1
|
Moppel I, Elliott B, Chen S. Intermolecular hydrogen bonding behavior of amino acid radical cations. Org Biomol Chem 2024; 22:3966-3978. [PMID: 38690804 DOI: 10.1039/d4ob00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.
Collapse
Affiliation(s)
- Isabella Moppel
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - BarbaraAnn Elliott
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| |
Collapse
|
2
|
Sánchez‐González Á, Grenut P, Gil A. Influence of conventional hydrogen bonds in the intercalation of phenanthroline derivatives with DNA: The important role of the sugar and phosphate backbone. J Comput Chem 2022; 43:804-821. [PMID: 35297513 PMCID: PMC9313584 DOI: 10.1002/jcc.26836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
The influence of hydrogen bonds in model intercalated systems between guanine-cytosine and adenine-thymine DNA base pairs (bps) was analyzed with the popular intercalator 1,10-phenanthroline (phen) and derivatives obtained by substitution with OH and NH2 groups in positions 4 and 7. Semiempirical and Density Functional Theory (DFT) methods were used both including dispersion effects: PM6-DH2, M06-2X and B3LYP-D3 along with the recently developed near linear-scaling coupled cluster method DLPNO-CCSD(T) for benchmark calculations. Our results given by QTAIM and non-covalent interaction analysis confirmed the existence of hydrogen bonds created by OH and NH2 . The trends in the energy decomposition analysis for the interaction energy, ΔEint , showed that the ΔEelstat contributions are equal or even a little bit higher than the values for ΔEdisp . Such important ΔEelstat attractive contribution comes mainly from the conventional hydrogen bonds formed by OH and NH2 functional groups with DNA not only with bps but specially with the sugar and phosphate backbone. This behavior is very different from that of phen and other classical intercalators that cannot form conventional hydrogen bonds, where the ΔEdisp is the most important attractive contribution to the ΔEint . The inclusion of explicit water molecules in molecular dynamics simulations showed, as a general trend, that the hydrogen bonds with the bps disappear during the simulations but those with the sugar and phosphate backbone remain in time, which highlights the important role of the sugar and phosphate backbone in the stabilization of these systems.
Collapse
Affiliation(s)
- Ángel Sánchez‐González
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de Lisboa, Campo GrandeLisbonPortugal
| | - Pierre Grenut
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de Lisboa, Campo GrandeLisbonPortugal
| | - Adrià Gil
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de Lisboa, Campo GrandeLisbonPortugal
- ARAID FoundationZaragozaSpain
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza, c/ Pedro Cerbuna 12ZaragozaSpain
| |
Collapse
|
3
|
Ortiz de Luzuriaga I, Elleuchi S, Jarraya K, Artacho E, Lopez X, Gil A. Semi-empirical and Linear-Scaling DFT Methods to Characterize duplex DNA and G-quadruplexes in Presence of Interacting Small Molecules. Phys Chem Chem Phys 2022; 24:11510-11519. [DOI: 10.1039/d2cp00214k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The computational study of DNA and its interaction with ligands is a highly relevant area of research, with significant consequences for developing new therapeutic strategies. However, the computational description of...
Collapse
|
4
|
Sánchez-González Á, Bandeira NAG, Ortiz de Luzuriaga I, Martins FF, Elleuchi S, Jarraya K, Lanuza J, Lopez X, Calhorda MJ, Gil A. New Insights on the Interaction of Phenanthroline Based Ligands and Metal Complexes and Polyoxometalates with Duplex DNA and G-Quadruplexes. Molecules 2021; 26:4737. [PMID: 34443326 PMCID: PMC8397986 DOI: 10.3390/molecules26164737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
This work provides new insights from our team regarding advances in targeting canonical and non-canonical nucleic acid structures. This modality of medical treatment is used as a form of molecular medicine specifically against the growth of cancer cells. Nevertheless, because of increasing concerns about bacterial antibiotic resistance, this medical strategy is also being explored in this field. Up to three strategies for the use of DNA as target have been studied in our research lines during the last few years: (1) the intercalation of phenanthroline derivatives with duplex DNA; (2) the interaction of metal complexes containing phenanthroline with G-quadruplexes; and (3) the activity of Mo polyoxometalates and other Mo-oxo species as artificial phosphoesterases to catalyze the hydrolysis of phosphoester bonds in DNA. We demonstrate some promising computational results concerning the favorable interaction of these small molecules with DNA that could correspond to cytotoxic effects against tumoral cells and microorganisms. Therefore, our results open the door for the pharmaceutical and medical applications of the compounds we propose.
Collapse
Affiliation(s)
- Ángel Sánchez-González
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Nuno A. G. Bandeira
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Euskadi, 20018 Donostia-San Sebastián, Spain;
- Polimero eta Material Aurreratuak, Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; (J.L.); (X.L.)
| | - Frederico F. Martins
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Sawssen Elleuchi
- Laboratoire de Chimie Inorganique, LR17ES07, Faculté de Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia; (S.E.); (K.J.)
| | - Khaled Jarraya
- Laboratoire de Chimie Inorganique, LR17ES07, Faculté de Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia; (S.E.); (K.J.)
| | - Jose Lanuza
- Polimero eta Material Aurreratuak, Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; (J.L.); (X.L.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak, Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; (J.L.); (X.L.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Maria José Calhorda
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Adrià Gil
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Euskadi, 20018 Donostia-San Sebastián, Spain;
| |
Collapse
|
5
|
Meißner R, Feketeová L, Bayer A, Postler J, Limão‐Vieira P, Denifl S. Positive and negative ions of the amino acid histidine formed in low-energy electron collisions. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:802-816. [PMID: 31410948 PMCID: PMC6916310 DOI: 10.1002/jms.4427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 05/28/2023]
Abstract
Histidine is an aromatic amino acid crucial for the biological functioning of proteins and enzymes. When biological matter is exposed to ionising radiation, highly energetic particles interact with the surrounding tissue which leads to efficient formation of low-energy electrons. In the present study, the interaction of low-energy electrons with gas-phase histidine is studied at a molecular level in order to extend the knowledge of electron-induced reactions with amino acids. We report both on the formation of positive ions formed by electron ionisation and negative ions induced by electron attachment. The experimental data were complemented by quantum chemical calculations. Specifically, the free energies for possible fragmentation reactions were derived for the τ and the π tautomer of histidine to get insight into the structures of the formed ions and the corresponding neutrals. We report the experimental ionisation energy of (8.48 ± 0.03) eV for histidine which is in good agreement with the calculated vertical ionisation energy. In the case of negative ions, the dehydrogenated parent anion is the anion with the highest mass observed upon dissociative electron attachment. The comparison of experimental and computational results was also performed in view of a possible thermal decomposition of histidine during the experiments, since the sample was sublimated in the experiment by resistive heating of an oven. Overall, the present study demonstrates the effects of electrons as secondary particles in the chemical degradation of histidine. The reactions induced by those electrons differ when comparing positive and negative ion formation. While for negative ions, simple bond cleav ages prevail, the observed fragment cations exhibit partly restructuring of the molecule during the dissociation process.
Collapse
Affiliation(s)
- Rebecca Meißner
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of PhysicsUniversidade NOVA de Lisboa2829‐516CaparicaPortugal
| | - Linda Feketeová
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822Université de Lyon, Université Claude Bernard Lyon 143 Bd du 11 novembre 191869622VilleurbanneFrance
| | - Andreas Bayer
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Johannes Postler
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Paulo Limão‐Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of PhysicsUniversidade NOVA de Lisboa2829‐516CaparicaPortugal
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
6
|
Guo M, Wu H, Zhang H, Luo Z. Furthering the Diverse Hydrogen Atom Transfer and Carbon Bond Dissociation of Amino Acids under Vacuum Ultraviolet. ChemistrySelect 2019. [DOI: 10.1002/slct.201803564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| |
Collapse
|
7
|
Kempkes LJM, Martens J, Berden G, Oomens J. w-Type ions formed by electron transfer dissociation of Cys-containing peptides investigated by infrared ion spectroscopy. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1207-1213. [PMID: 30281881 PMCID: PMC6283004 DOI: 10.1002/jms.4298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
In mass spectrometry-based peptide sequencing, electron transfer dissociation (ETD) and electron capture dissociation (ECD) have become well-established fragmentation methods complementary to collision-induced dissociation. The dominant fragmentation pathways during ETD and ECD primarily involve the formation of c- and z• -type ions by cleavage of the peptide backbone at the N─Cα bond, although neutral losses from amino acid side chains have also been observed. Residue-specific neutral side chain losses provide useful information when conducting database searching and de novo sequencing. Here, we use a combination of infrared ion spectroscopy and quantum-chemical calculations to assign the structures of two ETD-generated w-type fragment ions. These ions are spontaneously formed from ETD-generated z• -type fragments by neutral loss of 33 Da in peptides containing a cysteine residue. Analysis of the infrared ion spectra confirms that these z• -ions expel a thiol radical (SH• ) and that a vinyl C═C group is formed at the cleavage site. z• -type fragments containing a Cys residue but not at the cleavage site do not spontaneously expel a thiol radical, but only upon additional collisional activation after ETD.
Collapse
Affiliation(s)
- Lisanne J. M. Kempkes
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Castrovilli MC, Trabattoni A, Bolognesi P, O'Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R. Ultrafast Hydrogen Migration in Photoionized Glycine. J Phys Chem Lett 2018; 9:6012-6016. [PMID: 30253105 DOI: 10.1021/acs.jpclett.8b02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen migration in the glycine cation has been investigated using a combination of a short train of attosecond extreme ultraviolet pulses with few-optical-cycle near-infrared pulses. The yield of the photofragments produced has been measured as a function of pump-probe delay. These time-dependent measurements reveal the presence of a hydrogen migration process occurring in 48 fs. Previous mass spectrometric experiments and theoretical calculations have allowed us to identify the conformations and cation states involved in the process induced by the broad band extreme ultraviolet radiation.
Collapse
Affiliation(s)
- M C Castrovilli
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR , 20133 Milano , Italy
| | - A Trabattoni
- Department of Physics , Politecnico di Milano , 20133 Milano , Italy
- CFEL-DESY , Notkerstrasse 85 , 22607 Hamburg , Germany
| | - P Bolognesi
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
| | - P O'Keeffe
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
| | - L Avaldi
- Istituto Struttura della Materia, ISM-CNR , 00016 Monterotondo Scalo, Roma , Italy
| | - M Nisoli
- Institute for Photonics and Nanotechnologies, IFN-CNR , 20133 Milano , Italy
- Department of Physics , Politecnico di Milano , 20133 Milano , Italy
| | - F Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR , 20133 Milano , Italy
- CFEL-DESY , Notkerstrasse 85 , 22607 Hamburg , Germany
- Department of Physics , University of Hamburg , 20355 Hamburg , Germany
| | - R Cireasa
- Institut des Sciences Moléculaires d'Orsay, CNRS , Université Paris Sud , 91400 Orsay, France
| |
Collapse
|
9
|
Ma L, Ren J, Feng R, Zhang K, Kong X. Structural characterizations of protonated homodimers of amino acids: Revealed by infrared multiple photon dissociation (IRMPD) spectroscopy and theoretical calculations. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Xin Y, Rodríguez-Santiago L, Sodupe M, Álvarez-Larena A, Busqué F, Alibés R. Intramolecular Photocycloaddition of 2(5 H)-Furanones to Temporarily Tethered Terminal Alkenes as a Stereoselective Source of Enantiomerically Pure Polyfunctionalyzed Cyclobutanes. J Org Chem 2018; 83:3188-3199. [PMID: 29461058 DOI: 10.1021/acs.joc.8b00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allyloxymethyloxymethyl and 4-pentenoyloxymethyl substituents have been used as tethering groups to study the intramolecular [2 + 2] photocycloaddition of chiral 5-substituted 2(5 H)-furanones. The photoreactions proceed in good yield and provide the expected regio- and diastereoselective tricyclic compounds with complementary regioselectivity, which depends on whether the vinyl chain is attached to the furanone by an acetal or an ester linkage. Computational simulations agree with experimental observations and indicate that the origin of the different observed regioselectivity in the intramolecular photochemical reaction of lactones 5 and 6 arises from the relative stability of the initial conformers. The synthetic potential of the enantiomerically pure photoadducts is illustrated by preparing an all- cis 1,2,3-trisubstituted cyclobutane bearing fully orthogonally protected hydroxyl groups.
Collapse
|
11
|
Giricheva NI, Kurbatova MS, Tyunina EY, Badelin VG. Quantum chemical study of the molecular structure of the sodium dodecylsulfate complexes with glycine and cysteine. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476617080182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Meneses G, Widmann C, Cunha T, Gil A, Ferreira da Silva F, Calhorda MJ, Limão-Vieira P. Unravelling the dissociation pathways of acetic acid upon electron transfer in potassium collisions: experimental and theoretical studies. Phys Chem Chem Phys 2018; 19:1083-1088. [PMID: 27942639 DOI: 10.1039/c6cp06375f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transfer in alkali-molecule collisions with gas phase acetic acid and its deuterated analogues resulting in OH- formation requires considerable internal rearrangement in the temporary negative ion. At a collision energy well above the threshold of negative ion formation, electron transfer from potassium to CH3COOH/CH3COOD and CD3COOH results not only in H transfer from CH3 to COOH/COOD, but also in H release from COOH and subsequent rearrangement to eliminate OH-. These processes are also investigated by theoretical post-Hartree-Fock and DFT calculations. The combination of both studies reveals that the most favourable intermediate mechanism occurs via diol formation. Such intramolecular H transfer is reported here for the first time in the context of electron transfer induced dissociation experiments in alkali-molecule collisions. A comprehensive fragmentation study is presented and dissociation mechanisms are suggested.
Collapse
Affiliation(s)
- G Meneses
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal.
| | - C Widmann
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal.
| | - T Cunha
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal.
| | - A Gil
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - F Ferreira da Silva
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal.
| | - M J Calhorda
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - P Limão-Vieira
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
13
|
Piekarski DG, Delaunay R, Mika A, Maclot S, Adoui L, Martín F, Alcamí M, Huber BA, Rousseau P, Díaz-Tendero S, Domaracka A. Production of doubly-charged highly reactive species from the long-chain amino acid GABA initiated by Ar9+ionization. Phys Chem Chem Phys 2017; 19:19609-19618. [DOI: 10.1039/c7cp00903h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a combined experimental and theoretical study of the fragmentation of multiply-charged γ-aminobutyric acid molecules (GABAz+,z= 2, 3) in the gas phase.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando Martín
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Manuel Alcamí
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | | | - Sergio Díaz-Tendero
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | |
Collapse
|
14
|
Piekarski DG, Díaz-Tendero S. Structure and stability of clusters of β-alanine in the gas phase: importance of the nature of intermolecular interactions. Phys Chem Chem Phys 2017; 19:5465-5476. [DOI: 10.1039/c6cp07792g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a theoretical study of neutral clusters of β-alanine molecules in the gas phase, (β-ala)nn ≤ 5.
Collapse
Affiliation(s)
| | - Sergio Díaz-Tendero
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
15
|
Ha DT, Yamazaki K, Wang Y, Alcamí M, Maeda S, Kono H, Martín F, Kukk E. Fragmentation network of doubly charged methionine: Interpretation using graph theory. J Chem Phys 2016; 145:094302. [DOI: 10.1063/1.4962061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. T. Ha
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - K. Yamazaki
- Department of Chemistry, Graduate School of Science, Tohoku University, 980-8578 Sendai, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Y. Wang
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
| | - M. Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
| | - S. Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - H. Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, 980-8578 Sendai, Japan
| | - F. Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - E. Kukk
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| |
Collapse
|
16
|
Kocisek J, Piekarski DG, Delaunay R, Huber BA, Adoui L, Martín F, Alcamí M, Rousseau P, Domaracka A, Kopyra J, Díaz-Tendero S. N-Acetylglycine Cation Tautomerization Enabled by the Peptide Bond. J Phys Chem A 2015; 119:9581-9. [PMID: 26243533 DOI: 10.1021/acs.jpca.5b06009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a combined experimental and theoretical study of the ionization of N-acetylglycine molecules by 48 keV O(6+) ions. We focus on the single ionization channel of this interaction. In addition to the prompt fragmentation of the N-acetylglycine cation, we also observe the formation of metastable parent ions with lifetimes in the microsecond range. On the basis of density functional theory calculations, we assign these metastable ions to the diol tautomer of N-acetylglycine. In comparison with the simple amino acids, the tautomerization rate is higher because of the presence of the peptide bond. The study of a simple biologically relevant molecule containing a peptide bond allows us to demonstrate how increasing the complexity of the structure influences the behavior of the ionized molecule.
Collapse
Affiliation(s)
- Jaroslav Kocisek
- CIMAP, UMR 6252 (CEA/CNRS/ENSICAEN/UCBN), Bd. Henri Becquerel, BP 5133, 14070 Caen Cedex 5, France
| | | | - Rudy Delaunay
- CIMAP, UMR 6252 (CEA/CNRS/ENSICAEN/UCBN), Bd. Henri Becquerel, BP 5133, 14070 Caen Cedex 5, France.,Université de Caen Basse-Normandie , Esplanade de la Paix, CS 14032, 14032 Caen Cedex 5, France
| | - Bernd A Huber
- CIMAP, UMR 6252 (CEA/CNRS/ENSICAEN/UCBN), Bd. Henri Becquerel, BP 5133, 14070 Caen Cedex 5, France
| | - Lamri Adoui
- CIMAP, UMR 6252 (CEA/CNRS/ENSICAEN/UCBN), Bd. Henri Becquerel, BP 5133, 14070 Caen Cedex 5, France.,Université de Caen Basse-Normandie , Esplanade de la Paix, CS 14032, 14032 Caen Cedex 5, France
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid , 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Manuel Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid , 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
| | - Patrick Rousseau
- CIMAP, UMR 6252 (CEA/CNRS/ENSICAEN/UCBN), Bd. Henri Becquerel, BP 5133, 14070 Caen Cedex 5, France.,Université de Caen Basse-Normandie , Esplanade de la Paix, CS 14032, 14032 Caen Cedex 5, France
| | - Alicja Domaracka
- CIMAP, UMR 6252 (CEA/CNRS/ENSICAEN/UCBN), Bd. Henri Becquerel, BP 5133, 14070 Caen Cedex 5, France
| | - Janina Kopyra
- Faculty of Science, Siedlce University , 3 Maja 54, 08-110 Siedlce, Poland
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| |
Collapse
|
17
|
Kleisath E, Marta RA, Martens S, Martens J, McMahon T. Structures and Energetics of Protonated Clusters of Methylamine with Phenylalanine Analogs, Characterized by Infrared Multiple Photon Dissociation Spectroscopy and Electronic Structure Calculations. J Phys Chem A 2015; 119:6689-702. [DOI: 10.1021/acs.jpca.5b02794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth Kleisath
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Rick A. Marta
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sabrina Martens
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jon Martens
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Terry McMahon
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
18
|
Darvish Ganji M, Hosseini-khah SM, Amini-tabar Z. Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study. Phys Chem Chem Phys 2015; 17:2504-11. [DOI: 10.1039/c4cp04399e] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work investigates hydrogen adsorption onto graphene flakes as suitable models of graphene within the framework of the B3LYP-D3 method.
Collapse
Affiliation(s)
- M. Darvish Ganji
- Nanoscale Simulation Group
- Nanotechnology Research Institute
- Babol Noshirvani University of Technology
- Babol
- Iran
| | | | - Z. Amini-tabar
- Department of Chemistry
- Islamic Azad University
- Qaemshahr
- Iran
| |
Collapse
|
19
|
Piekarski DG, Delaunay R, Maclot S, Adoui L, Martín F, Alcamí M, Huber BA, Rousseau P, Domaracka A, Díaz-Tendero S. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase. Phys Chem Chem Phys 2015; 17:16767-78. [DOI: 10.1039/c5cp01628b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental and theoretical investigations show that hydroxyl migration leads to unexpected fragmentation dynamics of β-alanine dication in the gas phase.
Collapse
Affiliation(s)
| | - Rudy Delaunay
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | - Sylvain Maclot
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | - Lamri Adoui
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | - Fernando Martín
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Manuel Alcamí
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Bernd A. Huber
- CIMAP (UMR 6252) - CEA
- CNRS
- ENSICAEN
- Unicaen
- 14070 Caen Cedex 5
| | | | | | - Sergio Díaz-Tendero
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
20
|
Laksman J, Kooser K, Levola H, Itälä E, Ha DT, Rachlew E, Kukk E. Dissociation pathways in the cysteine dication after site-selective core ionization. J Phys Chem B 2014; 118:11688-95. [PMID: 25233490 DOI: 10.1021/jp508161s] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A photoelectron-ion-ion coincidence experiment has been carried out on the amino acid molecule cysteine after core-ionization of the O 1s, N 1s, C 1s, and S 2p orbitals. A number of different dissociation channels have been identified. Some of them show strong site-selective dependence that can be attributed to a combination of nuclear motion in the core-ionized state and Auger processes that populate different final electronic states in the dication.
Collapse
Affiliation(s)
- J Laksman
- Department of Physics, University of Oulu , P.O. Box 3000, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
Ha DT, Wang Y, Alcamí M, Itälä E, Kooser K, Urpelainen S, Huels MA, Kukk E, Martín F. Fragmentation dynamics of doubly charged methionine in the gas phase. J Phys Chem A 2014; 118:1374-83. [PMID: 24517120 DOI: 10.1021/jp4113238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The dependence of the fragmentation of doubly charged gas-phase methionine (C5H11NO2S) on the electronic-state character of the parent ion is studied experimentally by energy-resolved electron ion-ion coincidence spectroscopy. The parent dication electronic states are populated by Auger transitions following site-specific sulfur 2p core ionization. Two fragmentation channels are observed to be strongly dependent on the electronic states with vacancies in weakly bound molecular orbitals. All-electron calculations are applied to assign doubly charged final states of sulfur 2p core ionized methionine. In addition, the Car-Parrinello method is applied to model fragmentation dynamics of doubly charged methionine molecules with various initial temperatures to understand the typical characteristics of the molecular dissociation and partly to support the interpretation of experimental data.
Collapse
Affiliation(s)
- Dang Trinh Ha
- Department of Physics and Astronomy, University of Turku , FIN-20014 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pauwels E, De Cooman H, Waroquier M, Hole EO, Sagstuen E. Solved? The reductive radiation chemistry of alanine. Phys Chem Chem Phys 2014; 16:2475-82. [DOI: 10.1039/c3cp54441a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Capron M, Díaz-Tendero S, Maclot S, Domaracka A, Lattouf E, Ławicki A, Maisonny R, Chesnel JY, Méry A, Poully JC, Rangama J, Adoui L, Martín F, Alcamí M, Rousseau P, Huber BA. A Multicoincidence Study of Fragmentation Dynamics in Collision of γ-Aminobutyric Acid with Low-Energy Ions. Chemistry 2012; 18:9321-32. [DOI: 10.1002/chem.201103922] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/27/2012] [Indexed: 11/07/2022]
|
24
|
Wu R, Marta RA, Martens JK, Eldridge KR, McMahon TB. Experimental and theoretical investigation of the proton-bound dimer of lysine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1651-9. [PMID: 21953268 DOI: 10.1007/s13361-011-0178-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 05/21/2011] [Accepted: 05/21/2011] [Indexed: 05/23/2023]
Abstract
The structure of the proton-bound lysine dimer has been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. The structures of different possible isomers of the proton-bound lysine dimer have been optimized at the B3LYP/6-31 + G(d) level of theory and IR spectra calculated using the same computational method. Based on relative Gibbs free energies (298 K) calculated at the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d) level of theory, LL-CS01, and followed closely (1.1 kJ mol(-1)) by LL-CS02 are the most stable non-zwitterionic isomers. At the MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + (d,p) levels of theory, isomer LL-CS02 is favored by 3.0 and 2.3 kJ mol(-1), respectively. The relative Gibbs free energies calculated by the aforementioned levels of theory for LL-CS01 and LL-CS02 are very close and strongly suggest that diagnostic vibrational signatures found in the IRMPD spectrum of the proton-bound dimer of lysine can be attributed to the existence of both isomers. LL-ZW01 is the most stable zwitterionic isomer, in which the zwitterionic structure of the neutral lysine is well stabilized by the protonated lysine moiety via a very strong intermolecular hydrogen bond. At the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d), MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + G(d,p) levels of theory, the most stable zwitterionic isomer (LL-ZW01) is less favored than LL-CS01 by 7.3, 4.1 and 2.3 kJ mol(-1), respectively. The experimental IRMPD spectrum also confirms that the proton-bound dimer of lysine largely exists as charge-solvated isomers. Investigation of zwitterionic and charge-solvated species of amino acids in the gas phase will aid in a further understanding of structure, property, and function of biological molecules.
Collapse
Affiliation(s)
- Ronghu Wu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | | | | | | | | |
Collapse
|
25
|
Maclot S, Capron M, Maisonny R, Ławicki A, Méry A, Rangama J, Chesnel JY, Bari S, Hoekstra R, Schlathölter T, Manil B, Adoui L, Rousseau P, Huber BA. Ion-Induced Fragmentation of Amino Acids: Effect of the Environment. Chemphyschem 2011; 12:930-6. [DOI: 10.1002/cphc.201000823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 11/06/2022]
|
26
|
Lam AKY, Hutton CA, O'Hair RAJ. Role of 2-oxo and 2-thioxo modifications on the fragmentation reactions of the histidine radical cation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:251-261. [PMID: 21192020 DOI: 10.1002/rcm.4830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fragmentation reactions of the radical cations, M(·+), of histidine, 2-oxo-histidine and 2-thioxo-histidine were examined using a combination of experiments performed on a linear ion trap and density functional theory (DFT) calculations at the UB3-LYP/6-311++G(d,p) level of theory. Low-energy collision-induced dissociation (CID) on [Cu(II)(terpy)(M)](2+) complexes, formed via electrospray ionisation, produced the radical cations in sufficient yield to examine their unimolecular chemistry via an additional stage of CID. The CID spectrum of the radical cation of histidine is dominated by loss of water with the next most abundant ion arising from the combined loss of H(2)O and CO. In contrast, the CID spectra of the radical cations of 2-oxo-histidine and 2-thioxo-histidine are dominated by the combined loss of CO(2) and NH=CH(2). The observed differences are rationalised via DFT calculations which reveal that the barrier associated with loss of CO(2) from the histidine radical cation is higher than that for loss of H(2)O. In contrast, the introduction of an oxygen or sulfur atom into the side chain of histidine results in a reversal of the order of these barrier heights, thus making CO(2) loss the preferred pathway.
Collapse
Affiliation(s)
- Adrian K Y Lam
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
27
|
Zhao J, Siu KWM, Hopkinson AC. Glutathione radical cation in the gas phase; generation, structure and fragmentation. Org Biomol Chem 2011; 9:7384-92. [DOI: 10.1039/c1ob05968h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Warren JJ, Tronic TA, Mayer JM. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 2010; 110:6961-7001. [PMID: 20925411 PMCID: PMC3006073 DOI: 10.1021/cr100085k] [Citation(s) in RCA: 1223] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jeffrey J. Warren
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - Tristan A. Tronic
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - James M. Mayer
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
29
|
Cucarull-González JR, Hernando J, Alibés R, Figueredo M, Font J, Rodríguez-Santiago L, Sodupe M. [2 + 2] Photocycloaddition of 2(5H)-Furanone to Unsaturated Compounds. Insights from First Principles Calculations and Transient-Absorption Measurements. J Org Chem 2010; 75:4392-401. [DOI: 10.1021/jo100341a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - J. Hernando
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - R. Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M. Figueredo
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - J. Font
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | - M. Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
30
|
Sinha RK, Maître P, Piccirillo S, Chiavarino B, Crestoni ME, Fornarini S. Cysteine radical cation: A distonic structure probed by gas phase IR spectroscopy. Phys Chem Chem Phys 2010; 12:9794-800. [DOI: 10.1039/c003576a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Marta RA, Wu R, Eldridge KR, Martens JK, McMahon TB. Infrared vibrational spectra as a structural probe of gaseous ions formed by caffeine and theophylline. Phys Chem Chem Phys 2010; 12:3431-42. [DOI: 10.1039/b921102k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Gil A, Sodupe M, Bertran J. Influence of ionization on the conformational preferences of peptide models. Ramachandran surfaces of N-formyl-glycine amide and N-formyl-alanine amide radical cations. J Comput Chem 2009; 30:1771-84. [PMID: 19090571 DOI: 10.1002/jcc.21178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ramachandran maps of neutral and ionized HCO-Gly-NH2 and HCO-Ala-NH2 peptide models have been built at the B3LYP/6-31++G(d,p) level of calculation. Direct optimizations using B3LYP and the recently developed MPWB1K functional have also been carried out, as well as single-point calculations at the CCSD(T) level of theory with the 6-311++G(2df,2p) basis set. Results indicate that for both peptide models ionization can cause drastic changes in the shape of the PES in such a way that highly disallowed regions in neutral PES become low-energy regions in the radical cation surface. The structures localized in such regions, epsilonL+* and epsilonD+* are highly stabilized due to the formation of 2-centre-3-electron interactions between the two carbonyl oxygens. Inclusion of solvent effects by the conductor-like polarizable continuum model (CPCM) shows that the solute-solvent interaction energy plays an important role in determining the stability order.
Collapse
Affiliation(s)
- Adrià Gil
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
33
|
Ryzhov V, Lam AKY, O'Hair RAJ. Gas-phase fragmentation of long-lived cysteine radical cations formed via NO loss from protonated S-nitrosocysteine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:985-995. [PMID: 19217308 DOI: 10.1016/j.jasms.2008.12.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 05/27/2023]
Abstract
In this work, we describe two different methods for generating protonated S-nitrosocysteine in the gas phase. The first method involves a gas-phase reaction of protonated cysteine with t-butylnitrite, while the second method uses a solution-based transnitrosylation reaction of cysteine with S-nitrosoglutathione followed by transfer of the resulting S-nitrosocysteine into the gas phase by electrospray ionization mass spectrometry (ESI-MS). Independent of the way it was formed, protonated S-nitrosocysteine readily fragments via bond homolysis to form a long-lived radical cation of cysteine (Cys(*+)), which fragments under collision-induced dissociation (CID) conditions via losses in the following relative abundance order: *COOH CH(2)S >> *CH(2)SH approximately = H(2)S. Deuterium labeling experiments were performed to study the mechanisms leading to these pathways. DFT calculations were also used to probe aspects of the fragmentation of protonated S-nitrosocysteine and the radical cation of cysteine. NO loss is found to be the lowest energy channel for the former ion, while the initially formed distonic Cys(*+) with a sulfur radical site undergoes proton and/or H atom transfer reactions that precede the losses of CH(2)S, *COOH, *CH(2)SH, and H(2)S.
Collapse
Affiliation(s)
- Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | | | |
Collapse
|
34
|
Blancafort L, Duran M, Poater J, Salvador P, Simon S, Solà M, Voityuk AA. Excess charge delocalization in organic and biological molecules: some theoretical notions. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0538-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Wu R, McMahon TB. IRMPD spectra of Gly.NH4 + and proton-bound betaine dimer: evidence for the smallest gas phase zwitterionic structures. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1641-1648. [PMID: 18613000 DOI: 10.1002/jms.1449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Zwitterionic structures exist extensively in biological systems and the electric field resulting from zwitterion formation is the driving force for determination of the properties, function and activity of biological molecules, such as amino acids, peptides and proteins. It is of considerable interest and import to investigate the stabilization of zwitterionic structures in the gas phase. Infrared multiple photon dissociation (IRMPD) spectroscopy is a very powerful and sensitive technique, which may elucidate clearly the structures of both ions and ionic clusters in the gas phase, since it provides IR vibrational fingerprint information. The structures of the clusters of glycine and ammonium ion and of the betaine proton-bound homodimer have been investigated using IRMPD spectroscopy, in combination with electronic structure calculations. The experimental and calculated results indicate that zwitterionic structure of glycine may be effectively stabilized by an ammonium ion. This is the smallest zwitterionic structure of an amino acid to be demonstrated in the gas phase. On the basis of the experimental IRMPD and calculated results, it is very clear that a zwitterionic structure exists in the proton-bound betaine dimer. The proton is bound to one of the carboxylate oxygens of betaine, rather than being equally shared. Investigations of zwitterionic structures in the isolated state are essential for an understanding of the intrinsic characteristics of zwitterions and salt bridge interactions in biological systems.
Collapse
Affiliation(s)
- Ronghu Wu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, Canada
| | | |
Collapse
|
36
|
Morozova OB, Yurkovskaya AV. Aminium Cation Radical of Glycylglycine and its Deprotonation to Aminyl Radical in Aqueous Solution. J Phys Chem B 2008; 112:12859-62. [DOI: 10.1021/jp807149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Olga B. Morozova
- International Tomography Center of SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Institute of Experimental Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Alexandra V. Yurkovskaya
- International Tomography Center of SB RAS, Institutskaya 3a, 630090 Novosibirsk, Russia, and Institute of Experimental Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
37
|
|