1
|
Menezes F, Popowicz GM. A Buckycatcher in Solution-A Computational Perspective. Molecules 2023; 28:molecules28062841. [PMID: 36985812 PMCID: PMC10056437 DOI: 10.3390/molecules28062841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
In this work, we study the buckycatcher (C60H28) in solution using quantum chemical models. We investigate the conformational equilibria in several media and the effects that molecules of solvent might have in interconversion barriers between the different conformers. These are studied in a hypothetical gas phase, in the dielectric of a solvent, as well as with hybrid solvation. In the latter case, due to a disruption of π-stacking interactions, the transition states are destabilized. We also evaluate the complexation of the buckycatcher with solvent-like molecules. In most cases studied, there should be no adducts formed because the enthalpy driving force cannot overcome entropic penalties.
Collapse
Affiliation(s)
- Filipe Menezes
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Kojasoy V, Tantillo DJ. Impacts of noncovalent interactions involving sulfur atoms on protein stability, structure, folding, and bioactivity. Org Biomol Chem 2022; 21:11-23. [PMID: 36345987 DOI: 10.1039/d2ob01602h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review discusses the various types of noncovalent interactions in which sulfur atoms participate and their effects on protein stability, structure, folding and bioactivity. Current approaches and recommendations for modelling these noncovalent interactions (in terms of both geometries and interaction energies) are highlighted.
Collapse
Affiliation(s)
- Volga Kojasoy
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Pérez-Tabero S, Fernández B, Cabaleiro-Lago EM, Martínez-Núñez E, Vázquez SA. New Approach for Correcting Noncovalent Interactions in Semiempirical Quantum Mechanical Methods: The Importance of Multiple-Orientation Sampling. J Chem Theory Comput 2021; 17:5556-5567. [PMID: 34424696 PMCID: PMC8486165 DOI: 10.1021/acs.jctc.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
A new
approach is presented to improve the performance of semiempirical
quantum mechanical (SQM) methods in the description of noncovalent
interactions. To show the strategy, the PM6 Hamiltonian was selected,
although, in general, the procedure can be applied to other semiempirical
Hamiltonians and to different methodologies. A set of small molecules
were selected as representative of various functional groups, and
intermolecular potential energy curves (IPECs) were evaluated for
the most relevant orientations of interacting molecular pairs. Then,
analytical corrections to PM6 were derived from fits to B3LYP-D3/def2-TZVP
reference–PM6 interaction energy differences. IPECs provided
by the B3LYP-D3/def2-TZVP combination of the electronic structure
method and basis set were chosen as the reference because they are
in excellent agreement with CCSD(T)/aug-cc-pVTZ curves for the studied
systems. The resulting method, called PM6-FGC (from functional group
corrections), significantly improves the performance of PM6 and shows
the importance of including a sufficient number of orientations of
the interacting molecules in the reference data set in order to obtain
well-balanced descriptions.
Collapse
Affiliation(s)
- Sergio Pérez-Tabero
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Berta Fernández
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Enrique M Cabaleiro-Lago
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Saulo A Vázquez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
4
|
Sajjad S, Hashmi MA, Mahmood T, Ayub K. Permeation of second row neutral elements through Al 12P 12 and B 12P 12 nanocages; a first-principles study. J Mol Graph Model 2020; 101:107748. [PMID: 32971489 DOI: 10.1016/j.jmgm.2020.107748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022]
Abstract
Both exohedral and endohedral complexes of second row elements doped X12Y12 (X = B, Al and Y = P) nano-cages are evaluated for thermodynamic stabilities, electronic properties and kinetic barriers. Interaction energies are calculated to deeply perceive the stability of these complexes. Further, interconversion of exohedral and endohedral complexes is explored through an unprecedented approach, where 2nd row elements translate into nano-cages through boundary crossing. Subsequently, the kinetic barriers for encapsulation and decapsulation are also investigated through PES scanning of all elements by passing through hexagon of nano-cages. Systematic investigations revealed that due to larger diameter, AlP nanocage exhibits low encapsulation barriers in comparison to BP nano-cage. Such as; the encapsulation barrier of F@AlP (7.57 kcal mol-1) is lower than that of F@BP (129.78 kcal mol-1). Moreover, distortion of nano-cages due to translation of elements is also estimated by distortion energies. Large distortion energies of 113.81/118.39 kcal mol-1 are noticed for exo-B@AlP/exo-C@BP complexes. In addition, the electronic properties for all the complexes are probed and depicted that the endohedral doping have remarkable influence on the electronic properties of the nanocage in comparison to exohedral doping. NBO charge analysis shows that Be metal delivers charges of 0.08 |e|/0.03 |e| to the AlP/BP nanocage, causing the later more electron rich. Contrary to Be, all other doped atoms show negative charges.
Collapse
Affiliation(s)
- Saira Sajjad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Muhammad Ali Hashmi
- Department of Chemistry, University of Education, Attock Campus, Attock, 43600, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan.
| |
Collapse
|
5
|
Ghosh S, Asher JC, Gagliardi L, Cramer CJ, Govind N. A semiempirical effective Hamiltonian based approach for analyzing excited state wave functions and computing excited state absorption spectra using real-time dynamics. J Chem Phys 2019; 150:104103. [DOI: 10.1063/1.5061746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Jason C. Asher
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99338, USA
| |
Collapse
|
6
|
Aldrich TJ, Matta M, Zhu W, Swick SM, Stern CL, Schatz GC, Facchetti A, Melkonyan FS, Marks TJ. Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. J Am Chem Soc 2019; 141:3274-3287. [DOI: 10.1021/jacs.8b13653] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | | | | | - Antonio Facchetti
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | | | | |
Collapse
|
7
|
Hwang J, Li P, Smith MD, Warden CE, Sirianni DA, Vik EC, Maier JM, Yehl CJ, Sherrill CD, Shimizu KD. Tipping the Balance between S-π and O-π Interactions. J Am Chem Soc 2018; 140:13301-13307. [PMID: 30251855 DOI: 10.1021/jacs.8b07617] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A comprehensive experimental survey consisting of 36 molecular balances was conducted to compare 18 pairs of S-π versus O-π interactions over a wide range of structural, geometric, and solvent parameters. A strong linear correlation was observed between the folding energies of the sulfur and oxygen balances across the entire library of balance pairs. The more stable interaction systematically switched from the O-π to S-π interaction. Computational studies of bimolecular PhSCH3-arene and PhOCH3-arene complexes were able to replicate the experimental trends in the molecular balances. The change in preference for the O-π to S-π interaction was due to the interplay of stabilizing (dispersion and solvophobic) and destabilizing (exchange-repulsion) terms arising from the differences in size and polarizability of the oxygen and sulfur atoms.
Collapse
Affiliation(s)
- Jungwun Hwang
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Ping Li
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | | | | | - Erik C Vik
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Josef M Maier
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Christopher J Yehl
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | | | - Ken D Shimizu
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| |
Collapse
|
8
|
Orabi EA, English AM. Modeling Protein S-Aromatic Motifs Reveals Their Structural and Redox Flexibility. J Phys Chem B 2018. [PMID: 29533644 DOI: 10.1021/acs.jpcb.8b00089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S-aromatic motifs are important noncovalent forces for protein stability and function but remain poorly understood. Hence, we performed quantum calculations at the MP2(full)/6-311++G(d,p) level on complexes between Cys (H2S, MeSH) and Met (Me2S) models with models of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol), and His (imidazole, 4-methylimidazole). The most stable gas-phase conformers exhibit binding energies of -2 to -6 kcal/mol, and the S atom lies perpendicular to the ring plane. This reveals preferential interaction with the ring π-system, except in the imidazoles where S binds edge-on to an N atom. Complexation tunes the gas-phase vertical ionization potentials of the ligands over as much as 1 eV, and strong σ- or π-type H-bonding supports charge transfer to the H-bond donor, rendering it more oxidizable. When the S atom acts as an H-bond acceptor (N/O-Har···S), calibration of the CHARMM36 force field (by optimizing pair-specific Lennard-Jones parameters) is required. Implementing the optimized parameters in molecular dynamics simulations in bulk water, we find stable S-aromatic complexes with binding free energies of -0.6 to -1.1 kcal/mol at ligand separations up to 8 Å. The aqueous S-aromatics exhibit flexible binding conformations, but edge-on conformers are less stable in water. Reflecting this, only 0.3 to 10% of the S-indole, S-phenol, and S-imidazole structures are stabilized by N/O-Har···S or S-H···Oar/Nar σ-type H-bonding. The wide range of energies and geometries found for S-aromatic interactions and their tunable redox properties expose the versatility and variability of the S-aromatic motif in proteins and allow us to predict a number of their reported properties.
Collapse
Affiliation(s)
- Esam A Orabi
- Centre for Research in Molecular Modeling (CERMM) and PROTEO , Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke Street West , Montréal , Québec H4B 1R6 , Canada
| | - Ann M English
- Centre for Research in Molecular Modeling (CERMM) and PROTEO , Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke Street West , Montréal , Québec H4B 1R6 , Canada
| |
Collapse
|
9
|
Motherwell WB, Moreno RB, Pavlakos I, Arendorf JRT, Arif T, Tizzard GJ, Coles SJ, Aliev AE. Noncovalent Interactions of π Systems with Sulfur: The Atomic Chameleon of Molecular Recognition. Angew Chem Int Ed Engl 2017; 57:1193-1198. [DOI: 10.1002/anie.201708485] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/16/2017] [Indexed: 12/24/2022]
Affiliation(s)
- William B. Motherwell
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Rafael B. Moreno
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Ilias Pavlakos
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | | | - Tanzeel Arif
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Graham J. Tizzard
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Simon J. Coles
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Abil E. Aliev
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
10
|
Motherwell WB, Moreno RB, Pavlakos I, Arendorf JRT, Arif T, Tizzard GJ, Coles SJ, Aliev AE. Noncovalent Interactions of π Systems with Sulfur: The Atomic Chameleon of Molecular Recognition. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- William B. Motherwell
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Rafael B. Moreno
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Ilias Pavlakos
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | | | - Tanzeel Arif
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Graham J. Tizzard
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Simon J. Coles
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Abil E. Aliev
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
11
|
Řezáč J. Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3. J Chem Theory Comput 2017; 13:4804-4817. [DOI: 10.1021/acs.jctc.7b00629] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
12
|
Cabria I, López MJ, Alonso JA. Searching for DFT-based methods that include dispersion interactions to calculate the physisorption of H2 on benzene and graphene. J Chem Phys 2017; 146:214104. [DOI: 10.1063/1.4984106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- I. Cabria
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain
| | - M. J. López
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain
| | - J. A. Alonso
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
13
|
Miriyala VM, Řezáč J. Description of non-covalent interactions in SCC-DFTB methods. J Comput Chem 2017; 38:688-697. [DOI: 10.1002/jcc.24725] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Vijay Madhav Miriyala
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2; Prague 6 16610 Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2; Prague 6 16610 Czech Republic
| |
Collapse
|
14
|
Ucak UV, Ji H, Singh Y, Jung Y. A soft damping function for dispersion corrections with less overfitting. J Chem Phys 2016; 145:174104. [DOI: 10.1063/1.4965818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Umit V. Ucak
- Graduate School of EEWS, KAIST, Daejeon, South Korea
| | - Hyunjun Ji
- Graduate School of EEWS, KAIST, Daejeon, South Korea
| | - Yashpal Singh
- Graduate School of EEWS, KAIST, Daejeon, South Korea
| | - Yousung Jung
- Graduate School of EEWS, KAIST, Daejeon, South Korea
| |
Collapse
|
15
|
Orabi EA, English AM. Sulfur-Aromatic Interactions: Modeling Cysteine and Methionine Binding to Tyrosinate and Histidinium Ions to Assess Their Influence on Protein Electron Transfer. Isr J Chem 2016. [DOI: 10.1002/ijch.201600047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Esam A. Orabi
- Department of Chemistry and Biochemistry; Concordia University; 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
- Center for Research in Molecular Modeling (CERMM)Quebec; Network for Research on Protein Function, Engineering, and Applications (PROTEO)
- On leave from Department of Chemistry, Faculty of Science; Assiut University; Assiut 71516 Egypt
| | - Ann M. English
- Department of Chemistry and Biochemistry; Concordia University; 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
- Center for Research in Molecular Modeling (CERMM)Quebec; Network for Research on Protein Function, Engineering, and Applications (PROTEO)
| |
Collapse
|
16
|
Christensen A, Kubař T, Cui Q, Elstner M. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chem Rev 2016; 116:5301-37. [PMID: 27074247 PMCID: PMC4867870 DOI: 10.1021/acs.chemrev.5b00584] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Indexed: 12/28/2022]
Abstract
Semiempirical (SE) methods can be derived from either Hartree-Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems.
Collapse
Affiliation(s)
- Anders
S. Christensen
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tomáš Kubař
- Institute of Physical
Chemistry & Center for Functional Nanostructures and Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Marcus Elstner
- Institute of Physical
Chemistry & Center for Functional Nanostructures and Institute of Physical
Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
17
|
Grimme S, Hansen A, Brandenburg JG, Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem Rev 2016; 116:5105-54. [DOI: 10.1021/acs.chemrev.5b00533] [Citation(s) in RCA: 799] [Impact Index Per Article: 99.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical
Chemistry, Universität Bonn, 53113 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical
Chemistry, Universität Bonn, 53113 Bonn, Germany
| | | | - Christoph Bannwarth
- Mulliken Center for Theoretical
Chemistry, Universität Bonn, 53113 Bonn, Germany
| |
Collapse
|
18
|
Řezáč J, Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem Rev 2016; 116:5038-71. [DOI: 10.1021/acs.chemrev.5b00526] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Řezáč
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | - Pavel Hobza
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Palacký University, 771 46 Olomouc, Czech Republic
| |
Collapse
|
19
|
Zhao Y, Truhlar DG. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J Chem Theory Comput 2015; 4:1849-68. [PMID: 26620329 DOI: 10.1021/ct800246v] [Citation(s) in RCA: 752] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hybrid meta density functionals M05-2X and M06-2X have been shown to provide broad accuracy for main group chemistry. In the present article we make the functional form more flexible and improve the self-interaction term in the correlation functional to improve its self-consistent-field convergence. We also explore the constraint of enforcing the exact forms of the exchange and correlation functionals through second order (SO) in the reduced density gradient. This yields two new functionals called M08-HX and M08-SO, with different exact constraints. The new functionals are optimized against 267 diverse main-group energetic data consisting of atomization energies, ionization potentials, electron affinities, proton affinities, dissociation energies, isomerization energies, barrier heights, noncovalent complexation energies, and atomic energies. Then the M08-HX, M08-SO, M05-2X, and M06-2X functionals and the popular B3LYP functional are tested against 250 data that were not part of the original training data for any of the functionals, in particular 164 main-group energetic data in 7 databases, 39 bond lengths, 38 vibrational frequencies, and 9 multiplicity-changing electronic transition energies. These tests include a variety of new challenges for complex systems, including large-molecule atomization energies, organic isomerization energies, interaction energies in uracil trimers, and bond distances in crowded molecules (in particular, cyclophanes). The M08-HX functional performs slightly better than M08-SO and M06-2X on average, significantly better than M05-2X, and much better than B3LYP for a combination of main-group thermochemistry, kinetics, noncovalent interactions, and electronic spectroscopy. More important than the slight improvement in accuracy afforded by M08-HX is the conformation that the optimization procedure works well for data outside the training set. Problems for which the accuracy is especially improved by the new M08-HX functional include large-molecule atomization energies, noncovalent interaction energies, conformational energies in aromatic peptides, barrier heights, multiplicity-changing excitation energies, and bond lengths in crowded molecules.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| |
Collapse
|
20
|
Vektariene A. Theoretical study on the mechanism of thieno[3,2-b
]benzofuranbromination: the importance of Lewis and non-Lewis type NBOs interactions along the reaction path. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ausra Vektariene
- Institute of Theoretical Physics and Astronomy; Vilnius University; A. Gostauto 12 LT-01108 Vilnius Lithuania
| |
Collapse
|
21
|
Huang M, Giese TJ, York DM. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models. J Comput Chem 2015; 36:1370-89. [PMID: 25943338 PMCID: PMC4760688 DOI: 10.1002/jcc.23933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/02/2015] [Accepted: 03/28/2015] [Indexed: 01/09/2023]
Abstract
Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggests that the creation of robust next-generation models should emphasize the improvement of relative conformational energies and barriers, and nonbonded interactions.
Collapse
Affiliation(s)
- Ming Huang
- Scientific Computation, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455–0431, USA
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology, and Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854–8076, USA
| | - Timothy J. Giese
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology, and Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854–8076, USA
| | - Darrin M. York
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology, and Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854–8076, USA
| |
Collapse
|
22
|
Esrafili MD, Mohammadian-Sabet F. Prediction and characterisation of a chalcogen···π interaction with acetylene as a potential electron donor in XHS···HCCH and XHSe···HCCH (X = F, Cl, Br, CN, OH, OCH3, NH2, CH3) σ-hole complexes. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1039619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA. A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. J Med Chem 2015; 58:4383-438. [DOI: 10.1021/jm501853m] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brett R. Beno
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway Wallingford Connecticut 06492, United States
| | - Kap-Sun Yeung
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway Wallingford Connecticut 06492, United States
| | - Michael D. Bartberger
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive Thousand Oaks California 91320, United States
| | - Lewis D. Pennington
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive Thousand Oaks California 91320, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway Wallingford Connecticut 06492, United States
| |
Collapse
|
24
|
Yilmazer ND, Korth M. Enhanced semiempirical QM methods for biomolecular interactions. Comput Struct Biotechnol J 2015; 13:169-75. [PMID: 25848495 PMCID: PMC4372622 DOI: 10.1016/j.csbj.2015.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Recent successes and failures of the application of 'enhanced' semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy.
Collapse
Affiliation(s)
| | - Martin Korth
- Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
25
|
Guo X, Liu YW, Li QZ, Li WZ, Cheng JB. Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te). Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Accuracy of density functionals in the description of dispersion interactions and IR spectra of phosphates and phosphorylated compounds. J Mol Model 2014; 20:2426. [DOI: 10.1007/s00894-014-2426-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
27
|
Yu Z, Ma YC, Ai J, Chen DQ, Zhao DM, Wang X, Chen YL, Geng MY, Xiong B, Cheng MS, Shen JK. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations. Acta Pharmacol Sin 2013; 34:1475-83. [PMID: 24056705 DOI: 10.1038/aps.2013.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/28/2013] [Indexed: 01/22/2023] Open
Abstract
AIM To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. METHODS Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. RESULTS Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. CONCLUSION The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.
Collapse
|
28
|
Bauzá A, Alkorta I, Frontera A, Elguero J. On the Reliability of Pure and Hybrid DFT Methods for the Evaluation of Halogen, Chalcogen, and Pnicogen Bonds Involving Anionic and Neutral Electron Donors. J Chem Theory Comput 2013; 9:5201-10. [PMID: 26583427 DOI: 10.1021/ct400818v] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this article, we report a comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods. We have observed that the pure and some hybrid functionals largely overestimate the interaction energies when the donor atom is anionic (Cl(-) or Br(-)), especially in the halogen bonding complexes. To evaluate the reliability of the different DFT (BP86, BP86-D3, BLYP, BLYP-D3, B3LYP, B97-D, B97-D3, PBE0, HSE06, APFD, and M06-2X) and ab initio (MP2, RI-MP2, and HF) methods, we have compared the binding energies and equilibrium distances to those obtained using the CCSD(T)/aug-cc-pVTZ level of theory, as reference. The addition of the latest available correction for dispersion (D3) to pure functionals is not recommended for the calculation of halogen, chalcogen, and pnicogen complexes with anions, since it further contributes to the overestimation of the binding energies. In addition, in chalcogen bonding interactions, we have studied how the hybridization of the chalcogen atom influences the interaction energies.
Collapse
Affiliation(s)
- Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears , Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC) , Juan de la Cierva 3, 28006 Madrid, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears , Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC) , Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
29
|
Sundararajan M. Quantum Chemical Challenges for the Binding of Simple Alkanes to Supramolecular Hosts. J Phys Chem B 2013; 117:13409-17. [DOI: 10.1021/jp405113j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mahesh Sundararajan
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
30
|
Liao MS, Huang MJ, Watts JD. Binding of O2 and NO to heme in heme-nitric oxide/oxygen-binding (H-NOX) proteins. A theoretical study. J Phys Chem B 2013; 117:10103-14. [PMID: 23926882 PMCID: PMC3810174 DOI: 10.1021/jp403998u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The binding of O2 and NO to heme in heme-nitric oxide/oxygen-binding (H-NOX) proteins has been investigated with DFT as well as dispersion-corrected DFT methods. The local protein environment was accounted for by including the six nearest surrounding residues in the studied systems. Attention was also paid to the effects of the protein environment, particularly the distal Tyr140, on the proximal iron-histidine (Fe-His) binding. The Heme-AB (AB = O2, NO) and Fe-His binding energies in iron porphyrin FeP(His)(AB), myoglobin Mb(AB), H-NOX(AB), and Tyr140 → Phe mutated H-NOX[Y140F(AB)] were determined for comparison. The calculated stabilization of bound O2 is even higher in H-NOX than that in a myoglobin (Mb), consistent with the observation that the H-NOX domain of T. tengcongensis has a very high affinity for its oxygen molecule. Among the two different X-ray crystal structures for the Tt H-NOX protein, the calculated results for both AB = O2 and NO appear to support the crystal structure with the PDB code 1XBN , where the Trp9 and Asn74 residues do not form a hydrogen-bonding network with Tyr140. A hydrogen bond interaction from the polar residue does not have obvious effects on the Fe-His binding strength, but a dispersion contribution to Ebind(Fe-His) may be significant, depending on the crystal structure used. We speculate that the Fe-His binding strength in the deoxy form of a native protein could be an important factor in determining whether the bond of His to Fe is broken or maintained upon binding of NO to Fe.
Collapse
Affiliation(s)
- Meng-Sheng Liao
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| | - Ming-Ju Huang
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| | - John D. Watts
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| |
Collapse
|
31
|
Vektariene A. Insights into the Mechanism of the Benzoannelated Thieno[3,2-b]furan Halogenation. Importance of HOMO–HOMO Interaction. J Phys Chem A 2013; 117:8449-58. [DOI: 10.1021/jp402257u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ausra Vektariene
- Institute of Theoretical Physics
and Astronomy, Vilnius University, A. Gostauto
12, LT-01108 Vilnius,
Lithuania
| |
Collapse
|
32
|
Han J, Mazack MJM, Zhang P, Truhlar DG, Gao J. Quantum mechanical force field for water with explicit electronic polarization. J Chem Phys 2013; 139:054503. [PMID: 23927266 PMCID: PMC3747793 DOI: 10.1063/1.4816280] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/08/2013] [Indexed: 11/14/2022] Open
Abstract
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.
Collapse
Affiliation(s)
- Jaebeom Han
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455-0431, USA
| | | | | | | | | |
Collapse
|
33
|
Van de Voorde B, Munn AS, Guillou N, Millange F, De Vos DE, Walton RI. Adsorption of N/S heterocycles in the flexible metal-organic framework MIL-53(Fe(III)) studied by in situ energy dispersive X-ray diffraction. Phys Chem Chem Phys 2013; 15:8606-15. [PMID: 23439974 DOI: 10.1039/c3cp44349c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of N/S-containing heterocyclic organic molecules in the flexible iron(III) terephthalate MIL-53, Fe(III)(OH)(0.6)F(0.4)(O2C-C6H4-CO2)·(H2O), from the liquid phase was studied with in situ energy dispersive X-ray diffraction (EDXRD), in order to follow the adsorption-induced expansion of the structure. For comparison with the diffraction data, liquid phase adsorption isotherms were recorded for uptake of benzothiophene, benzothiazole and indole in isopropanol and in heptane. The solvent not only influences pore opening but is also a competing guest. The in situ EDXRD experiments allow the kinetics of guest uptake and the competition with solvent to be monitored directly. Indole uptake is limited; this adsorbate is barely capable of opening the closed, either hydrated or dehydrated, MIL-53(Fe) structure, or of penetrating the isopropanol-containing material in the concentration range under study. When isopropanol is used as a solvent, the guest molecules benzothiophene and benzothiazole must be present at a certain threshold concentration before substantial adsorption into the metal-organic framework takes place, eventually resulting in full opening of the structure. The fully expanded structures of benzothiophene or benzothiazole loaded MIL-53(Fe) materials have Imcm symmetry and a unit cell volume of ca. 1600 Å(3), and upon uptake of the guest molecules by the closed form (unit cell volume ~1000 Å(3)) no intermediate crystalline phases are seen. Successful uptake by MIL-53(Fe) requires that the adsorbate is primarily a good hydrogen bond acceptor; additionally, based on UV-visible spectroscopy, a charge-transfer interaction between the S atoms of benzothiophene and the aromatic rings in the MOF pore wall is proposed.
Collapse
Affiliation(s)
- Ben Van de Voorde
- Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Arenbergpark 23, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Leverentz HR, Qi HW, Truhlar DG. Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results. J Chem Theory Comput 2013; 9:995-1006. [PMID: 26588742 DOI: 10.1021/ct300848z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The binding energies and relative conformational energies of five configurations of the water 16-mer are computed using 61 levels of density functional (DF) theory, 12 methods combining DF theory with molecular mechanics damped dispersion (DF-MM), seven semiempirical-wave function (SWF) methods, and five methods combining SWF theory with molecular mechanics damped dispersion (SWF-MM). The accuracies of the computed energies are assessed by comparing them to recent high-level ab initio results; this assessment is more relevant to bulk water than previous tests on small clusters because a 16-mer is large enough to have water molecules that participate in more than three hydrogen bonds. We find that for water 16-mer binding energies the best DF, DF-MM, SWF, and SWF-MM methods (and their mean unsigned errors in kcal/mol) are respectively M06-2X (1.6), ωB97X-D (2.3), SCC-DFTB-γ(h) (35.2), and PM3-D (3.2). We also mention the good performance of CAM-B3LYP (1.8), M05-2X (1.9), and TPSSLYP (3.0). In contrast, for relative energies of various water nanoparticle 16-mer structures, the best methods (and mean unsigned errors in kcal/mol), in the same order of classes of methods, are SOGGA11-X (0.3), ωB97X-D (0.2), PM6 (0.4), and PMOv1 (0.6). We also mention the good performance of LC-ωPBE-D3 (0.3) and ωB97X (0.4). When both relative and binding energies are taken into consideration, the best methods overall (out of the 85 tested) are M05-2X without molecular mechanics and ωB97X-D when molecular mechanics corrections are included; with considerably higher average errors and considerably lower cost, the best SWF or SWF-MM method is PMOv1. We use six of the best methods for binding energies of the water 16-mers to calculate the binding energies of water hexamers and water 17-mers to test whether these methods are also reliable for binding energy calculations on other types of water clusters.
Collapse
Affiliation(s)
- Hannah R Leverentz
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Helena W Qi
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
35
|
Bauzá A, Quiñonero D, Deyà PM, Frontera A. Halogen bonding versuschalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm 2013. [DOI: 10.1039/c2ce26741a] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Factors that distort the heme structure in Heme-Nitric Oxide/OXygen-Binding (H-NOX) protein domains. A theoretical study. J Inorg Biochem 2012; 118:28-38. [PMID: 23123336 DOI: 10.1016/j.jinorgbio.2012.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 11/21/2022]
Abstract
DFT and dispersion-corrected DFT calculations were carried out to probe the factors that distort the heme structure in Heme-Nitric oxide/OXygen-binding (H-NOX) protein domains. Various model systems that include heme, heme+surrounding residues, and heme+surrounding residues+additional protein environment were examined; the latter system was calculated with a quantum mechanics/molecular mechanics (QM/MM) method. The computations were extended to a myoglobin (Mb) protein, in which the heme structure is quite planar, in contrast to that in H-NOX. The natural tendency of the heme is to be planar. The strong structural distortion in H-NOX is mainly brought about by the intermolecular interactions between the whole heme molecule (heme ring plus its peripheral substituents) and the surrounding residues, among which the polar residues (Tyr140, Pro115, Mse98) play major roles in distorting the heme structure. The two peripheral propionate substituents that are oriented on the same side of the heme plane can also make the molecule distort, but the distortion caused by this factor is not significant. In Mb, the surrounding residues considered are all nonpolar and do not cause a structural distortion. The different structural features of the heme macrocycle in the different proteins (H-NOX and Mb) are reproduced by the calculations. The dispersion correction is necessary, since it improves the calculated structures. The effects of the distortion on the binding affinity of the axial ligand to the heme were also examined.
Collapse
|
37
|
Liao MS, Huang MJ, Watts JD. Assessment of dispersion corrections in DFT calculations on large biological systems. Mol Phys 2012. [DOI: 10.1080/00268976.2012.695811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Beneberu HZ, Tian YH, Kertesz M. Bonds or not bonds? Pancake bonding in 1,2,3,5-dithiadiazolyl and 1,2,3,5-diselenadiazolyl radical dimers and their derivatives. Phys Chem Chem Phys 2012; 14:10713-25. [DOI: 10.1039/c2cp41018d] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Salonen LM, Ellermann M, Diederich F. Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007560] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Salonen LM, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed Engl 2011; 50:4808-42. [PMID: 21538733 DOI: 10.1002/anie.201007560] [Citation(s) in RCA: 1174] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Indexed: 12/12/2022]
Abstract
This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host-guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene-arene, perfluoroarene-arene, S⋅⋅⋅aromatic, cation-π, and anion-π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure-based hit-to-lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.
Collapse
Affiliation(s)
- Laura M Salonen
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Hönggerberg, HCI, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
41
|
Zhang P, Fiedler L, Leverentz HR, Truhlar DG, Gao J. Polarized Molecular Orbital Model Chemistry. II. The PMO Method. J Chem Theory Comput 2011; 7:857-867. [PMID: 23378824 PMCID: PMC3560573 DOI: 10.1021/ct100638g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a new semiempirical molecular orbital method based on neglect of diatomic differential overlap. This method differs from previous NDDO-based methods in that we include p orbitals on hydrogen atoms to provide a more realistic modeling of polarizability. As in AM1-D and PM3-D, we also include damped dispersion. The formalism is based on the original MNDO one, but in the process of parameterization we make some specific changes to some of the functional forms. The present article is a demonstration of the capability of the new approach, and it presents a successful parametrization for compounds composed only of hydrogen and oxygen atoms, including the important case of water clusters.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| | - Luke Fiedler
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| | - Hannah R. Leverentz
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| |
Collapse
|
42
|
Ramanjaneyulu GS, Darshan DV, Mahendar K, Kantam ML, Prabhakar S. Differentiation of diasteromeric α-sulfanyl-β-amino acid derivatives by electrospray ionization tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:265-275. [PMID: 21828420 DOI: 10.1255/ejms.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A set of diastereomeric α-sulfanyl-β-amino acid derivatives, which are important building blocks for pharmaceuticals with potent biological activity, are studied by electrospray ionization tandem mass spectrometry. The collision induced dissociation (CID) spectra of [M+H](+), [M+NH(4)](+), [M+Na](+) and [M+Li](+) of the diastereomers were studied, among them the CID of [M+Na](+) and [M+Li](+) showed consistent differences in the relative abundance of characteristic ions that enabled distinction of the anti isomers from syn isomers. The decomposition pathways for the diagnostic ions were arrived at based on high-resolution mass spectrometry data, multiple mass spectrometry data, deuterium labeling experiments and the mass shift in accordance with the substituents located at different places. Loss of (R(1)-C(6)H(4)-CH=NH) and (Cat-NH-SO(2)R(2)) from [M+Cat](+), where Cat=Na and Li, and the product ions as a results of McLafferty rearrangement involving either >S=O or >C=O group were found to be diagnostic. The McLafferty rearrangement product ions involving >S=O group were more abundant in syn isomers while those involving >C=O group were more abundant in anti isomer. The selectivity observed in the decomposition of [M+Li](+) ions was found to be similar to that of [M+Na](+) ions, but in few cases the differences are marginal in the decomposition [M+Li](+) ions.
Collapse
Affiliation(s)
- Gundimeda S Ramanjaneyulu
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Riley KE, Pitonák M, Jurecka P, Hobza P. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 2010; 110:5023-63. [PMID: 20486691 DOI: 10.1021/cr1000173] [Citation(s) in RCA: 570] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin E Riley
- Department of Chemistry, University of Puerto Rico, Rio Piedras, Puerto Rico 00931
| | | | | | | |
Collapse
|
45
|
Won J, Noh D, Yun J, Lee JY. Catalytic Activity of Phosphine−Copper Complexes for Hydroboration of Styrene with Pinacolborane: Experiment and Theory. J Phys Chem A 2010; 114:12112-5. [DOI: 10.1021/jp1081966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiyeon Won
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Dongwan Noh
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jaesook Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
46
|
Rutledge LR, Wetmore SD. The assessment of density functionals for DNA–protein stacked and T-shaped complexes. CAN J CHEM 2010. [DOI: 10.1139/v10-046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present work uses 129 nucleobase – amino acid CCSD(T)/CBS stacking and T-shaped interaction energies as reference data to test the ability of various density functionals with double-zeta quality basis sets, as well as some semi-empirical and molecular mechanics methods, to accurately describe noncovalent DNA–protein π–π and π+–π interactions. The goal of this work is to identify methods that can be used in hybrid approaches (QM/MM, ONIOM) for large-scale modeling of enzymatic systems involving active-site (substrate) π–π contacts. Our results indicate that AMBER is a more appropriate choice for the lower-level method in hybrid techniques than popular semi-empirical methods (AM1, PM3), and suggest that AMBER accurately describes the π–π interactions found throughout DNA–protein complexes. The M06–2X and PBE-D density functionals were found to provide very promising descriptions of the 129 nucleobase – amino acid interaction energies, which suggests that these may be the most suitable methods for describing high-level regions. Therefore, M06–2X and PBE-D with both the 6–31G(d) and 6–31+G(d,p) basis sets were further examined through potential-energy surface scans to better understand how these techniques describe DNA–protein π–π interactions in both minimum and nonminimum regions of the potential-energy surfaces, which is critical information when modeling enzymatic reaction pathways. Our results suggest that studies of stacked nucleobase – amino acid systems should implement the PBE-D/6–31+G(d,p) method. However, if T-shaped contacts are involved and (or) smaller basis sets must be considered due to limitations in computational resources, then M06–2X/6–31G(d) provides an overall excellent description of both nucleobase – amino acid stacking and T-shaped interactions for a range of DNA–protein π–π and π+–π interactions.
Collapse
Affiliation(s)
- Lesley R. Rutledge
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
47
|
Aldulaijan S, Platts JA. Theoretical prediction of a peptide binding to major histocompatibility complex II. J Mol Graph Model 2010; 29:240-5. [PMID: 20598929 DOI: 10.1016/j.jmgm.2010.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/27/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
Abstract
Prediction of the binding energy of a peptide implicated in multipole sclerosis to its major histocompatibility complex (MHC) receptor is reported using numerous ab initio, density functional (DFT) and semi-empirical theoretical methods. Using the crystalline coordinates taken from the protein databank, two ab initio methods are shown to be in good agreement for pairwise interaction of amino acids. These data are then used to benchmark more approximate DFT and semi-empirical approaches, which are shown to have substantial errors. However, in some cases significant improvement is apparent on inclusion of an empirical correction to account for dispersion interactions. Most promising among these cases is RM1, a re-parameterization of the popular AM1 method for atoms typically found in organic and biological molecules. Together with the dispersion correction, this reproduces ab initio data with a mean unsigned error of 1.36 kcal/mol. This approach is used to predict binding for progressively larger model systems, up to binding of the peptide with the entire MHC receptor, and is then applied to multiple snapshots taken from molecular dynamics simulation.
Collapse
Affiliation(s)
- Sarah Aldulaijan
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | |
Collapse
|
48
|
|
49
|
Foster ME, Sohlberg K. Empirically corrected DFT and semi-empirical methods for non-bonding interactions. Phys Chem Chem Phys 2010; 12:307-22. [DOI: 10.1039/b912859j] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Politzer P, Murray JS, Clark T. Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 2010; 12:7748-57. [PMID: 20571692 DOI: 10.1039/c004189k] [Citation(s) in RCA: 1141] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Peter Politzer
- CleveTheoComp, 1951 W. 26th St., Suite 409, Cleveland, OH 44113, USA.
| | | | | |
Collapse
|