1
|
Li HE, Li X, Huang JC, Zhang GZ, Shen ZP, Zhao C, Li J, Hu HS. Variational quantum imaginary time evolution for matrix product state Ansatz with tests on transcorrelated Hamiltonians. J Chem Phys 2024; 161:144104. [PMID: 39377325 DOI: 10.1063/5.0228731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
The matrix product state (MPS) Ansatz offers a promising approach for finding the ground state of molecular Hamiltonians and solving quantum chemistry problems. Building on this concept, the proposed technique of quantum circuit MPS (QCMPS) enables the simulation of chemical systems using a relatively small number of qubits. In this study, we enhance the optimization performance of the QCMPS Ansatz by employing the variational quantum imaginary time evolution (VarQITE) approach. Guided by McLachlan's variational principle, the VarQITE method provides analytical metrics and gradients, resulting in improved convergence efficiency and robustness of the QCMPS. We validate these improvements numerically through simulations of H2, H4, and LiH molecules. In addition, given that VarQITE is applicable to non-Hermitian Hamiltonians, we evaluate its effectiveness in preparing the ground state of transcorrelated Hamiltonians. This approach yields energy estimates comparable to the complete basis set (CBS) limit while using even fewer qubits. In particular, we perform simulations of the beryllium atom and LiH molecule using only three qubits, maintaining high fidelity with the CBS ground state energy of these systems. This qubit reduction is achieved through the combined advantages of both the QCMPS Ansatz and transcorrelation. Our findings demonstrate the potential practicality of this quantum chemistry algorithm on near-term quantum devices.
Collapse
Affiliation(s)
- Hao-En Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiang Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jia-Cheng Huang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Guang-Ze Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhu-Ping Shen
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chen Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Takahashi H, Borrelli R, Gelin MF, Chen L. Finite temperature dynamics in a polarized sub-Ohmic heat bath: A hierarchical equations of motion-tensor train study. J Chem Phys 2024; 160:164106. [PMID: 38656440 DOI: 10.1063/5.0202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamics of the sub-Ohmic spin-boson model under polarized initial conditions at finite temperatures is investigated by employing both analytical tools and the numerically accurate hierarchical equations of motion-tensor train method. By analyzing the features of nonequilibrium dynamics, we discovered a bifurcation phenomenon, which separates two regimes of the dynamics. It is found that before the bifurcation time, increasing temperature slows down the population dynamics, while the opposite effect occurs after the bifurcation time. The dynamics is highly sensitive to both initial preparation of the bath and thermal effects.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
3
|
Hou E, Sun K, Gelin MF, Zhao Y. Finite temperature dynamics of the Holstein-Tavis-Cummings model. J Chem Phys 2024; 160:084116. [PMID: 38421073 DOI: 10.1063/5.0193471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
By employing the numerically accurate multiple Davydov Ansatz (mDA) formalism in combination with the thermo-field dynamics (TFD) representation of quantum mechanics, we systematically explore the influence of three parameters-temperature, photonic-mode detuning, and qubit-phonon coupling-on population dynamics and absorption spectra of the Holstein-Tavis-Cummings (HTC) model. It is found that elevated qubit-phonon couplings and/or temperatures have a similar impact on all dynamic observables: they suppress the amplitudes of Rabi oscillations in photonic populations as well as broaden the peaks and decrease their intensities in the absorption spectra. Our results unequivocally demonstrate that the HTC dynamics is very sensitive to the concerted variation of the three aforementioned parameters, and this finding can be used for fine-tuning polaritonic transport. The developed mDA-TFD methodology can be efficiently applied for modeling, predicting, optimizing, and comprehensively understanding dynamic and spectroscopic responses of actual molecular systems in microcavities.
Collapse
Affiliation(s)
- Erqin Hou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
4
|
Li Z. Time-reversal symmetry adaptation in relativistic density matrix renormalization group algorithm. J Chem Phys 2023; 158:044119. [PMID: 36725514 DOI: 10.1063/5.0127621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the nonrelativistic Schrödinger equation, the total spin S and spin projection M are good quantum numbers. In contrast, spin symmetry is lost in the presence of spin-dependent interactions, such as spin-orbit couplings in relativistic Hamiltonians. Therefore, the relativistic density matrix renormalization group algorithm (R-DMRG) only employing particle number symmetry is much more expensive than nonrelativistic DMRG. In addition, artificial breaking of Kramers degeneracy can happen in the treatment of systems with an odd number of electrons. To overcome these issues, we propose time-reversal symmetry adaptation for R-DMRG. Since the time-reversal operator is antiunitary, this cannot be simply achieved in the usual way. We introduce a time-reversal symmetry-adapted renormalized basis and present strategies to maintain the structure of basis functions during the sweep optimization. With time-reversal symmetry adaptation, only half of the renormalized operators are needed, and the computational costs of Hamiltonian-wavefunction multiplication and renormalization are reduced by half. The present construction of the time-reversal symmetry-adapted basis also directly applies to other tensor network states without loops.
Collapse
Affiliation(s)
- Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
6
|
Leszczyk A, Dome T, Tecmer P, Kedziera D, Boguslawski K. Resolving the π-assisted U-N σ f-bond formation using quantum information theory. Phys Chem Chem Phys 2022; 24:21296-21307. [PMID: 36043327 DOI: 10.1039/d2cp03377a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We model the potential energy profiles of the UO2 (NCO)Cl2- → NUOCl2- + CO2 reaction pathway [Y. Gong, V. Vallet, M. del Carmen Michelini, D. Rios and J. K. Gibson, J. Phys. Chem. A, 2014, 118, 325-330] using different pair coupled-cluster doubles (pCCD) methods. Specifically, we focus on pCCD and pCCD-tailored coupled cluster models in predicting relative energies for the various intermediates and transition states along the reaction coordinate. Furthermore, we augment our study on energetics with an orbital-pair correlation analysis of the complete reaction pathway that features two distinct paths. Our analysis of orbital correlations sheds new light on the formation and breaking of respective bonds between the uranium, oxygen, and nitrogen atoms along the reaction coordinates where the "yl" bond is broken and a nitrido compound formed. Specifically, the strengthening of the U-N σf-bond is assisted by a π-type interaction that is delocalized over the C-N-U backbone of the UO2 (NCO)Cl2- complex.
Collapse
Affiliation(s)
- Aleksandra Leszczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Tibor Dome
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland.,Institute of Astronomy, University of Cambridge, Madingley Road Cambridge, CB3 0HA, UK
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Dariusz Kedziera
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
7
|
Kim TD, Miranda-Quintana RA, Richer M, Ayers PW. Flexible ansatz for N-body configuration interaction. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Stair NH, Evangelista FA. Exploring Hilbert space on a budget: Novel benchmark set and performance metric for testing electronic structure methods in the regime of strong correlation. J Chem Phys 2020; 153:104108. [DOI: 10.1063/5.0014928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Nicholas H. Stair
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Abraham V, Mayhall NJ. Selected Configuration Interaction in a Basis of Cluster State Tensor Products. J Chem Theory Comput 2020; 16:6098-6113. [DOI: 10.1021/acs.jctc.0c00141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Nicholas J. Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
10
|
Larsson HR. Computing vibrational eigenstates with tree tensor network states (TTNS). J Chem Phys 2019; 151:204102. [DOI: 10.1063/1.5130390] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Henrik R. Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Xu J, Liang L, Deng L, Wen C, Xie Y, Li G. Towards a polynomial algorithm for optimal contraction sequence of tensor networks from trees. Phys Rev E 2019; 100:043309. [PMID: 31770963 DOI: 10.1103/physreve.100.043309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 11/07/2022]
Abstract
The computational cost of contracting a tensor network depends on the sequence of contractions, but to decide the sequence of contractions with a minimal computational cost on an arbitrary network has been proved to be an NP-complete problem. In this work, we conjecture that the problem may be a polynomial one if we consider the computational complexity instead. We propose a polynomial algorithm for the optimal contraction complexity of tensor tree network, which is a specific and widely applied network structure. We prove that for any tensor tree network, the proposed algorithm can achieve a sequence of contractions that guarantees the minimal time complexity and a linear space complexity simultaneously. To illustrate the validity of our idea, numerical simulations are presented that evidence the significant benefits when the network scale becomes large. This work will have great potential for the efficient processing of various physical simulations and pave the way for the further exploration of the computational complexity of tensor contraction on arbitrary tensor networks.
Collapse
Affiliation(s)
- Jianyu Xu
- Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing 100084, China
| | - Ling Liang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
| | - Lei Deng
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
| | - Changyun Wen
- School of EEE, Nanyang Technological University, Singapore 639798
| | - Yuan Xie
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
| | - Guoqi Li
- Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová M, Kivlichan ID, Menke T, Peropadre B, Sawaya NPD, Sim S, Veis L, Aspuru-Guzik A. Quantum Chemistry in the Age of Quantum Computing. Chem Rev 2019; 119:10856-10915. [PMID: 31469277 DOI: 10.1021/acs.chemrev.8b00803] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Practical challenges in simulating quantum systems on classical computers have been widely recognized in the quantum physics and quantum chemistry communities over the past century. Although many approximation methods have been introduced, the complexity of quantum mechanics remains hard to appease. The advent of quantum computation brings new pathways to navigate this challenging and complex landscape. By manipulating quantum states of matter and taking advantage of their unique features such as superposition and entanglement, quantum computers promise to efficiently deliver accurate results for many important problems in quantum chemistry, such as the electronic structure of molecules. In the past two decades, significant advances have been made in developing algorithms and physical hardware for quantum computing, heralding a revolution in simulation of quantum systems. This Review provides an overview of the algorithms and results that are relevant for quantum chemistry. The intended audience is both quantum chemists who seek to learn more about quantum computing and quantum computing researchers who would like to explore applications in quantum chemistry.
Collapse
Affiliation(s)
- Yudong Cao
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan Romero
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan P Olson
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Matthias Degroote
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Department of Chemistry , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Department of Computer Science , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada
| | - Peter D Johnson
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Mária Kieferová
- Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States.,Department of Physics and Astronomy , Macquarie University , Sydney , NSW 2109 , Australia.,Institute for Quantum Computing and Department of Physics and Astronomy , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Ian D Kivlichan
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Tim Menke
- Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States.,Research Laboratory of Electronics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Physics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Borja Peropadre
- Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Nicolas P D Sawaya
- Intel Laboratories , Intel Corporation , Santa Clara , California 95054 United States
| | - Sukin Sim
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic v.v.i. , Doleǰskova 3 , 18223 Prague 8, Czech Republic
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Department of Computer Science , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Canadian Institute for Advanced Research , Toronto , Ontario M5G 1Z8 , Canada.,Vector Institute for Artificial Intelligence , Toronto , Ontario M5S 1M1 , Canada
| |
Collapse
|
13
|
Brzęk F, Boguslawski K, Tecmer P, Żuchowski PS. Benchmarking the Accuracy of Seniority-Zero Wave Function Methods for Noncovalent Interactions. J Chem Theory Comput 2019; 15:4021-4035. [PMID: 31136703 DOI: 10.1021/acs.jctc.9b00189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filip Brzęk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Piotr Szymon Żuchowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
14
|
Brandejs J, Veis L, Szalay S, Barcza G, Pittner J, Legeza Ö. Quantum information-based analysis of electron-deficient bonds. J Chem Phys 2019; 150:204117. [PMID: 31153207 DOI: 10.1063/1.5093497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, the correlation theory of the chemical bond was developed, which applies concepts of quantum information theory for the characterization of chemical bonds, based on the multiorbital correlations within the molecule. Here, for the first time, we extend the use of this mathematical toolbox for the description of electron-deficient bonds. We start by verifying the theory on the textbook example of a molecule with three-center two-electron bonds, namely, diborane(6). We then show that the correlation theory of the chemical bond is able to properly describe the bonding situation in more exotic molecules which have been synthesized and characterized only recently, in particular, the diborane molecule with four hydrogen atoms [diborane(4)] and a neutral zerovalent s-block beryllium complex, whose surprising stability was attributed to a strong three-center two-electron π bond stretching across the C-Be-C core. Our approach is of high importance especially in the light of a constant chase after novel compounds with extraordinary properties where the bonding is expected to be unusual.
Collapse
Affiliation(s)
- Jan Brandejs
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Szilárd Szalay
- Strongly Correlated Systems "Lendület" Research Group, Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Gergely Barcza
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
15
|
Gunst K, Verstraete F, Van Neck D. Three-Legged Tree Tensor Networks with SU(2) and Molecular Point Group Symmetry. J Chem Theory Comput 2019; 15:2996-3007. [DOI: 10.1021/acs.jctc.9b00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Klaas Gunst
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium
| | - Frank Verstraete
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium
- Vienna Center for Quantum Technology, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Dimitri Van Neck
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
16
|
Faulstich FM, Máté M, Laestadius A, Csirik MA, Veis L, Antalik A, Brabec J, Schneider R, Pittner J, Kvaal S, Legeza Ö. Numerical and Theoretical Aspects of the DMRG-TCC Method Exemplified by the Nitrogen Dimer. J Chem Theory Comput 2019; 15:2206-2220. [PMID: 30802406 PMCID: PMC7002028 DOI: 10.1021/acs.jctc.8b00960] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
In
this article, we investigate the numerical and theoretical aspects
of the coupled-cluster method tailored by matrix-product states. We
investigate formal properties of the used method, such as energy size
consistency and the equivalence of linked and unlinked formulation.
The existing mathematical analysis is here elaborated in a quantum
chemical framework. In particular, we highlight the use of what we
have defined as a complete active space-external space gap describing
the basis splitting between the complete active space and the external
part generalizing the concept of a HOMO–LUMO gap. Furthermore,
the behavior of the energy error for an optimal basis splitting, i.e.,
an active space choice minimizing the density matrix renormalization
group-tailored coupled-cluster singles doubles error, is discussed.
We show numerical investigations on the robustness with respect to
the bond dimensions of the single orbital entropy and the mutual information,
which are quantities that are used to choose a complete active space.
Moreover, the dependence of the ground-state energy error on the complete
active space has been analyzed numerically in order to find an optimal
split between the complete active space and external space by minimizing
the density matrix renormalization group-tailored coupled-cluster
error.
Collapse
Affiliation(s)
- Fabian M Faulstich
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Oslo , P.O. Box 1033 Blindern, N-0315 Oslo , Norway
| | - Mihály Máté
- Strongly Correlated Systems "Lendület" Research Group , Wigner Research Center for Physics , H-1525 , P.O. Box 49, Budapest , Hungary.,Department of Physics of Complex Systems , Eötvös Loránd University , Pf. 32 , H-1518 Budapest , Hungary
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Oslo , P.O. Box 1033 Blindern, N-0315 Oslo , Norway
| | - Mihály András Csirik
- Strongly Correlated Systems "Lendület" Research Group , Wigner Research Center for Physics , H-1525 , P.O. Box 49, Budapest , Hungary
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Andrej Antalik
- J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3 , 18223 Prague 8 , Czech Republic.,Faculty of Mathematics and Physics , Charles University , 11636 Prague , Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Reinhold Schneider
- Modeling, Simulation and Optimization in Science, Department of Mathematics , Technische Universität Berlin , Sekretariat MA 5-3, Straße des 17. Juni 136 , 10623 Berlin , Germany
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Oslo , P.O. Box 1033 Blindern, N-0315 Oslo , Norway
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group , Wigner Research Center for Physics , H-1525 , P.O. Box 49, Budapest , Hungary
| |
Collapse
|
17
|
Fertitta E, Koch D, Paulus B, Barcza G, Legeza Ö. Towards a multiconfigurational method of increments. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1444208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- E. Fertitta
- Department of Physics, King's College London, London, UK
| | - D. Koch
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - B. Paulus
- Institut für Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany
| | - G. Barcza
- Strongly Correlated Systems “Lendület” Research Group, Wigner Research Centre for Physics, Budapest, Hungary
| | - Ö. Legeza
- Strongly Correlated Systems “Lendület” Research Group, Wigner Research Centre for Physics, Budapest, Hungary
| |
Collapse
|
18
|
Gunst K, Verstraete F, Wouters S, Legeza Ö, Van Neck D. T3NS: Three-Legged Tree Tensor Network States. J Chem Theory Comput 2018; 14:2026-2033. [DOI: 10.1021/acs.jctc.8b00098] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Klaas Gunst
- Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium
| | - Frank Verstraete
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Ghent, Belgium
- Vienna Center for Quantum Technology, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Sebastian Wouters
- Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs Westrem (Ghent), Belgium
| | - Örs Legeza
- Strongly Correlated Systems “Lendület” Research Group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
| | - Dimitri Van Neck
- Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| |
Collapse
|
19
|
Boguslawski K, Réal F, Tecmer P, Duperrouzel C, Gomes ASP, Legeza Ö, Ayers PW, Vallet V. On the multi-reference nature of plutonium oxides: PuO 22+, PuO 2, PuO 3 and PuO 2(OH) 2. Phys Chem Chem Phys 2018; 19:4317-4329. [PMID: 28116368 DOI: 10.1039/c6cp05429c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Actinide-containing complexes present formidable challenges for electronic structure methods due to the large number of degenerate or quasi-degenerate electronic states arising from partially occupied 5f and 6d shells. Conventional multi-reference methods can treat active spaces that are often at the upper limit of what is required for a proper treatment of species with complex electronic structures, leaving no room for verifying their suitability. In this work we address the issue of properly defining the active spaces in such calculations, and introduce a protocol to determine optimal active spaces based on the use of the Density Matrix Renormalization Group algorithm and concepts of quantum information theory. We apply the protocol to elucidate the electronic structure and bonding mechanism of volatile plutonium oxides (PuO3 and PuO2(OH)2), species associated with nuclear safety issues for which little is known about the electronic structure and energetics. We show how, within a scalar relativistic framework, orbital-pair correlations can be used to guide the definition of optimal active spaces which provide an accurate description of static/non-dynamic electron correlation, as well as to analyse the chemical bonding beyond a simple orbital model. From this bonding analysis we are able to show that the addition of oxo- or hydroxo-groups to the plutonium dioxide species considerably changes the π-bonding mechanism with respect to the bare triatomics, resulting in bent structures with a considerable multi-reference character.
Collapse
Affiliation(s)
- Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland. and Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Florent Réal
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland.
| | - Corinne Duperrouzel
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France. and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4M1, Canada
| | | | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4M1, Canada
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| |
Collapse
|
20
|
Kovyrshin A, Reiher M. Self-adaptive tensor network states with multi-site correlators. J Chem Phys 2017; 147:214111. [DOI: 10.1063/1.5004693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Arseny Kovyrshin
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
Szalay S, Barcza G, Szilvási T, Veis L, Legeza Ö. The correlation theory of the chemical bond. Sci Rep 2017; 7:2237. [PMID: 28533506 PMCID: PMC5440380 DOI: 10.1038/s41598-017-02447-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/11/2017] [Indexed: 11/09/2022] Open
Abstract
The quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that. These make it possible to characterise quantitatively, how well a bonding picture describes the chemical system. As proof of concept, we apply the theory for the investigation of the bond structures of several molecules. We show that the non-existence of well-defined multiorbital correlation clustering provides a reason for debated bonding picture.
Collapse
Affiliation(s)
- Szilárd Szalay
- Strongly Correlated Systems "Lendület" Research Group, Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Gergely Barcza
- Strongly Correlated Systems "Lendület" Research Group, Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin, 53706, United States.,Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111, Budapest, Szent Gellért tér 4, Hungary
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223, Prague, Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary
| |
Collapse
|
22
|
Ma Y, Knecht S, Keller S, Reiher M. Second-Order Self-Consistent-Field Density-Matrix Renormalization Group. J Chem Theory Comput 2017; 13:2533-2549. [DOI: 10.1021/acs.jctc.6b01118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yingjin Ma
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Keller
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
23
|
Kawakami T, Sano S, Saito T, Sharma S, Shoji M, Yamada S, Takano Y, Yamanaka S, Okumura M, Nakajima T, Yamaguchi K. UNO DMRG CASCI calculations of effective exchange integrals for m-phenylene-bis-methylene spin clusters. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1301586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
| | - Shinsuke Sano
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Sandeep Sharma
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CL, USA
| | - Mitsuo Shoji
- Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Yamada
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
| | - Yu Takano
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Shusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takahito Nakajima
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
| | - Kizashi Yamaguchi
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, Japan
- NanoScience Design Center, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
24
|
Krumnow C, Veis L, Legeza Ö, Eisert J. Fermionic Orbital Optimization in Tensor Network States. PHYSICAL REVIEW LETTERS 2016; 117:210402. [PMID: 27911544 DOI: 10.1103/physrevlett.117.210402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 06/06/2023]
Abstract
Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such nonlocal fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic orbitals to make. In this Letter, we propose a way to overcome this challenge. We suggest a method intertwining the optimization over matrix product states with suitable fermionic Gaussian mode transformations. The described algorithm generalizes basis changes in the spirit of the Hartree-Fock method to matrix-product states, and provides a black box tool for basis optimization in tensor network methods.
Collapse
Affiliation(s)
- C Krumnow
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - L Veis
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525 Budapest, Hungary
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 18223 Prague, Czech Republic
| | - Ö Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525 Budapest, Hungary
| | - J Eisert
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
25
|
Zhang T, Evangelista FA. A Deterministic Projector Configuration Interaction Approach for the Ground State of Quantum Many-Body Systems. J Chem Theory Comput 2016; 12:4326-37. [PMID: 27464301 DOI: 10.1021/acs.jctc.6b00639] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we propose a novel approach to solve the Schrödinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased toward any determinant. Therefore, the PCI approach can equally well describe static and dynamic electron correlation effects. This point is illustrated in benchmark computations on N2 at both equilibrium and stretched geometries. In both cases, the PCI achieves chemical accuracy with wave functions that contain less than 0.5% determinants of full CI space. We also report computations on the ground state of C2 with up to quaduple-ζ basis sets and wave functions as large as 200 million determinants, which allow a direct comparison of the PCI, FCIQMC, and density matrix renormalization group (DMRG) methods. The size of the PCI wave function grows modestly with the number of unoccupied orbitals, and its accuracy may be tuned to match that of FCIQMC and DMRG.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University , Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Koch D, Fertitta E, Paulus B. Calculation of the static and dynamical correlation energy of pseudo-one-dimensional beryllium systems via a many-body expansion. J Chem Phys 2016; 145:024104. [DOI: 10.1063/1.4955317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. Koch
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - E. Fertitta
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - B. Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
27
|
Chan GKL, Keselman A, Nakatani N, Li Z, White SR. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. J Chem Phys 2016; 145:014102. [DOI: 10.1063/1.4955108] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Garnet Kin-Lic Chan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Anna Keselman
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - Naoki Nakatani
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021, Japan
| | - Zhendong Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Steven R. White
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| |
Collapse
|
28
|
Böhm KH, Auer AA, Espig M. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format. J Chem Phys 2016; 144:244102. [DOI: 10.1063/1.4953665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Li Z, Chan GKL. Hilbert space renormalization for the many-electron problem. J Chem Phys 2016; 144:084103. [DOI: 10.1063/1.4942174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhendong Li
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Garnet Kin-Lic Chan
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
30
|
Rodríguez-Mayorga M, Ramos-Cordoba E, Salvador P, Solà M, Matito E. Bonding description of the Harpoon mechanism. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1121297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mauricio Rodríguez-Mayorga
- Faculty of Chemistry, University of the Basque Country UPV/EHU and Donostia International Physics Center (DIPC), Donostia, Spain
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, University of Girona, Girona, Spain
| | - Eloy Ramos-Cordoba
- Faculty of Chemistry, University of the Basque Country UPV/EHU and Donostia International Physics Center (DIPC), Donostia, Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, University of Girona, Girona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, University of Girona, Girona, Spain
| | - Eduard Matito
- Faculty of Chemistry, University of the Basque Country UPV/EHU and Donostia International Physics Center (DIPC), Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
31
|
Molina-Espíritu M, Esquivel RO, López-Rosa S, Dehesa JS. Quantum Entanglement and Chemical Reactivity. J Chem Theory Comput 2015; 11:5144-51. [PMID: 26894237 DOI: 10.1021/acs.jctc.5b00390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.
Collapse
|
32
|
Dissecting the bond-formation process of d 10-metal–ethene complexes with multireference approaches. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1726-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|