1
|
Augendre L, Costa D, Escotte-Binet S, Aubert D, Villena I, Dumètre A, La Carbona S. Surrogates of foodborne and waterborne protozoan parasites: A review. Food Waterborne Parasitol 2023; 33:e00212. [PMID: 38028241 PMCID: PMC10661733 DOI: 10.1016/j.fawpar.2023.e00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The protozoan parasites Cryptosporidium parvum, Cyclospora cayetanensis, and Toxoplasma gondii are major causes of waterborne and foodborne diseases worldwide. The assessment of their removal or inactivation during water treatment and food processing remains challenging, partly because research on these parasites is hindered by various economical, ethical, methodological, and biological constraints. To address public health concerns and gain new knowledge, researchers are increasingly seeking alternatives to the use of such pathogenic parasites. Over the past few decades, several non-pathogenic microorganisms and manufactured microparticles have been evaluated as potential surrogates of waterborne and foodborne protozoan parasites. Here, we review the surrogates that have been reported for C. parvum, C. cayetanensis, and T. gondii oocysts, and discuss their use and relevance to assess the transport, removal, and inactivation of these parasites in food and water matrices. Biological surrogates including non-human pathogenic Eimeria parasites, microorganisms found in water sources (anaerobic and aerobic spore-forming bacteria, algae), and non-biological surrogates (i.e. manufactured microparticles) have been identified. We emphasize that such surrogates have to be carefully selected and implemented depending on the parasite and the targeted application. Eimeria oocysts appear as promising surrogates to investigate in the future the pathogenic coccidian parasites C. cayetanensis and T. gondii that are the most challenging to work with.
Collapse
Affiliation(s)
- Laure Augendre
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
- ACTALIA Food Safety, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Damien Costa
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Rouen Normandie, University Hospital of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Dominique Aubert
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Isabelle Villena
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Aurélien Dumètre
- Aix-Marseille University, IRD, AP-HM, IHU Méditerranée Infection, UMR Vectors - Tropical and Mediterranean Infections, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | | |
Collapse
|
2
|
Rogers NMK, Hicks E, Kan C, Martin E, Gao L, Limso C, Hendren CO, Kuehn M, Wiesner MR. Characterizing the Transport and Surface Affinity of Extracellular Vesicles Isolated from Yeast and Bacteria in Well-Characterized Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13182-13192. [PMID: 37606695 PMCID: PMC10483924 DOI: 10.1021/acs.est.3c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bounded, nanosized particles, produced and secreted by all biological cell types. EVs are ubiquitous in the environment, operating in various roles including intercellular communication and plant immune modulation. Despite their ubiquity, the role of EV surface chemistry in determining transport has been minimally investigated. Using the zeta (ζ)-potential as a surrogate for surface charge, this work considers the deposition of EVs from the yeast, Saccharomyces cerevisiae, and two bacterial species, Staphylococcus aureus and Pseudomonas fluorescens, in well-characterized porous medium under various background conditions shown to influence the transport of other environmental colloidal particles: ionic strength and humic acid concentration. The affinity of S. cerevisiae EVs for the porous medium (glass beads) appeared to be sensitive to changes in ionic strength, as predicted by colloid stability (Derjaguin, Landau, Verwey, and Overbeek or DLVO) theory, and humic acid concentration, while P. fluorescens EVs deviated from DLVO predictions, suggesting that mechanisms other than charge stabilization may control the deposition of P. fluorescens. Calculations of attachment efficiency from these deposition studies were used to estimate EV transport using a clean-bed filtration model. Based on these calculations, EVs could be transported through such homogeneous porous media up to 15 m.
Collapse
Affiliation(s)
- Nicholas M. K. Rogers
- Department
of Mechanical Engineering, Porter School of Earth and Environmental
Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ethan Hicks
- Center
for the Environmental Implications of Nanotechnology, Department of
Civil & Environmental Engineering, Duke
University, Durham, North Carolina 27708, United States
| | - Christopher Kan
- Department
of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ethan Martin
- Department
of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Lijia Gao
- Department
of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Clariss Limso
- Department
of Biochemistry, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Christine Ogilvie Hendren
- Department
of Geological and Environmental Sciences, Research Institute for Environment,
Energy and Economics, Appalachian State
University, Boone, North Carolina 28608, United States
| | - Meta Kuehn
- Department
of Biochemistry, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Mark R. Wiesner
- Center
for the Environmental Implications of Nanotechnology, Department of
Civil & Environmental Engineering, Duke
University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Mayerberger EA, Yazdanparast Tafti S, Jedlicka SS, Jellison KL. Effect of Glycosaminoglycans on Cryptosporidium Oocyst Attachment and Excystation. Appl Environ Microbiol 2023; 89:e0173722. [PMID: 36790186 PMCID: PMC10056967 DOI: 10.1128/aem.01737-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
Cryptosporidium causes severe gastrointestinal disease resulting from the ingestion of oocysts, followed by oocyst excystation in the small intestine and the release of infective sporozoites. An understudied strategy for Cryptosporidium inactivation is purposeful oocyst excystation, as sporozoites do not survive long in the environment. This study showed that C. parvum oocyst excystation was induced by direct contact with various glycosaminoglycans (GAGs), including heparin (Hep), chondroitin sulfate A (CSA), and hyaluronan (HA), assembled on polydopamine (PD)-functionalized surfaces. PD surfaces elicited 97.9 ± 3.6% oocyst attachment, with some of the attached oocysts partially (7.3 ± 1.3%) or fully (4.0 ± 0.6%) excysted after 4 days. The PD-GAG surfaces (GAG concentration = 2 mg/mL) elicited similarly high attachment (>97%) and higher oocyst excystation efficiencies after 4 days. The PD-Hep surfaces elicited the highest number of attached excysted oocysts (11.8 ± 0.63% partially excysted; 11.9 ± 0.49% fully excysted), and the PD-HA surfaces elicited the lowest (8.8 ± 2.1% partially excysted; 7.8 ± 1.2% fully excysted). Surface characterization revealed that the addition of GAGs to the PD surface changed both the surface roughness as well as the surface wettability. Treatment of oocysts with an enzyme that degraded the surface glycocalyx markedly reduced excystation (to <2%) of the oocysts attached to the PD and PD-GAG surfaces. These findings suggest that GAGs provide an important local signal for the excystation of C. parvum oocysts and that certain surface-expressed oocyst receptors are necessary for efficient excystation. These oocyst-receptor relationships may be useful in the design of functionalized surfaces for the purposeful inactivation of oocysts in the environment or in water treatment systems. IMPORTANCE Polydopamine surfaces functionalized with glycosaminoglycans were shown to facilitate the attachment and excystation of Cryptosporidium parvum oocysts. Our findings suggest that a surface-expressed receptor on the oocyst wall plays a key role in excystation, with glycosaminoglycans serving as ligands that trigger the initiation of the process. Future technologies and treatment strategies designed to promote premature excystation of oocysts will minimize the ingestion of sporozoites that initiate infection. Therefore, the results from this study have important implications for the protection of public health from waterborne cryptosporidiosis and may serve as a foundation for engineered surfaces designed to remove oocysts from surface waters or inactivate oocysts in water treatment systems.
Collapse
Affiliation(s)
- Elisa A. Mayerberger
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Sabrina S. Jedlicka
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Kristen L. Jellison
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
4
|
Liu L, Wang Y, Narain R, Liu Y. Functionalized polystyrene microspheres as Cryptosporidium surrogates. Colloids Surf B Biointerfaces 2019; 175:680-687. [PMID: 30590329 DOI: 10.1016/j.colsurfb.2018.12.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022]
Abstract
Cryptosporidium, a waterborne protozoan pathogen that can cause gastrointestinal illness, is often found in surface waters that are used to supply drinking water. Filtration is a major process to remove Cryptosporidium in drinking water treatment. However, interactions between oocysts and filter media are still unclear and no satisfactory surrogates have been identified for quantifying their filtration removal in porous media. In the present study, polystyrene microsphere with a size, density, and shape similar to Cryptosporidium was modified with glycoprotein or synthesized biomolecules to mimic the surface properties of live Cryptosporidium oocyst. Deposition kinetics between live Cryptosporidium/modified microspheres and filter media were studied at the molecular scale using a quartz crystal microbalance with dissipation monitoring (QCM-D) and at the laboratory-scale using sand-packed columns. Both QCM-D and column experiments underlined the importance of Cryptosporidium surface charge and hydrophobicity on their attenuation and transport in porous media. As compared to live Cryptosporidium, glycopolymer and zwitterionic polymer co- odified polystyrene microspheres (later called copolymers-modified microspheres) represent comparable surface properties, adsorption kinetics on filter surfaces, and transport and deposition behaviors in filter columns; hence were selected as appropriate Cryptosporidium surrogates. This study improves our understanding on how surface characteristics impact Cryptosporidium transport behaviors in porous media and contributes to our capacity to evaluate the attenuation of Cryptosporidium in natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Lu Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Yinan Wang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
5
|
Monis P, Lau M, Harris M, Cook D, Drikas M. Risk-based management of drinking water safety in Australia: Implementation of health based targets to determine water treatment requirements and identification of pathogen surrogates for validation of conventional filtration. Food Waterborne Parasitol 2017; 8-9:64-74. [PMID: 32095641 PMCID: PMC7034041 DOI: 10.1016/j.fawpar.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022] Open
Abstract
The safety of drinking water in Australia is ensured using a risk management framework embedded within the Australian Drinking Water Guidelines (ADWG). This framework includes elements for hazard identification, risk assessment, risk mitigation, verification of barrier performance and monitoring for any changes to the hazards that influence source water quality. The next revision of the ADWG will incorporate Health-Based Targets (HBTs) for achieving microbiologically safe drinking water. This incorporates Quantitative Microbial Risk Assessment and the metric of Disability Adjusted Life Year (DALY) to define safety, with a target of 1 × 10− 6 Disability Adjusted Life Year (1 microDALY) set as the maximum tolerable disease burden from drinking water, which in the case of Cryptosporidium is < 1.3 × 10− 5 oocysts/L. The resulting product water specification, in combination with knowledge of pathogen challenges in source waters, allows the determination of the treatment requirements to ensure public safety. The ADWG revision provides default removal values for Cryptosporidium for particular treatment processes, such as conventional coagulation and dual media filtration. However, these values are based on assumptions regarding treatment plant design, operation and water quality. To properly manage risk and demonstrate compliance with the guidelines, water utilities may need to validate treatment performance for Cryptosporidium removal. A particular limitation is the absence of Cryptosporidium surrogates for full-scale filter validation. This paper will provide an overview of risk-based management of drinking water safety in Australia, the development of health-based targets for microbial pathogens and the evaluation of Cryptosporidium surrogates for conventional coagulation and dual media filtration. Used pilot-scale coagulation, sedimentation, granular media filter water treatment Compared the removals of Cryptosporidium oocysts and surrogates Pilot-scale treated water quality was comparable to full-scale treatment. Modified microspheres most similar to oocyst filtration removal Clostridium spores, algae and turbidity conservative indicators of oocyst removal Turbidity, algae have great potential as on-line indicators for oocyst removal.
Collapse
Affiliation(s)
- Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | - Melody Lau
- Australian Water Quality Centre, South Australian Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | - Martin Harris
- Australian Water Quality Centre, South Australian Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | - David Cook
- Australian Water Quality Centre, South Australian Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | - Mary Drikas
- Australian Water Quality Centre, South Australian Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| |
Collapse
|
6
|
Zhong H, Liu G, Jiang Y, Yang J, Liu Y, Yang X, Liu Z, Zeng G. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review. Biotechnol Adv 2017; 35:490-504. [DOI: 10.1016/j.biotechadv.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
|
7
|
Matavos-Aramyan S, Moussavi M, Matavos-Aramyan H, Roozkhosh S. Cryptosporidium-contaminated water disinfection by a novel Fenton process. Free Radic Biol Med 2017; 106:158-167. [PMID: 28212822 DOI: 10.1016/j.freeradbiomed.2017.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
Abstract
Three novel modified advanced oxidation process systems including ascorbic acid-, pro-oxidants- and ascorbic acid-pro-oxidants-modified Fenton system were utilized to study the disinfection efficiency on Cryptosporidium-contaminated drinking water samples. Different concentrations of divalent and trivalent iron ions, hydrogen peroxide, ascorbic acid and pro-oxidants at different exposure times were investigated. These novel systems were also compared to the classic Fenton system and to the control system which comprised of only hydrogen peroxide. The complete in vitro mechanism of the mentioned modified Fenton systems are also provided. The results pointed out that by considering the optimal parameter limitations, the ascorbic acid-modified Fenton system decreased the Cryptosporidium oocytes viability to 3.91%, while the pro-oxidant-modified and ascorbic acid-pro-oxidant-modified Fenton system achieved an oocytes viability equal to 1.66% and 0%, respectively. The efficiency of the classic Fenton at optimal condition was observed to be 20.12% of oocytes viability. The control system achieved 86.14% of oocytes viability. The optimum values of the operational parameters during this study are found to be 80mgL-1 for the divalent iron, 30mgL-1 for ascorbic acid, 30mmol for hydrogen peroxide, 25mgL-1 for pro-oxidants and an exposure time equal to 5min. The ascorbic acid-pro-oxidants-modified Fenton system achieved a promising complete water disinfection (0% viability) at the optimal conditions, leaving this method a feasible process for water disinfection or decontamination, even at industrial scales.
Collapse
Affiliation(s)
- Sina Matavos-Aramyan
- Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Raazi Environmental Protection Foundation (R.E.P.F.), Fars Science and Technology Park, P.O. Box: 71955-137, Shiraz, Iran.
| | - Mohsen Moussavi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Hedieh Matavos-Aramyan
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Roozkhosh
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
8
|
Liu G, Zhong H, Jiang Y, Brusseau ML, Huang J, Shi L, Liu Z, Liu Y, Zeng G. Effect of low-concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media. WATER RESOURCES RESEARCH 2017; 53:361-375. [PMID: 28943669 PMCID: PMC5607479 DOI: 10.1002/2016wr019832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of low-concentrations of monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose- and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. The effect of hexadecane presence as a residual non-aqueous phase liquid (NAPLs) on transport was also examined. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment. Significant cell retention was observed in the sand (81% and 82% for glucose- and hexadecane-grown cells, respectively). Addition of a low-concentration rhamnolipid solution enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose- and hexadecane-grown cells, respectively. The k values for both glucose- and hexadecane-grown cells correlate linearly with rhamnolipid-dependent CSH represented as bacterial-adhesion-to-hydrocarbon rate of cells. Retention of cells by the soil was nearly complete (>99%). Addition of 40 mg/L rhamnolipid solution reduced retention to 95%. The presence of NAPLs in the sand increased the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of the NAPL was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in was in the absence of NAPL. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating the transport in subsurface for bioaugmentation efforts.
Collapse
Affiliation(s)
- Guansheng Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yongbing Jiang
- The Sericultural Research Institute of Hunan Province, Changsha 410127, China
| | - Mark L Brusseau
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, U.S
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Liangsheng Shi
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Headd B, Bradford SA. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies. WATER RESEARCH 2016; 90:185-202. [PMID: 26734779 DOI: 10.1016/j.watres.2015.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 05/06/2023]
Abstract
Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport.
Collapse
Affiliation(s)
- Brendan Headd
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA
| | - Scott A Bradford
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA.
| |
Collapse
|
10
|
Lu P, Amburgey JE. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration. JOURNAL OF WATER AND HEALTH 2016; 14:109-120. [PMID: 26837835 DOI: 10.2166/wh.2015.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryptosporidium species are the most common cause of gastrointestinal illness in treated recreational water venues. In order to protect public health during swimming, Cryptosporidium-sized microsphere removals by high-rate sand filtration with six coagulants were evaluated with a 5.5 m(3) pilot-scale swimming pool. A sand filter without coagulation removed 20-63% of Cryptosporidium-sized microspheres. Cryptosporidium-sized microsphere removals exceeded 98% by sand filtration with five of the six tested coagulants. Continuously feeding coagulants A, B, and F (i.e., organic polymers) led to coagulant accumulation in the system and decreased removals over time (<2 days). Coagulant E (polyaluminum chloride) consistently removed more than 90% of microspheres at 30 m/h while the removals dropped to approximately 50% at a filtration rate of 37 m/h. Coagulant C was a chitosan-based product that removed fewer microspheres compared with other products, <75%, under the studied conditions. Results indicated aluminum-based coagulants (coagulants D and E) had an overall performance advantage over the organic polymer based coagulants primarily in terms of their tendency not to accumulate in the water and cease to be effective at improving filter efficiency.
Collapse
Affiliation(s)
- Ping Lu
- Department of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China E-mail: ; Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - James E Amburgey
- Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
11
|
Abstract
Transport ofCryptosporidiumin runoff will contaminate the surrounding water body.Cryptosporidium-sized microspheres and inactiveCryptosporidiumparvum oocysts removal using an active carbon (AC) filter with/without coal gangue from the runoff was evaluated. Chemical composition of coal gangue was determined, and its performance as a water treatment material was tested. Results showed SiO2was the dominant chemical component of coal gangue. Removal was only 20% for microspheres and 24% for oocysts by AC filtration alone. The removal for both was increased to more than 98% by addition of coal gangue powder to the filter. Furthermore, gangue reuse turned commercially worthless material to a water treatment material as well helping prevent gangue from occupying agriculture/industry land.
Collapse
|
12
|
Rodrigues SN, Dickson SE. The Effect of Matrix Properties and Preferential Pathways on the Transport of Escherichia coli RS2-GFP in Single, Saturated, Variable-Aperture Fractures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8425-8431. [PMID: 26089105 DOI: 10.1021/acs.est.5b01578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fractured aquifers are a relatively under-studied area of groundwater science particularly because of the heterogeneities present in fractures which make it difficult to understand and predict the transport and retention of contaminants. This research was designed to elucidate some of the factors that contribute to particle transport and retention in fractures using solute and particle tracers in a natural rock fracture and a transparent epoxy replica of that same fracture. Significantly less attachment was observed from the tracer experiments conducted in the replica fracture illustrating the large effect that matrix properties have on transport and retention of particles in fractures. The E. coli RS2-GFP tracer experiments conducted in the replica fracture show that increasing specific discharge results in increasing recovery; however, there is a critical specific discharge at which particle recovery seems to steady or slightly decrease. Images were collected of the E. coli RS2-GFP transport through the epoxy replica fracture, which capture for the first time the preferential pathways of E. coli in fractures, and also demonstrate a slight broadening of the dominant preferential pathway under increasing flow conditions. These results are instructive to the development and improvement of predictive models for particle transport in fractured aquifers.
Collapse
Affiliation(s)
- S N Rodrigues
- McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| | - S E Dickson
- McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
13
|
Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium. Appl Environ Microbiol 2015; 81:4277-83. [PMID: 25888174 DOI: 10.1128/aem.00885-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water.
Collapse
|
14
|
Balthazard-Accou K, Fifi U, Agnamey P, Casimir JA, Brasseur P, Emmanuel E. Influence of ionic strength and soil characteristics on the behavior of Cryptosporidium oocysts in saturated porous media. CHEMOSPHERE 2014; 103:114-120. [PMID: 24359923 DOI: 10.1016/j.chemosphere.2013.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 06/03/2023]
Abstract
The physico-chemical behavior of Cryptosporidium oocysts was investigated during their transfer through an alluvial formation from Les Cayes (Haiti) via batch tests. Five approximately 3 kg soil samples were collected and combined prior to batch tests from the alluvial formations. The experiments were carried out at soil pH by equilibrating different ranges of pure oocysts concentrations and soil samples with 3mM CaCl2 and 1mM NaBr as electrolyte. We used the Debye-Hückel equation describing ion activity in a solution for a given ionic strength. The equilibrium adsorption mechanism is used to enumerate the oocysts in the soil. The results suggest that the oocysts behavior in porous media depends on soil characteristics such as soil pH, the nature of the mineral and organic constituents of the soil and the ionic strength and activities in solution. These results show that a total transfer in batch containing NaBr solutions against a partial one in batch containing CaCl2 solutions depends on the oocysts media concentration. To confirm the oocysts number retained in soil, confocal microscopy was successfully used and the images demonstrate that the majority of oocysts were retained at the range of concentrations tested. The findings from this study demonstrated that the retention of C. Parvum in soils may be influenced by chemical conditions and soils characteristics, which are important for groundwater risk assessment.
Collapse
Affiliation(s)
- Ketty Balthazard-Accou
- Université Quisqueya - Laboratoire de Qualité de l'Eau de l'Environnement, 218 Ave Jean Paul II, Haut de Turgeau, Port-au-Prince, Haiti; Parasitology Laboratory - Mycology, Amiens University Hospital, Avenue Laënnec, 80054 Amiens, France.
| | - Urbain Fifi
- Université Quisqueya - Laboratoire de Qualité de l'Eau de l'Environnement, 218 Ave Jean Paul II, Haut de Turgeau, Port-au-Prince, Haiti
| | - Patrice Agnamey
- Parasitology Laboratory - Mycology, Amiens University Hospital, Avenue Laënnec, 80054 Amiens, France; University of Picardie Jules Verne, URF Pharmacie, Equipe théra, Laboratoire des Glucides-FRE-CNRS 3517, 1, rue des Louvels, 80037 Amiens Cedex 1 Amiens, France
| | - Justin André Casimir
- Université d'État d'Haïti - Unité de Recherche en Environnement, Faculté des Sciences, 270 rue Mgr Guilloux, Port-au-Prince, Haiti
| | - Philippe Brasseur
- Institut de Recherche pour le Développement (IRD), UMR 198, Centre de Hann, Dakar, Senegal
| | - Evens Emmanuel
- Université Quisqueya - Laboratoire de Qualité de l'Eau de l'Environnement, 218 Ave Jean Paul II, Haut de Turgeau, Port-au-Prince, Haiti
| |
Collapse
|
15
|
Yang H, Tong M, Kim H. Effect of carbon nanotubes on the transport and retention of bacteria in saturated porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11537-11544. [PMID: 24040844 DOI: 10.1021/es4022415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study investigated the influence of carbon nanotubes (CNTs) on the transport and retention behaviors of bacteria (E. coli) in packed porous media at both low and high ionic strength in NaCl and CaCl2 solutions. At low ionic strengths (5 mM NaCl and 0.3 mM CaCl2), both breakthrough curves and retained profiles of bacteria with CNTs (both 5 and 10 mg L(-1)) were equivalent to those without CNTs, indicating the presence of CNTs did not affect the transport and retention of E. coli at low ionic strengths. The results were supported by those from cell characterization tests (i.e., viability, surface properties, sizes), which showed no significant difference between with and without CNTs. In contrast, breakthrough curves of bacteria with CNTs were lower than those without CNTs at high ionic strengths (25 mM NaCl and 1.2 mM CaCl2), suggesting that the presence of CNTs decreased cell transport at high ionic strengths. The enhanced bacterial deposition in the presence of CNTs was mainly observed at segments near the column inlet, leading to much steeper retained profiles relative to those without CNTs. Additional transport experiments conducted with sand columns predeposited with CNTs revealed that the codeposition of bacteria with CNTs, as well as the deposition of the cell-CNTs cluster formed in cell suspension due to cell bridging effect, largely contributed to the increased deposition of bacteria at high ionic strengths in porous media.
Collapse
Affiliation(s)
- Haiyan Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, P. R. China
| | | | | |
Collapse
|
16
|
Weaver L, Sinton LW, Pang L, Dann R, Close M. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013. [PMID: 23178890 DOI: 10.1016/j.scitotenv.2012.09.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L(-1)) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L(-1) and 17 mg L(-1)), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L(-1) DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage compared to the laboratory scale experiments. This research demonstrates the importance of combining laboratory scale and field scale studies to fully understand removal of microbes in groundwater aquifers affected by organic matter (DOC).
Collapse
Affiliation(s)
- Louise Weaver
- Institute of Environmental Science and Research, PO Box 29-181, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
17
|
Pires NMM, Dong T. WITHDRAWN: Multiplex particle refining system to enhance Cryptosporidium recovery for surface water filtration methods. J Microbiol Methods 2012:S0167-7012(12)00405-8. [PMID: 23266390 DOI: 10.1016/j.mimet.2012.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.org/doi:10.1016/j.mimet.2012.12.009. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Nuno Miguel Matos Pires
- Department of Micro and Nano Systems Technology, Faculty of Technology and Maritime Sciences, Vestfold University College, Box 2243, N-3103 Tønsberg, Norway
| | | |
Collapse
|
18
|
Pang L, Nowostawska U, Weaver L, Hoffman G, Karmacharya A, Skinner A, Karki N. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11779-11787. [PMID: 22978441 DOI: 10.1021/es302555n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cryptosporidium parvum is a waterborne pathogen, yet no suitable surrogate has been established for quantifying its filtration removal in porous media. Carboxyl polystyrene microspheres with size, density, and shape similar to C. parvum were coated with biotin (free and containing amine, NH(2)) and glycoprotein. These biomolecules have isoelectric points similar to C. parvum (pH ≈ 2), and glycoprotein is a major type of surface protein that oocysts possess. Zeta potential (ζ) and filtration removal of particles in sand of two different grain sizes were examined. Compared to unmodified microspheres, modified microspheres achieved a superior match to the oocysts in ζ, concentration, mass recovery, and collision coefficient. They showed the same log reduction in concentration as oocysts, whereas results from unmodified microspheres deviated by 1 order of magnitude. Of the three types of modified microspheres, glycoprotein-coated microspheres best resembled oocyst concentration, despite having ζ similar to NH(2)-biotin-coated microspheres, suggesting that surface protein also played an important role in particle attachment on solid surfaces. With further validation in environmental conditions, the surrogates developed here could be a cost-effective new tool for assessing oocyst filtration in porous media, for example, to evaluate the performance of sand filters in water and wastewater treatment, water recycling through riverbank filtration, and aquifer recharge.
Collapse
Affiliation(s)
- Liping Pang
- Institute of Environmental Science and Research Ltd., PO Box 29181, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
19
|
Influence of humic acid on the transport behavior of bacteria in quartz sand. Colloids Surf B Biointerfaces 2012; 91:122-9. [DOI: 10.1016/j.colsurfb.2011.10.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/28/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022]
|
20
|
Mohanram A, Ray C, Metge DW, Barber LB, Ryan JN, Harvey RW. Effect of dissolved organic carbon on the transport and attachment behaviors of Cryptosporidium parvum oocysts and carboxylate-modified microspheres advected through temperate humic and tropical volcanic agricultural soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2088-2094. [PMID: 21711011 DOI: 10.1021/es2003342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transport of Cryptosporidium parvum oocysts and microspheres in two disparate (a clay- and Fe-rich, volcanic and a temperate, humic) agricultural soils were studied in the presence and absence of 100 mg L(-1) of sodium dodecyl benzene sulfonate (SDBS), and Suwannee River Humic Acid (SRHA) at pH 5.0-6.0. Transport of carboxylate-modified, 1.8 μm microspheres in soil columns was highly sensitive to the nature of the dissolved organic carbon (DOC), whereas oocysts transport was more affected by soil mineralogy. SDBS increased transport of microspheres from 48% to 87% through the tropical soil and from 43% to 93% in temperate soil. In contrast, SRHA reduced transport of microspheres from 48% to 28% in tropical soil and from 43% to 16% in temperate soil. SDBS also increased oocysts transport through the temperate soil 5-fold, whereas no oocyst transport was detected in tropical soil. SRHA had only a nominal effect in increasing oocysts transport in tropical soil, but caused a 6-fold increase in transport through the temperate soil. Amendments of only 4 mg L(-1) SRHA and SDBS decreased oocyst hydrophobicity from 66% to 20% and from 66% to 5%, respectively. However, SDBS increased microsphere hydrophobicity from 16% to 33%. Soil fines, which includes clays, and SRHA, both caused the oocysts zeta potential (ζ) to become more negative, but caused the highly hydrophilic microspheres to become less negatively charged. The disparate behaviors of the two colloids in the presence of an ionic surfactant and natural organic matter suggest that microspheres may not be suitable surrogates for oocysts in certain types of soils. These results indicate that whether or not DOC inhibits or promotes transport of oocysts and microspheres in agricultural soils and by how much, depends not only on the surface characteristics of the colloid, but the nature of the DOC and the soil mineralogy.
Collapse
Affiliation(s)
- Arvind Mohanram
- Department of Molecular Bioscience and Bioengineering and Water Resources Research Center, 1955 East-West Road, Agricultural Science 218, University of Hawai'i at Manoa , Honolulu, Hawai'i 96822, United States
| | | | | | | | | | | |
Collapse
|
21
|
Interaction forces drive the environmental transmission of pathogenic protozoa. Appl Environ Microbiol 2011; 78:905-12. [PMID: 22156429 DOI: 10.1128/aem.06488-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasites Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii are pathogens that are resistant to a number of environmental factors and pose significant risks to public health worldwide. Their environmental transmission is closely governed by the physicochemical properties of their cysts (Giardia) and oocysts (Cryptosporidium and Toxoplasma), allowing their transport, retention, and survival for months in water, soil, vegetables, and mollusks, which are the main reservoirs for human infection. Importantly, the cyst/oocyst wall plays a key role in that regard by exhibiting a complex polymeric coverage that determines the charge and hydrophobic characteristics of parasites' surfaces. Interaction forces between parasites and other environmental particles may be, in a first approximation, evaluated following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. However, due to the molecular topography and nano- to microstructure of the cyst/oocyst surface, non-DVLO hydrophobic forces together with additional steric attractive and/or repulsive forces may play a pivotal role in controlling the parasite behavior when the organism is subjected to various external conditions. Here, we review several parameters that enhance or hinder the adhesion of parasites to other particles and surfaces and address the role of fast-emerging techniques for mapping the cyst/oocyst surface, e.g., by measuring its topology and the generated interaction forces at the nano- to microscale. We discuss why characterizing these interactions could be a crucial step for managing the environmental matrices at risk of microbial pollution.
Collapse
|
22
|
Metge DW, Harvey RW, Aiken GR, Anders R, Lincoln G, Jasperse J, Hill MC. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5587-5595. [PMID: 21634424 DOI: 10.1021/es200544p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocysts of the protozoan pathogen Cryptosporidium parvum are of particular concern for riverbank filtration (RBF) operations because of their persistence, ubiquity, and resistance to chlorine disinfection. At the Russian River RBF site (Sonoma County, CA), transport of C. parvum oocysts and oocyst-sized (3 μm) carboxylate-modified microspheres through poorly sorted (sorting indices, σ(1), up to 3.0) and geochemically heterogeneous sediments collected between 2 and 25 m below land surface (bls) were assessed. Removal was highly sensitive to variations in both the quantity of extractable metals (mainly Fe and Al) and degree of grain sorting. In flow-through columns, there was a log-linear relationship (r(2) = 0.82 at p < 0.002) between collision efficiency (α, the probability that colloidal collisions with grain surfaces would result in attachment) and extractable metals, and a linear relationship (r(2) = 0.99 at p < 0.002) between α and σ(1). Collectively, variability in extractable metals and grain sorting accounted for ∼83% of the variability in α (at p < 0.0002) along the depth profiles. Amendments of 2.2 mg L(-1) of Russian River dissolved organic carbon (DOC) reduced α for oocysts by 4-5 fold. The highly reactive hydrophobic organic acid (HPOA) fraction was particularly effective in re-entraining sediment-attached microspheres. However, the transport-enhancing effects of the riverine DOC did not appear to penetrate very deeply into the underlying sediments, judging from high α values (∼1.0) observed for oocysts being advected through unamended sediments collected at ∼2 m bls. This study suggests that in evaluating the efficacy of RBF operations to remove oocysts, it may be necessary to consider not only the geochemical nature and size distribution of the sediment grains, but also the degrees of sediment sorting and the concentration, reactivity, and penetration of the source water DOC.
Collapse
Affiliation(s)
- David W Metge
- National Research Program, US Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abudalo RA, Ryan JN, Harvey RW, Metge DW, Landkamer L. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium. WATER RESEARCH 2010; 44:1104-1113. [PMID: 19853880 DOI: 10.1016/j.watres.2009.09.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 09/08/2009] [Accepted: 09/17/2009] [Indexed: 05/28/2023]
Abstract
To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20mg L(-1) resulted in a two-fold decrease in the collision efficiency.
Collapse
Affiliation(s)
- R A Abudalo
- 428 UCB, Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
24
|
Metge DW, Harvey RW, Aiken GR, Anders R, Lincoln G, Jasperse J. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA. WATER RESEARCH 2010; 44:1126-1137. [PMID: 20116824 DOI: 10.1016/j.watres.2009.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/21/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7-13.9 m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3 microm) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D(50)) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8 mg L(-1)) of the 2.2 mg L(-1) dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2 mg L(-1) of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2 microM) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations.
Collapse
Affiliation(s)
- D W Metge
- Water Resources Discipline, U.S. Geological Survey, Boulder, CO 80303, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Schinner T, Letzner A, Liedtke S, Castro FD, Eydelnant IA, Tufenkji N. Transport of selected bacterial pathogens in agricultural soil and quartz sand. WATER RESEARCH 2010; 44:1182-1192. [PMID: 19084252 DOI: 10.1016/j.watres.2008.11.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/15/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
The protection of groundwater supplies from microbial contamination necessitates a solid understanding of the key factors controlling the migration and retention of pathogenic organisms through the subsurface environment. The transport behavior of five waterborne pathogens was examined using laboratory-scale columns packed with clean quartz at two solution ionic strengths (10 mM and 30 mM). Escherichia coli O157:H7 and Yersinia enterocolitica were selected as representative Gram-negative pathogens, Enterococcus faecalis was selected as a representative Gram-positive organism, and two cyanobacteria (Microcystis aeruginosa and Anabaena flos-aquae) were also studied. The five organisms exhibit differing attachment efficiencies to the quartz sand. The surface (zeta) potential of the microorganisms was characterized over a broad range of pH values (2-8) at two ionic strengths (10 mM and 30 mM). These measurements are used to evaluate the observed attachment behavior within the context of the DLVO theory of colloidal stability. To better understand the possible link between bacterial transport in model quartz sand systems and natural soil matrices, additional experiments were conducted with two of the selected organisms using columns packed with loamy sand obtained from an agricultural field. This investigation highlights the need for further characterization of waterborne pathogen surface properties and transport behavior over a broader range of environmentally relevant conditions.
Collapse
Affiliation(s)
- Tim Schinner
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Pham M, Mintz EA, Nguyen TH. Deposition kinetics of bacteriophage MS2 to natural organic matter: Role of divalent cations. J Colloid Interface Sci 2009; 338:1-9. [DOI: 10.1016/j.jcis.2009.06.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 11/15/2022]
|
27
|
Poitras C, Fatisson J, Tufenkji N. Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents. WATER RESEARCH 2009; 43:2631-2638. [PMID: 19375770 DOI: 10.1016/j.watres.2009.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/12/2009] [Accepted: 03/15/2009] [Indexed: 05/27/2023]
Abstract
The quartz crystal microbalance with dissipation monitoring (QCM-D) is used to develop a biosensor for detection of viable Cryptosporidium parvum (C. parvum) in water matrices of varying complexity. In a clean environment, a good log-log linear response is obtained for detection of C. parvum in aqueous suspensions with oocyst concentrations from 3x10(5) to 1x10(7)oocysts/mL. C. parvum detection is slightly affected by the presence of dissolved organic acids, likely due to steric stabilization and/or masking of the antibodies/antigens by adsorbed molecules. Colloidal contaminants generally have a greater influence as biosensor interferents, whereby the presence of model latex microspheres, Enterococcus faecalis, or Escherichia coli, led to decreases in biosensor response of up to 64%, 40%, and 20%, respectively.
Collapse
Affiliation(s)
- Charles Poitras
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | |
Collapse
|
28
|
Gao X, Chorover J. In-situ monitoring of Cryptosporidium parvum oocyst surface adhesion using ATR-FTIR spectroscopy. Colloids Surf B Biointerfaces 2009; 71:169-76. [PMID: 19269797 DOI: 10.1016/j.colsurfb.2009.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 11/29/2022]
Abstract
Surface chemistry and molecular interaction mechanisms of Cryptosporidium parvum oocysts with a ZnSe internal reflection element (IRE) surface were investigated as a function of pH and ionic strength in NaCl and CaCl(2) background electrolyte using in-situ ATR-FTIR spectroscopy. Since the surface properties of oocysts play an important role in adhesion behavior, the effects of surface modifications that are commonly employed to inactivate the pathogen for laboratory studies, including viable (control), formalin-, and heat-inactivation, were also examined. The ATR-FTIR spectra of oocyst surfaces exhibit amide, carboxylate, phosphate, and polysaccharide functional groups. Results indicate that changes in solution chemistry strongly impact oocyst adhesion behavior in aqueous systems. Increasing ionic strength from 1 to 100 mM or decreasing pH from 9.0 to 3.0 resulted in an increase in oocyst adhesion to the IRE surface as measured by IR absorbance. For equivalent ionic strength, the adhesion rate was found to be independent of CaCl(2) versus NaCl electrolyte solution, but was increased following formalin and heat treatments. This latter effect correlated with molecular changes reflected in spectral data. The ratio of amide I:amide II band intensities increased, and sugar ring vibrations at 1023 cm(-1) became sharper and more intense following formalin treatment. Similar changes in the polysaccharide region were observed following heat treatment, and protein secondary structure was also altered from mainly parallel beta-sheet to anti-parallel beta-sheet conformation.
Collapse
Affiliation(s)
- Xiaodong Gao
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, 85721 AZ, United States
| | | |
Collapse
|
29
|
Liu Y, Janjaroen D, Kuhlenschmidt MS, Kuhlenschmidt TB, Nguyen TH. Deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces: microscopic evidence for secondary minimum deposition in a radial stagnation point flow cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1594-1605. [PMID: 19133757 DOI: 10.1021/la803202h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A radial stagnation point flow (RSPF) system combined with a microscope was used to determine the deposition kinetics of Cryptosporidium parvum oocysts on quartz surfaces and silica surfaces coated with Suwannee River natural organic matter (SRNOM) in solutions with different ionic strengths. Microscopic evidence of C. parvum oocysts entrapped in the secondary minimum energy well was presented to show that among the entrapped C. parvum oocysts some were washed away by the radial flow and some were able to transfer to deep primary minima and become irreversibly deposited. Experimental data were compared with simulation results obtained by the convective-diffusion equation and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The experimental results suggested that surface charge heterogeneity led to a higher attachment efficiency at low ionic strength. In addition, the maximum attachment efficiency was less than 1 at high ionic strength due to steric interaction.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Civil and Environmental Engineering, The Center of Advanced Materials for the Purification of Water with System and Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
30
|
Muhammad N, Sinha R, Krishnan ER, Piao H, Patterson CL, Cotruvo J, Cumberland SL, Nero VP, Delandra C. Evaluating surrogates forCryptosporidiumremoval in point-of-use systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/j.1551-8833.2008.tb09802.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Keeley A, Faulkner BR. Influence of land use and watershed characteristics on protozoa contamination in a potential drinking water resources reservoir. WATER RESEARCH 2008; 42:2803-2813. [PMID: 18367230 DOI: 10.1016/j.watres.2008.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/24/2008] [Accepted: 02/18/2008] [Indexed: 05/26/2023]
Abstract
Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The watershed serves rural agricultural communities active in cattle ranching, recreation, and is a potential drinking water source. A total of 193 surface water samples were tested over a 27-month period to determine levels of parasite contamination. The overall occurrence of Cryptosporidium oocysts was higher in both frequency and concentration than Giardia cysts. Cryptosporidium oocysts were found in 99% and Giardia cysts in 87% of the samples. Although Cryptosporidium and Giardia occurrence were significantly but not strongly correlated, all other correlation coefficients including turbidity and total dissolved solids were non-significant. Statistically supportable seasonal variations were found suggesting that Cryptosporidium and Giardia were higher in summer and fall than in other seasons of the year. While Cryptosporidium levels were correlated with rainfall, this was not the case with Giardia. The maximum numbers for both protozoan parasites were detected from a site impacted by cattle ranching during calving season. Restriction fragment length polymorphism analysis was used for confirmation of Cryptosporidium in surface waters influenced by agricultural discharges. As we had expected, oocysts were of the bovine type indicating that the Cryptosporidium parvum detected in surface waters perhaps came from cattle living in the watershed.
Collapse
Affiliation(s)
- Ann Keeley
- National Risk Management Research Laboratory, US Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| | | |
Collapse
|
32
|
Pelley AJ, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J Colloid Interface Sci 2008; 321:74-83. [DOI: 10.1016/j.jcis.2008.01.046] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/19/2008] [Accepted: 01/26/2008] [Indexed: 10/22/2022]
|
33
|
Smith J, Gao B, Funabashi H, Tran TN, Luo D, Ahner BA, Steenhuis TS, Hay AG, Walter MT. Pore-scale quantification of colloid transport in saturated porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:517-523. [PMID: 18284156 DOI: 10.1021/es070736x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is currently not clear how to quantifiably relate pore-scale observations of colloid transportto larger scales, so,we proposed a geometric theory showing that pore-scale-derived rate constants may be appropriate to model a larger scale system. This study considered three different types of colloids: latex microspheres, Escherichia coli, and microspheres made of poly lactic acid (PLA). Colloid attachment and detachment rate constants were calculated using digital microscope images, taken in rapid (1 s) sequences, from which rates of attaching and detaching colloids were readily observed. Average rate constants from >1000 images per colloid-type were used to model Darcy-scale colloid transport breakthrough curves. The modeled and observed breakthrough curves agreed well for all three types of colloids. However, for latex and PLA microspheres, the model systematically under predicted the breakthrough curves' rising limb, which may indicate that the rate "constants" are actually dependent on the amount of attached colloids. Insights into these sorts of complexities are best addressed by research that considers both pore-scale phenomena and larger-scale transport responses.
Collapse
Affiliation(s)
- Jennifer Smith
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hijnen WAM, Dullemont YJ, Schijven JF, Hanzens-Brouwer AJ, Rosielle M, Medema G. Removal and fate of Cryptosporidium parvum, Clostridium perfringens and small-sized centric diatoms (Stephanodiscus hantzschii) in slow sand filters. WATER RESEARCH 2007; 41:2151-62. [PMID: 17400275 DOI: 10.1016/j.watres.2007.01.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 05/14/2023]
Abstract
The decimal elimination capacity (DEC) of slow sand filtration (SSF) for Cryptosporidium parvum was assessed to enable quantitative microbial risk analysis of a drinking water production plant. A mature pilot plant filter of 2.56m(2) was loaded with C. parvum oocysts and two other persistent organisms as potential surrogates; spores of Clostridium perfringens (SCP) and the small-sized (4-7microm) centric diatom (SSCD) Stephanodiscus hantzschii. Highly persistent micro-organisms that are retained in slow sand filters are expected to accumulate and eventually break through the filter bed. To investigate this phenomenon, a dosing period of 100 days was applied with an extended filtrate monitoring period of 150 days using large-volume sampling. Based on the breakthrough curves the DEC of the filter bed for oocysts was high and calculated to be 4.7log. During the extended filtrate monitoring period the spatial distribution of the retained organisms in the filter bed was determined. These data showed little risk of accumulation of oocysts in mature filters most likely due to predation by zooplankton. The DEC for the two surrogates, SCP and SSCD, was 3.6 and 1.8log, respectively. On basis of differences in transport behaviour, but mainly because of the high persistence compared to the persistence of oocysts, it was concluded that both spores of sulphite-reducing clostridia (incl. SCP) and SSCD are unsuited for use as surrogates for oocyst removal by slow sand filters. Further research is necessary to elucidate the role of predation in Cryptosporidium removal and the fate of consumed oocysts.
Collapse
|
35
|
Ladner DA, Lee BW, Clark MM. Laser scanning cytometry for enumeration of fluorescent microspheres. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/j.1551-8833.2007.tb07893.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Close ME, Pang L, Flintoft MJ, Sinton LW. Distance and flow effects on microsphere transport in a large gravel column. JOURNAL OF ENVIRONMENTAL QUALITY 2006; 35:1204-12. [PMID: 16825440 DOI: 10.2134/jeq2005.0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Consumption of microbially contaminated ground water can cause adverse health effects and the processes involved in pathogen transport in aquifers need to be understood. The influences of distance, flow velocity, and colloid size on colloid transport were examined in homogenous pea-gravel media using an 8-m column and three sizes (1, 5, and 10 microm) of microspheres. Experiments were conducted at three flow rates by simultaneously injecting microspheres with a conservative tracer, bromide. Observed concentrations were simulated with CXTFIT and analyzed with filtration theory. The results demonstrate that colloid concentration is strongly log-linearly related to transport distance (as suggested by filtration theory) in coarse gravels, similar to our previous field studies. In contrast, the log-linear relationship is often reported to be invalid in fine porous media. The observed log-linear relationship is possibly because straining is negligible in the coarse gravels investigated. This has implications in predicting setback distances for land disposal of effluent, and suggests that setback distances in gravel aquifers can be estimated using constant spatial removal rates (f). There was an inverse relationship between transport distance and colloidal concentration, but not with temporal attachment rate (katt) and collision coefficient (alpha). Increases in flow velocity result in increasing colloidal recovery, katt and alpha but decreasing f. Increases in sphere size result in decreasing colloidal recovery with increasing katt, f, alpha, and velocity enhancement. Diffusion is the dominant collision mechanism for 1-microm spheres (81-88%), while settling dominates for 5- and 10-microm spheres (> 87%), and interception is very small for all spheres investigated.
Collapse
Affiliation(s)
- Murray E Close
- Institute of Environmental Science & Research Ltd., P.O. Box 29181, Christchurch, New Zealand.
| | | | | | | |
Collapse
|
37
|
Amburgey JE, Amirtharajah A, York MT, Brouckaert BM, Spivey NC, Arrowood MJ. Comparison of Conventional and Biological Filter Performance
for Cryptosporidium
and microsphere removal. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/j.1551-8833.2005.tb07542.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Betancourt WQ, Rose JB. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet Parasitol 2005; 126:219-34. [PMID: 15567586 DOI: 10.1016/j.vetpar.2004.09.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Major waterborne cryptosporidiosis and giardiasis outbreaks associated with contaminated drinking water have been linked to evidence of suboptimal treatment. Cryptosporidium parvum oocysts are particularly more resistant than Giardia lamblia cysts to removal and inactivation by conventional water treatment (coagulation, sedimentation, filtration and chlorine disinfection); therefore, extensive research has been focused on the optimization of treatment processes and application of new technologies to reduce concentrations of viable/infectious oocysts to a level that prevents disease. The majority of the data on the performance of treatment processes to remove cysts and oocysts from drinking water have been obtained from pilot-tests, with a few studies performed in full-scale conventional water treatment plants. These studies have demonstrated that protozoan cyst removal throughout all stages of the conventional treatment is largely influenced by the effectiveness of coagulation pretreatment, which along with clarification constitutes the first treatment barrier against protozoan breakthrough. Physical removal of waterborne Crytosporidium oocysts and Giardia cysts is ultimately achieved by properly functioning conventional filters, providing that effective pretreatment of the water is applied. Disinfection by chemical or physical methods is finally required to inactivate/remove the infectious life stages of these organisms. The effectiveness of conventional (chlorination) and alternative (chlorine dioxide, ozonation and ultra violet [UV] irradiation) disinfection procedures for inactivation of Cryptosporidium has been the focus of much research due to the recalcitrant nature of waterborne oocysts to disinfectants. This paper provides technical information on conventional and alternative drinking water treatment technologies for removal and inactivation of the protozoan parasites Cryptosporidium and Giardia.
Collapse
Affiliation(s)
- Walter Q Betancourt
- Department of Fisheries and Wildlife, 13 Natural Resources Building, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
39
|
Baeza C, Ducoste J. A non-biological surrogate for sequential disinfection processes. WATER RESEARCH 2004; 38:3400-3410. [PMID: 15276757 DOI: 10.1016/j.watres.2004.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 03/31/2004] [Accepted: 04/29/2004] [Indexed: 05/24/2023]
Abstract
An evaluation of Fluorescent YG-microspheres (Polysciences Inc.) was performed to simulate Cryptosporidium parvum (C. parvum) oocysts inactivation in treatment systems that utilize multiple disinfectants. Experiments were conducted in batch reactors that included an ozone primary stage and a secondary free chlorine treatment stage. A flow cytometer was used to track changes in the fluorescence intensity distribution due to exposure to the chemical disinfectant. Microsphere 'survival ratios' (N/No) were calibrated by selecting an appropriate fluorescence intensity threshold to replicate the inactivation of different C. parvum oocysts strains. Results showed that fluorescent microspheres displayed synergistic effects in the presence of two sequential disinfectants. In addition, microsphere structural tests showed that the polystyrene surface was damaged due to exposure to ozone. This polystyrene damage enhanced the diffusion of the secondary disinfectant into the microsphere, where dye was degraded in the opened polymer layer. As a result, YG-fluorescent microspheres is a promising non-biological technique that is capable of producing similar synergistic behavior as with C. parvum oocysts exposed to ozone followed by chlorine.
Collapse
Affiliation(s)
- Carolina Baeza
- Department of Civil Engineering, North Carolina State University, 208 Mann Hall CB 7908, Raleigh, NC 27695-7908, USA
| | | |
Collapse
|
40
|
|
41
|
Literature Alerts. J Microencapsul 2003. [DOI: 10.3109/02652040309178357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|