrational spectra of another molecular crystal containing 864 atoms in a unit cell at the DFT level. The PBC-GEBF approach is expected to be a promising theoretical tool for electronic structure calculations on molecular crystals containing large molecules.
Collapse
Affiliation(s)
- Benkun Hong
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Tao Fang
- Genesys Microelectronics (Shanghai) Co., Ltd., 6th Floor, 11th Building, No. 3000 LongDong Road, Pu Dong District, Shanghai, People's Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Ni Z, Neese F, Li W, Guo Y, Li S. Cluster-in-Molecule Method Combined with the Domain-Based Local Pair Natural Orbital Approach for Electron Correlation Calculations of Periodic Systems. J Chem Theory Comput 2022; 18:6510-6521. [PMID: 36240189 DOI: 10.1021/acs.jctc.2c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cluster-in-molecule (CIM) method was extended to systems with periodic boundary conditions (PBCs) in a previous work (PBC-CIM) [J. Chem. Theory Comput.2019, 15, 2933], which is able to compute the electronic structures of periodic systems at second-order Møller-Plesset perturbation theory (MP2) and coupled cluster singles and doubles (CCSD) levels. However, the high computational costs of CCSD with respect to the size of clusters limit the usage of PBC-CIM to crystals with small or medium unit cells. In this work, we further develop the PBC-CIM method by employing the domain-based local pair natural orbital (DLPNO) methods for the electron correlation calculations of clusters to reduce the computational costs. The combined approach allows CCSD with perturbative triples, denoted as CCSD(T), to be computationally available for accurate descriptions of periodic systems. The distant-pair correction is also implemented to improve the accuracy of PBC-CIM. As in the molecular cases, the distant pair correction significantly improves the accuracy of various PBC-CIM methods with few additional costs. The PBC-CIM-DLPNO-CCSD(T) approach has been applied to investigate the optimized lattice parameter of the cubic LiCl crystal and two adsorption problems (CO on the NaCl(100) surface and H2O on the h-BN surface). The results show that the CIM-DLPNO-CCSD(T) method offers accurate and efficient descriptions for the studied systems. Another application to the cohesive energy of the acetic acid crystal reveals that large basis sets are necessary for reliable calculations on the cohesive energies of molecular crystals.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing210023, P. R. China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou311121, P. R. China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der RuhrD-45470, Germany
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing210023, P. R. China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
6
|
Li Y, Wang D, Fu F, Xia Q, Li W, Li S. Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method. J Comput Chem 2022; 43:704-716. [PMID: 35213748 DOI: 10.1002/jcc.26828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The generalized energy-based fragmentation (GEBF) approach is extended to facilitate ab initio investigations of structures, lattice energies, vibrational spectra and 1 H NMR chemical shifts of ionic crystals and condensed-phase ionic liquids (ILs) with the periodic boundary conditions (PBC). For selected periodic systems, our results demonstrate that the so-called PBC-GEBF approach can provide satisfactory descriptions on ground-state energies, structures, and vibrational spectra of ionic crystals and IL crystals. The PBC-GEBF approach is then applied to three realistic condensed phase systems. For three ionic crystals (LiCl, NaCl, and KCl), we apply the PBC-GEBF approach with MP2 theory as well as some popular DFT methods to investigate their crystal structures and lattice energies. Our calculations indicate that the crystal structures obtained with PBC-GEBF-MP2/6-311 + G** are very close to the corresponding X-ray structures, while PBC-GEBF-ωB97X-D/6-311 + G** provides satisfactory prediction for crystal structures and lattice energies. For two polymorphs of [n-C4 mim][Cl] crystals, we find that the PBC-GEBF approach at the M06-2X/6-311 + G** level can give a satisfactory descriptions on structures and Raman spectra of these two crystals. Furthermore, for [C2 mim][BF4 ] ILs, we demonstrate that their 1 H NMR chemical shifts can be estimated from averaging over 5 typical snapshots (extracted from MD simulations) with the PBC-GEBF approach at the B97-2/pcSseg-2 level. The calculated results account for the observed experimental data quite well. Therefore, we expect that the PBC-GEBF approach, combined with various quantum chemistry methods, will become an effective tool in predicting structures and properties of ionic crystals and condensed-phase ILs.
Collapse
Affiliation(s)
- Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China.,School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Fangjia Fu
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Qiying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Generalized Energy-Based Fragmentation Approach for the Accurate Binding Energies and Raman Spectra of Methane Hydrate Clusters. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Li W, Ma H, Li S, Ma J. Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning. Chem Sci 2021; 12:14987-15006. [PMID: 34909141 PMCID: PMC8612375 DOI: 10.1039/d1sc02574k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Electronic structure methods based on quantum mechanics (QM) are widely employed in the computational predictions of the molecular properties and optoelectronic properties of molecular materials. The computational costs of these QM methods, ranging from density functional theory (DFT) or time-dependent DFT (TDDFT) to wave-function theory (WFT), usually increase sharply with the system size, causing the curse of dimensionality and hindering the QM calculations for large sized systems such as long polymer oligomers and complex molecular aggregates. In such cases, in recent years low scaling QM methods and machine learning (ML) techniques have been adopted to reduce the computational costs and thus assist computational and data driven molecular material design. In this review, we illustrated low scaling ground-state and excited-state QM approaches and their applications to long oligomers, self-assembled supramolecular complexes, stimuli-responsive materials, mechanically interlocked molecules, and excited state processes in molecular aggregates. Variable electrostatic parameters were also introduced in the modified force fields with the polarization model. On the basis of QM computational or experimental datasets, several ML algorithms, including explainable models, deep learning, and on-line learning methods, have been employed to predict the molecular energies, forces, electronic structure properties, and optical or electrical properties of materials. It can be conceived that low scaling algorithms with periodic boundary conditions are expected to be further applicable to functional materials, perhaps in combination with machine learning to fast predict the lattice energy, crystal structures, and spectroscopic properties of periodic functional materials.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Jiangsu Key Laboratory of Advanced Organic Materials, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210023 China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Jiangsu Key Laboratory of Advanced Organic Materials, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Li W, Dong H, Ma J, Li S. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach. Acc Chem Res 2021; 54:169-181. [PMID: 33350806 DOI: 10.1021/acs.accounts.0c00580] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ConspectusThe structures and spectroscopic properties of molecules and condensed-phase systems are usually experimentally characterized by X-ray, infrared (IR), Raman, nuclear magnetic resonance (NMR), and electronic absorption/emission spectra. Quantum mechanics (QM) calculations are critical in quantitatively understanding the relationship between the structure and physicochemical properties of various chemical systems. However, it is very challenging to apply traditional QM methods to large molecules and condensed-phase systems with large unit cells due to their steep computational scaling with the system size. To overcome this difficulty, theoretical chemists have developed various linear (or low) scaling QM methods, among which energy-based fragmentation methods have achieved great success for large molecules or clusters. One of the most popular energy-based fragmentation methods is the generalized energy-based fragmentation (GEBF) approach developed by us.In this approach, the ground-state energy of a large molecule can be evaluated from the ground-state energies of a series of embedded subsystems. In this Account, we focus on the recent developments and applicability of the GEBF approach for the structures and spectroscopic properties of complicated large molecules and condensed-phase systems. With new fragmentation schemes, the GEBF approach can now describe ionic liquid clusters and metal-containing supramolecular systems accurately and can provide accurate binding energies for host-guest complexes. In addition, the GEBF approach is now available for describing the localized excited states of large systems including a chromophore. More importantly, the GEBF approach under periodic boundary conditions (PBC-GEBF) has been developed to deal with periodic molecular crystals and liquids. Then, the ground-state energy (or property) per unit cell of a periodic condensed phase system can be predicted with QM calculations on nonperiodic embedded subsystems. This feature enables accurate electron correlation calculations on molecular crystals and liquids to be feasible on ordinary workstations. The PBC-GEBF approach has been applied to predict the crystal structures, lattice energies, and spectroscopic properties of some typical molecular crystals and solutions. By combining the GEBF method and machine learning (ML) method, a GEBF-ML force field has been developed for long normal alkanes, and the IR spectra of long alkanes can be obtained from the GEBF-ML molecular dynamics (MD) simulations. The GEBF and its periodic variant are expected to play increasingly important roles in investigating real-life chemical systems of broad interests at the ab initio levels.
Collapse
Affiliation(s)
- Wei Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Hao Dong
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
10
|
Chen B, Xu X. XO-PBC: An Accurate and Efficient Method for Molecular Crystals. J Chem Theory Comput 2020; 16:4271-4285. [PMID: 32456429 DOI: 10.1021/acs.jctc.0c00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we propose the XO-PBC method, which combines the eXtended ONIOM method (XO) with the periodic boundary condition (PBC) for the description of molecular crystals. XO-PBC tries to embed a finite cluster cut out from the solid into the periodic environment, making it feasible to employ advanced molecular quantum chemistry methods, which are usually prohibitively expensive for direct PBC calculations. In particular, XO-PBC utilizes the results from force calculations to design the scheme to fragment the molecule when crystals are made of large molecules and to select cluster model systems automatically consisting of dimer up to tetramer interactions for embedding. By applying an appropriate theory to each model, a satisfactory accuracy for the system under study is ensured, while a high efficiency is achieved with massively parallel computing by distributing model systems onto different processors. A comparison of the XO-PBC calculations with the conventional direct PBC calculations at the B3LYP level demonstrates its accuracy at substantially low cost for the description of molecular crystals. The usefulness of the XO-PBC method is further exemplified, showing that XO-PBC is able to predict the lattice energies of various types of molecular crystals within chemical accuracy (<4 kJ/mol) when the doubly hybrid density functional XYG3 is used as the target high level and the periodic PBE as the basic low level. The XO-PBC method provides a general protocol that brings the great predictive power of advanced electronic structure methods from molecular systems to the extended solids.
Collapse
Affiliation(s)
- Bozhu Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Zhao D, Shen X, Cheng Z, Li W, Dong H, Li S. Accurate and Efficient Prediction of NMR Parameters of Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method. J Chem Theory Comput 2020; 16:2995-3005. [DOI: 10.1021/acs.jctc.9b01298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dongbo Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, People’s Republic of China
| | - Xiaoling Shen
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| | - Zheng Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, People’s Republic of China
- Institute for Brain Sciences, Nanjing University, 210023 Nanjing, People’s Republic of China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Xavier NF, Da Silva AM, Bauerfeldt GF. Supercell calculations of the geometry and lattice energy of α-glycine crystal. J Mol Model 2019; 25:244. [PMID: 31342179 DOI: 10.1007/s00894-019-4124-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/07/2019] [Indexed: 01/01/2023]
Abstract
Evidence about the presence of glycine in the interstellar medium (ISM) has been motivating studies aiming the understanding of the chemical behavior of this amino acid in such environment. Since glycine is expected to be predominantly found in the ISM in solid phase, this work focuses on the search for a theoretical methodology for obtaining a molecular cluster for α-glycine that provides a good description of the geometry of the unit cell and lattice energy. Calculations have been performed using the B3LYP-D3, PBE0-D3, and WB97X-D3 functionals, with def2-SVP, def2-TZVP, def2-TZVPP, and def2-QZVPP basis sets for two models: (a) the unit cell, containing 4 glycine units, and (b) the 2 × 1 × 2 expanded cell, with 16 glycine units. Corrections for the basis set superposition error have also been applied. No significant changes in geometries and lattice energy predictions from the different functionals and basis sets have been observed for each model. Nevertheless, results obtained for the larger molecular cluster are in better agreement with the experimental data. The best lattice energy prediction, obtained for the 2 × 1 × 2 supercell at the B3LYP-gCP-D3/def2-TZVPP level, is - 15.35 kcal mol-1, with a root mean square deviation of the predicted Cartesian coordinates of the inner molecules (with respect to the experimental α-glycine unit cell geometry) of 0.966 Å. This methodology is finally recommended for future studies of similar molecular cluster, and the predicted geometry is proposed for further studies aiming to describe glycine surface reactions in the ISM.
Collapse
Affiliation(s)
- Neubi F Xavier
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil
| | - Antônio M Da Silva
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil
| | - Glauco Favilla Bauerfeldt
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil.
| |
Collapse
|
14
|
Wang Y, Ni Z, Li W, Li S. Cluster-in-Molecule Local Correlation Approach for Periodic Systems. J Chem Theory Comput 2019; 15:2933-2943. [DOI: 10.1021/acs.jctc.8b01200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuqi Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Zhigang Ni
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
15
|
Wang F, Zhao D, Jiang L, Song J, Liu Y. THz vibrational spectroscopy for RNA basepair cocrystals and oligonucleotide sequences. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:49-54. [PMID: 30343109 DOI: 10.1016/j.saa.2018.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 05/22/2023]
Abstract
Fourier infrared spectrometer and X-ray diffractometer were used to detect the spectra of lab-made U:A (uracil and adenine hydrate dried at room temperature), lab-made C:G (cytosine and guanine hydrate dried at room temperature), U + A (mixture of uracil and adenine), and C + G (mixture of cytosine and guanine). The results of our testing showed that U:A did not form a eutectic, but C:G did. In order to further characterize the vibrational modes of RNA base pair crystals, the absorption spectra of 1‑methyl‑5‑bromouracil‑9‑methyladenine (abbreviated as 1M5BU:9MA) and 1‑methylcytosine‑9‑ethylguanine (abbreviated as 1MC:9EG) were calculated based on the PBC-GEBF (generalized energy-based fragmentation approach under periodic boundary conditions) method. To further study the effect of substituents on the vibrational mode of the crystal structure, the substituents of 1M5BU:9MA and 1MC:9EG were artificially removed. The results of calculation brought out that methyl and ethyl as substituents have little effect on the vibrational spectrum, but halogen atoms such as Br atom in 1M5BU:9MA has a certain influence on the spectrum. Furthermore, THz (terahertz) spectra of the RNA nucleotide sequence 5'-AUCG-3' was analyzed. In the perspective of the spectra with DNA signatures, their spectra show a great deal of similarity regardless of RNA or DNA, or the base sequence difference. This study will provide a very important information for revealing the role of RNA in the formation of biological macromolecules and its mechanism.
Collapse
Affiliation(s)
- Fang Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China; School of Electronic and Information Engineering, Sanjiang University, Nanjing 210012, People's Republic of China
| | - Dongbo Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ling Jiang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jun Song
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
16
|
Fu F, Liao K, Ma J, Cheng Z, Zheng D, Gao L, Liu C, Li S, Li W. How intermolecular interactions influence electronic absorption spectra: insights from the molecular packing of uracil in condensed phases. Phys Chem Chem Phys 2019; 21:4072-4081. [DOI: 10.1039/c8cp06152a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intermolecular interactions in terms of molecular packing are crucial for the investigation of the absorption spectra of uracil in different environments.
Collapse
Affiliation(s)
- Fangjia Fu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Kang Liao
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Jing Ma
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Zheng Cheng
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Dong Zheng
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Liuzhou Gao
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Chungen Liu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Shuhua Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Wei Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| |
Collapse
|
17
|
Loboda OA, Dolgonos GA, Boese AD. Towards hybrid density functional calculations of molecular crystals via fragment-based methods. J Chem Phys 2018; 149:124104. [DOI: 10.1063/1.5046908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Oleksandr A. Loboda
- Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, A-8010 Graz, Austria
| | - Grygoriy A. Dolgonos
- Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, A-8010 Graz, Austria
| | - A. Daniel Boese
- Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, A-8010 Graz, Austria
| |
Collapse
|
18
|
Wang F, Zhao D, Dong H, Jiang L, Huang L, Liu Y, Li S. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:195-201. [PMID: 29689511 DOI: 10.1016/j.saa.2018.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 04/12/2018] [Indexed: 05/22/2023]
Abstract
The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most NH and CH bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study.
Collapse
Affiliation(s)
- Fang Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China; School of Electronic and Information Engineering, Sanjiang University, Nanjing 210012, People's Republic of China
| | - Dongbo Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, 210023, People's Republic of China
| | - Ling Jiang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lin Huang
- Forestry College, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
19
|
Wang W, Sun X, Qu J, Xie X, Qi ZH, Hong D, Jing S, Zheng D, Tian Y, Ma H, Yu S, Ma J. Aggregation-induced visible light absorption makes reactant 1,2-diisocyanoarenes act as photosensitizers in double radical isocyanide insertions. Phys Chem Chem Phys 2018; 19:31443-31451. [PMID: 29159355 DOI: 10.1039/c7cp05936a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The joint computational and experimental efforts reveal that the organic molecule 1,2-diisocyano-4,5-dimethylbenzene (1) acts as both a reactant and a photosensitizer (PS) in a metal-free reaction with perfluoroalkylhalide (2) to produce 2-perfluoroalkyl quinoxalines (3) under visible light. Both the π-π stacking aggregation in crystals and the solvation in various solvents of PS 1 exhibited visible-light absorption at 466 nm in spite of its smaller coefficient than that of the ultraviolet-light absorption. Such an aggregation-assisted visible-light absorption phenomenon is rationalized by theoretical calculations of the condensed-phase properties with the consideration of the explicit polarization effect from the neighboring molecules. Upon irradiation with different wavelengths, the emission colors changed from navy to bright yellow. Fluorescence lifetime measurements show that the emission of 1 comes from its singlet excited state. The aggregation induced emission when excited at 420 nm has a shorter lifetime (0.45 ns) than that of the emission from isolated molecules (2.71 ns) when excited at 381 nm. It is conceived that the aggregation assisted visible light absorption properties may be general in other photo-reactive molecules, such as 1,4-diisocyano-2,5-dimethylbenzene (4), 1,4-dicyanobenzene (5), and 1,4-diisocyanobenzene (6), which are widely used in many photochemical reactions in the absence of any external photosensitizer.
Collapse
Affiliation(s)
- Wenmin Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing, 210023, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li Y, Yuan D, Wang Q, Li W, Li S. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation. Phys Chem Chem Phys 2018; 20:13547-13557. [DOI: 10.1039/c8cp00513c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The GEBF method with the ion-pair-based fragmentation has been developed to facilitate ab initio calculations of general ionic liquid clusters.
Collapse
Affiliation(s)
- Yunzhi Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Dandan Yuan
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Qingchun Wang
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Wei Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| | - Shuhua Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing
| |
Collapse
|
21
|
Yuan D, Li Y, Li W, Li S. Structures and properties of large supramolecular coordination complexes predicted with the generalized energy-based fragmentation method. Phys Chem Chem Phys 2018; 20:28894-28902. [DOI: 10.1039/c8cp05548c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generalized energy-based fragmentation (GEBF) method has been extended to facilitate ab initio calculations of large supramolecular coordination complexes.
Collapse
Affiliation(s)
- Dandan Yuan
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing 210023
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing 210023
| | - Wei Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing 210023
| | - Shuhua Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education
- Institute of Theoretical and Computational Chemistry
- Nanjing University
- Nanjing 210023
| |
Collapse
|
22
|
Zhao D, Song R, Li W, Ma J, Dong H, Li S. Accurate Prediction of NMR Chemical Shifts in Macromolecular and Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method. J Chem Theory Comput 2017; 13:5231-5239. [DOI: 10.1021/acs.jctc.7b00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongbo Zhao
- Key
Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute
of Theoretical and Computational Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Ruiheng Song
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Wei Li
- Key
Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute
of Theoretical and Computational Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Jing Ma
- Key
Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute
of Theoretical and Computational Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Hao Dong
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Shuhua Li
- Key
Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute
of Theoretical and Computational Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
23
|
Li Y, Wang G, Li W, Wang Y, Li S. Understanding the polymorphism-dependent emission properties of molecular crystals using a refined QM/MM approach. Phys Chem Chem Phys 2017; 19:17516-17520. [PMID: 28653069 DOI: 10.1039/c7cp03584e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A refined QM/MM approach demonstrated that a monomer model is suitable for describing the emission spectra of crystals without the ππ stacking interaction. Whereas for the crystals with notable intermolecular ππ stacking interaction, the most stable trimer model (or at least a dimer model) should be used for accurately describing the corresponding emission spectra. This approach is applied to understand the emission properties of two kinds of organic polymorphs.
Collapse
Affiliation(s)
- Yunzhi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| | - Guoqiang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
24
|
Zhang L, Li W, Fang T, Li S. Accurate Relative Energies and Binding Energies of Large Ice–Liquid Water Clusters and Periodic Structures. J Phys Chem A 2017; 121:4030-4038. [DOI: 10.1021/acs.jpca.7b03376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Zhang
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Li
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tao Fang
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuhua Li
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Wang F, Zhao D, Dong H, Jiang L, Liu Y, Li S. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:255-260. [PMID: 28273628 DOI: 10.1016/j.saa.2017.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 05/28/2023]
Abstract
Terahertz (THz) spectra of DNA nucleobase crystals were experimentally studied by terahertz time domain spectroscopy (THz-TDS), Fourier transform infrared spectroscopy (FTIR), and computationally studied by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF). We analyzed the vibrational spectra of solid-state DNA nucleobases and assigned the corresponding vibrational modes to the main peaks in the experimental spectra with the PBC-GEBF results. The computational results were verified to be in good accordance with the experimental data. Harmonic vibrational frequency results revealed that all the vibrational modes belong to collective vibrational modes, which involve complicated mixtures of inter- and intramolecular displacements, somewhere in the vicinity of 0.5-9THz.
Collapse
Affiliation(s)
- Fang Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; School of Electronic and Information Engineering, Sanjiang University, Nanjing 210012, China
| | - Dongbo Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, 210023, China
| | - Ling Jiang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
26
|
Wang F, Zhao D, Jiang L, Xu L, Sun H, Liu Y. A comparative study on the experimental and calculated results of mid-infrared and Raman vibrational modes of nucleic acid bases. J Mol Graph Model 2017; 74:305-314. [PMID: 28475967 DOI: 10.1016/j.jmgm.2017.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
The MIR (mid-infrared) and Raman spectra of the nucleic acid base powders were tested by Fourier transform infrared spectroscopy and laser Raman spectroscopy. The vibrational modes of nucleic acid base crystals were simulated by the generalized energy-based fragmentation approach under periodic boundary conditions (hereinafter referred as PBC-GEBF) together with Guassian09 software. Taking into account the intermolecular hydrogen bonds in the unit cell and the weak interactions between the unit cells, the PBC-GEBF method adopted by our group was for the first time used for calculating nucleic acid base crystals in the 400-2000cm-1 band. The theoretical and experimental spectra turn out to be in good agreement with each other. Compared with the calculated results of the nucleic acid base monomer, the calculated results of crystals appear to be in better agreement with the experimental results. Some weak vibration peaks were reproduced by simulation, and the positions of the vibration peaks agree well. By analyzing the vibrational modes, it can be observed that the vibrational modes below 1000 cm-1 are mainly characterized by the collective vibrations involving all the molecules in the unit cell. In addition to intramolecular interactions, weak intermolecular interactions (including Van der Waals force and weak hydrogen bond) and the lattice stacking force also contribute to the overall vibrations. This study is of great importance to the analysis of the stability of RNA/DNA structures and their genetic properties.
Collapse
Affiliation(s)
- Fang Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; School of Electronic and Information Engineering, Sanjiang University, Nanjing 210012, China
| | - Dongbo Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ling Jiang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Li Xu
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Haijun Sun
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Yunfei Liu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
27
|
Fang T, Li Y, Li S. Generalized energy‐based fragmentation approach for modeling condensed phase systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Fang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational ChemistryNanjing University Nanjing P. R. China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational ChemistryNanjing University Nanjing P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational ChemistryNanjing University Nanjing P. R. China
| |
Collapse
|
28
|
Li W, Li Y, Lin R, Li S. Generalized Energy-Based Fragmentation Approach for Localized Excited States of Large Systems. J Phys Chem A 2016; 120:9667-9677. [DOI: 10.1021/acs.jpca.6b11193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Li
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Repubic of China
| | - Yunzhi Li
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Repubic of China
| | - Ruochen Lin
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Repubic of China
| | - Shuhua Li
- Institute of Theoretical
and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Repubic of China
| |
Collapse
|
29
|
Fang T, Jia J, Li S. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach. J Phys Chem A 2016; 120:2700-11. [DOI: 10.1021/acs.jpca.5b10927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Fang
- School of Chemistry and Chemical
Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of
Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Junteng Jia
- School of Chemistry and Chemical
Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of
Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Shuhua Li
- School of Chemistry and Chemical
Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of
Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
30
|
Abstract
Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
31
|
Řezáč J, Huang Y, Hobza P, Beran GJO. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods. J Chem Theory Comput 2016; 11:3065-79. [PMID: 26575743 DOI: 10.1021/acs.jctc.5b00281] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many-body noncovalent interactions are increasingly important in large and/or condensed-phase systems, but the current understanding of how well various models predict these interactions is limited. Here, benchmark complete-basis set coupled cluster singles, doubles, and perturbative triples (CCSD(T)) calculations have been performed to generate a new test set for three-body intermolecular interactions. This "3B-69" benchmark set includes three-body interaction energies for 69 total trimer structures, consisting of three structures from each of 23 different molecular crystals. By including structures that exhibit a variety of intermolecular interactions and packing arrangements, this set provides a stringent test for the ability of electronic structure methods to describe the correct physics involved in the interactions. Both MP2.5 (the average of second- and third-order Møller-Plesset perturbation theory) and spin-component-scaled CCSD for noncovalent interactions (SCS-MI-CCSD) perform well. MP2 handles the polarization aspects reasonably well, but it omits three-body dispersion. In contrast, many widely used density functionals corrected with three-body D3 dispersion correction perform comparatively poorly. The primary difficulty stems from the treatment of exchange and polarization in the functionals rather than from the dispersion correction, though the three-body dispersion may also be moderately underestimated by the D3 correction.
Collapse
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , 166 10 Prague, Czech Republic
| | - Yuanhang Huang
- Department of Chemistry, University of California , Riverside, California 92521 United States
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , 166 10 Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University , 771 46 Olomouc, Czech Republic
| | - Gregory J O Beran
- Department of Chemistry, University of California , Riverside, California 92521 United States
| |
Collapse
|
32
|
Wen J, Li W, Chen S, Ma J. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys Chem Chem Phys 2016; 18:22757-71. [DOI: 10.1039/c6cp01049k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simulations using QM and MM methods guide the rational design of functionalized SAMs on surfaces.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Wei Li
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shuang Chen
- Kuang Yaming Honors School
- Nanjing University
- Nanjing
- P. R. China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|