1
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
2
|
Zhang W, Mo Q, Huang Z, Sabar MA, Medunić G, Ivošević T, He H, Urynowicz M, Liu FJ, Guo H, Haider R, Ali MI, Jamal A. Contaminants from a former Croatian coal sludge dictate the structure of microbiota in the estuarine (Raša Bay) sediment and soil. Front Microbiol 2023; 14:1126612. [PMID: 36846805 PMCID: PMC9947854 DOI: 10.3389/fmicb.2023.1126612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Croatian superhigh-organic-sulfur Raša coal had been mined for nearly 400 years. The release of hazardous trace elements (HTEs) and toxic organic pollutants (TOPs) into the local environment by coal mining, preparation, and combustion activities has resulted in pollution. Methods In this study, the diversity and composition of microbial communities in estuarine sediment and soil samples as well as community function responses to the pollutants were investigated. Results The results showed that PAH degradation does occur following 60 years of natural attenuation, the location is still heavily polluted by polycyclic aromatic hydrocarbons (PAHs) and HTEs. Microbial analyses have shown that high concentrations of PAHs have reduced the diversity and abundance of microbial communities. The pollution exerted an adverse, long-term impact on the microbial community structure and function in the brackish aquatic ecosystem. Microorganisms associated with the degradation of PAHs and sulfur-containing compounds have been enriched although the diversity and abundance of the microbial community have reduced. Fungi which are believed to be the main PAH degrader may play an important role initially, but the activity remains lower thereafter. It is the high concentrations of coal-derived PAHs, rather than HTEs, that have reduced the diversity and abundance of microbial communities and shaped the structure of the local microbiota. Discussion This study could provide a basis for the monitoring and restoration of ecosystems impacted by coal mining activities considering the expected decommission of a large number of coal plants on a global scale in the coming years due to growing global climate change concerns.
Collapse
Affiliation(s)
- Weiting Zhang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
| | - Qianyun Mo
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
| | - Zaixing Huang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, United States
| | - Muhammad Adnan Sabar
- Environmental Risk Control Engineering Laboratory, Division of Environmental Design, Kanazawa University, Kanazawa, Japan
| | - Gordana Medunić
- Department of Geology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Tatjana Ivošević
- Faculty of Maritime Studies, University of Rijeka, Rijeka, Croatia
| | - Huan He
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
| | - Michael Urynowicz
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, United States
| | - Fang-Jing Liu
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
| | - Hongguang Guo
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Rizwan Haider
- Institute of Energy & Environmental Engineering, University of the Punjab, Lahore, Pakistan
| | | | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
Shao Y, Hatzinger PB, Streger SH, Rezes RT, Chu KH. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation 2019; 30:173-190. [DOI: 10.1007/s10532-019-09875-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
|
4
|
Cho KC, Fuller ME, Hatzinger PB, Chu KH. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1098-1106. [PMID: 27387802 DOI: 10.1016/j.scitotenv.2016.06.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled (15)N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the (15)N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via (13)C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX.
Collapse
Affiliation(s)
- Kun-Ching Cho
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | | | | | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
5
|
Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, Morrissey EM, Soldanova K. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol 2016; 41:14-18. [DOI: 10.1016/j.copbio.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|
6
|
Cho KC, Lee DG, Fuller ME, Hatzinger PB, Condee CW, Chu KH. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:42-51. [PMID: 25935409 DOI: 10.1016/j.jhazmat.2015.04.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions.
Collapse
Affiliation(s)
- Kun-Ching Cho
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Do Gyun Lee
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | | | | | | | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
7
|
Nagarajan K, Loh KC. Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations. Appl Microbiol Biotechnol 2014; 98:6907-19. [DOI: 10.1007/s00253-014-5870-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 02/07/2023]
|
8
|
Dunlevy SR, Singleton DR, Aitken MD. Biostimulation Reveals Functional Redundancy of Anthracene-Degrading Bacteria in Polycyclic Aromatic Hydrocarbon-Contaminated Soil. ENVIRONMENTAL ENGINEERING SCIENCE 2013; 30:697-705. [PMID: 24302851 PMCID: PMC3833303 DOI: 10.1089/ees.2013.0067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/28/2013] [Indexed: 05/25/2023]
Abstract
Stable-isotope probing was previously used to identify bacterial anthracene-degraders in untreated soil from a former manufactured gas plant site. However, subsequent pyrosequence analyses of total bacterial communities and quantification of 16S rRNA genes indicated that relative abundances of the predominant anthracene-degrading bacteria (designated Anthracene Group 1) diminished as a result of biological treatment conditions in lab-scale, aerobic bioreactors. This study identified Alphaproteobacterial anthracene-degrading bacteria in bioreactor-treated soil which were dissimilar to those previously identified. The largest group of sequences was from the Alterythrobacter genus while other groups of sequences were associated with bacteria within the order Rhizobiales and the genus Bradyrhizobium. Conditions in the bioreactor enriched for organisms capable of degrading anthracene which were not the same as those identified as dominant degraders in the untreated soil. Further, these data suggest that identification of polycyclic aromatic hydrocarbon-degrading bacteria in contaminated but untreated soil may be a poor indicator of the most active degraders during biological treatment.
Collapse
Affiliation(s)
| | - David R. Singleton
- Corresponding author: David R. Singleton, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Room 0030 Michael Hooker Research Center, Chapel Hill, NC 27599-7431. Phone: 1-919-966-5452; Fax: 1-919-966-7911; E-mail:
| | | |
Collapse
|
9
|
Cho KC, Lee DG, Roh H, Fuller ME, Hatzinger PB, Chu KH. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:350-360. [PMID: 23603473 DOI: 10.1016/j.envpol.2013.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
We employed stable isotope probing (SIP) with (13)C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving (13)C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates.
Collapse
Affiliation(s)
- Kun-Ching Cho
- Zachry Department of Civil Engineering, 3136 TAMU, 205G WERC, Texas A&M University, College Station, TX 77843-3136, USA
| | | | | | | | | | | |
Collapse
|
10
|
Yu CP, Deeb RA, Chu KH. Microbial degradation of steroidal estrogens. CHEMOSPHERE 2013; 91:1225-35. [PMID: 23517889 DOI: 10.1016/j.chemosphere.2013.01.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 05/26/2023]
Abstract
Steroidal estrogens, widespread in the environment, are contaminants of potential concern because exposure to these compounds can cause adverse impacts on aquatic life. Intensive research efforts have been undertaken in order to better understand the environmental occurrence of these compounds. In addition to physical/chemical reactions, biological processes - microbial biodegradation of steroidal estrogens - play a vital role in determining the fate and transport of these compounds in built and natural environments. This review summarizes the current state of knowledge on the microbiology of estrogen biodegradation. Aerobic and anaerobic estrogen-degrading microorganisms are phylogenetically diverse; they are mainly isolated from soils, activated sludge, dental plaque and intestines. Estrogens can be degraded via growth-linked and non-growth-linked reactions, as well as through abiotic degradation in the presence of selective microorganisms. Current knowledge on estrogen biodegradation kinetics and pathways is limited. Molecular methods are useful in deciphering estrogen-degrading microbial community and tracking the quantity of known degraders in bioreactors with different operating conditions. Future research efforts aimed at bridging knowledge gaps on estrogen biodegradation are also proposed.
Collapse
Affiliation(s)
- Chang-Ping Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | |
Collapse
|
11
|
Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation 2013; 25:55-65. [DOI: 10.1007/s10532-013-9640-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|
12
|
Baboshin MA, Golovleva LA. Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712060021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T. Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 2012; 7:e40653. [PMID: 22808223 PMCID: PMC3396604 DOI: 10.1371/journal.pone.0040653] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/11/2012] [Indexed: 12/17/2022] Open
Abstract
Bacteria were identified associated with biodegradation of aromatic pollutants biphenyl, benzoate, and naphthalene in a long-term polychlorinated biphenyl- and polyaromatic hydrocarbon-contaminated soil. In order to avoid biases of culture-based approaches, stable isotope probing was applied in combination with sequence analysis of 16 S rRNA gene pyrotags amplified from (13)C-enriched DNA fractions. Special attention was paid to pyrosequencing data analysis in order to eliminate the errors caused by either generation of amplicons (random errors caused by DNA polymerase, formation of chimeric sequences) or sequencing itself. Therefore, sample DNA was amplified, sequenced, and analyzed along with the DNA of a mock community constructed out of 8 bacterial strains. This warranted that appropriate tools and parameters were chosen for sequence data processing. (13)C-labeled metagenomes isolated after the incubation of soil samples with all three studied aromatics were largely dominated by Proteobacteria, namely sequences clustering with the genera Rhodanobacter Burkholderia, Pandoraea, Dyella as well as some Rudaea- and Skermanella-related ones. Pseudomonads were mostly labeled by (13)C from naphthalene and benzoate. The results of this study show that many biphenyl/benzoate-assimilating bacteria derive carbon also from naphthalene, pointing out broader biodegradation abilities of some soil microbiota. The results also demonstrate that, in addition to traditionally isolated genera of degradative bacteria, yet-to-be cultured bacteria are important players in bioremediation. Overall, the study contributes to our understanding of biodegradation processes in contaminated soil. At the same time our results show the importance of sequencing and analyzing a mock community in order to more correctly process and analyze sequence data.
Collapse
Affiliation(s)
- Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic
| | - Jiri Wald
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic
| | - Lucie Musilova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Miluse Hroudova
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Cestmir Vlcek
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Erick Cardenas
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Martina Mackova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
14
|
Baskar S, Baskar R, Thorseth IH, Ovreås L, Pedersen RB. Microbially induced iron precipitation associated with a neutrophilic spring at Borra Caves, Vishakhapatnam, India. ASTROBIOLOGY 2012; 12:327-346. [PMID: 22519973 DOI: 10.1089/ast.2011.0672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The present investigation uncovers various pieces of evidence for the possible biologically induced mineralization in iron mats associated with a pH-neutral spring in the Borra caves, Vishakhapatnam, India. Electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] demonstrated large numbers of (i) hollow tubes (diameter ∼1 μm) resembling sheaths of the iron-oxidizing bacteria Leptothrix, (ii) thin (diameter <<1 μm) solid fibers of uncertain origin, (iii) nanoscale subspherical to irregularly shaped particles encrusting tubes and fibers, and (iv) aggregates of broken and partially disintegrated sheaths, fibers, and particles embedded in extracellular polymeric substances (EPS) occasionally including microbial cells. X-ray microanalyses by energy dispersive spectroscopy (EDS) revealed that the mat accumulated largely Fe but also smaller amounts of Si and traces of P and Ca. Particles rich in Si and Al (possibly kaolinite) and Ca (carbonate) were also observed. High-resolution TEM/EDS of unstained ultrathin sections suggests that microbial sheaths were highly mineralized by amorphous to cryptocrystalline Fe-rich phases and less frequently by other fine-grained and fibrous authigenic claylike minerals. Total number of microorganisms in the iron mats was 5.8×10(5) cells, g sed(-1) (wet weight). Analysis of the 16S rRNA gene diversity revealed microorganisms assigned to eight different phyla [Proteobacteria (62%), Chloroflexi (8%), Bacteroidetes (7%), Planctomycetes (1%), Actinobacteria (5%), Acidobacteria (6%), Nitrospira (1%), Firmicutes (5%)]. Within the Proteobacteria, Betaproteobacteria was the predominant class, which accounted for 28% of the sequences. Within this class some obvious similarities between the obtained sequences and sequences from other cave systems could be seen, especially sequences affiliated with Leptothrix, Siderooxidans, Crenothrix, Comamonadaceae, Dechloromonas, and many uncultured Betaproteobacteria. Four (4%) of the sequences could not be assigned to phylum level but were affiliating with the candidate division TM7 (2%), candidate division OP11 (1%), and candidate division WWE3 (1%). The results allow us to infer a possible relationship of microbial sheaths, EPS, and the iron precipitates to microbial community diversity in the Borra cave springs. Understanding biogenic iron oxides in caves has important astrobiological applications as it provides a potential tool for the detection of extraterrestrial life.
Collapse
|
15
|
DeBruyn JM, Mead TJ, Sayler GS. Horizontal transfer of PAH catabolism genes in Mycobacterium: evidence from comparative genomics and isolated pyrene-degrading bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:99-106. [PMID: 21899303 DOI: 10.1021/es201607y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biodegradation of high molecular weight polycyclic aromatic hydrocarbons (PAHs), such as pyrene and benzo[a]pyrene, has only been observed in a few genera, namely fast-growing Mycobacterium and Rhodococcus. In M. vanbaalenii PYR-1, multiple aromatic ring hydroxylating dioxygenase (ARHDOs) genes including pyrene dioxygenases nidAB and nidA3B3 are localized in one genomic region. Here we examine the homologous genomic regions in four other PAH-degrading Mycobacterium (strains JLS, KMS, and MCS, and M. gilvum PYR-GCK), presenting evidence for past horizontal gene transfer events. Seven distinct types of ARHDO genes are present in all five genomes, and display conserved syntenic architecture with respect to gene order, orientation, and association with other genes. Duplications and putative integrase and transposase genes suggest past gene shuffling. To corroborate these observations, pyrene-degrading strains were isolated from two PAH-contaminated sediments: Chattanooga Creek (Tennessee) and Lake Erie (western basin). Some were related to fast-growing Mycobacterium spp. and carried both nidA and nidA3 genes. Other isolates belonged to Microbacteriaceae and Intrasporangiaceae presenting the first evidence of pyrene degradation in these families. These isolates had nidA (and some, nidA3) genes that were homologous to Mycobacterial ARHDO genes, suggesting that horizontal gene transfer events have occurred.
Collapse
Affiliation(s)
- Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Tennessee, United States
| | | | | |
Collapse
|
16
|
Mikkonen A, Lappi K, Wallenius K, Lindström K, Suominen L. Ecological inference on bacterial succession using curve-based community fingerprint data analysis, demonstrated with rhizoremediation experiment. FEMS Microbiol Ecol 2011; 78:604-16. [DOI: 10.1111/j.1574-6941.2011.01187.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/20/2011] [Accepted: 08/16/2011] [Indexed: 12/01/2022] Open
Affiliation(s)
- Anu Mikkonen
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki; Finland
| | - Kaisa Lappi
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki; Finland
| | - Kaisa Wallenius
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki; Finland
| | - Kristina Lindström
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki; Finland
| | - Leena Suominen
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki; Finland
| |
Collapse
|
17
|
Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation 2011; 23:221-30. [DOI: 10.1007/s10532-011-9501-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
18
|
Wallenius K, Lappi K, Mikkonen A, Wickström A, Vaalama A, Lehtinen T, Suominen L. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate. Biodegradation 2011; 23:47-55. [PMID: 21626282 DOI: 10.1007/s10532-011-9485-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/21/2011] [Indexed: 11/26/2022]
Abstract
We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.
Collapse
Affiliation(s)
- Kaisa Wallenius
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Jones MD, Crandell DW, Singleton DR, Aitken MD. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 2011; 13:2623-32. [PMID: 21564459 DOI: 10.1111/j.1462-2920.2011.02501.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacteria responsible for the degradation of naphthalene, phenanthrene, pyrene, fluoranthene or benz[a]anthracene in a polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated by DNA-based stable-isotope probing (SIP). Clone libraries of 16S rRNA genes were generated from the (13) C-enriched ('heavy') DNA recovered from each SIP experiment, and quantitative PCR primers targeting the 16S rRNA gene were developed to measure the abundances of many of the SIP-identified sequences. Clone libraries from the SIP experiments with naphthalene, phenanthrene and fluoranthene primarily contained sequences related to bacteria previously associated with the degradation of those compounds. However, Pigmentiphaga-related sequences were newly associated with naphthalene and phenanthrene degradation, and sequences from a group of uncultivated γ-Proteobacteria known as Pyrene Group 2 were newly associated with fluoranthene and benz[a]anthracene degradation. Pyrene Group 2-related sequences were the only sequences recovered from the clone library generated from SIP with pyrene, and they were 82% of the sequences recovered from the clone library generated from SIP with benz[a]anthracene. In time-course experiments with each substrate in unlabelled form, the abundance of each of the measured groups increased in response to the corresponding substrate. These results provide a comprehensive description of the microbial ecology of a PAH-contaminated soil as it relates to the biodegradation of PAHs from two to four rings, and they underscore that bacteria in Pyrene Group 2 are well-suited for the degradation of four-ring PAHs.
Collapse
Affiliation(s)
- Maiysha D Jones
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431 Chapel Hill, NC 27599-7431, USA.
| | | | | | | |
Collapse
|
20
|
Cupples AM. The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation. J Microbiol Methods 2011; 85:83-91. [DOI: 10.1016/j.mimet.2011.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 11/26/2022]
|
21
|
Roh H, Chu KH. A 17beta-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I - characterization and abundance in wastewater treatment plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4943-4950. [PMID: 20527759 DOI: 10.1021/es1001902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A 17beta-estradiol-utilizing bacterium, Sphingomonas strain KC8, was characterized in terms of its utilization kinetics toward 17beta-estradiol, estrone, and testosterone. The maximum specific substrate utilization rates (q(m)) are 0.37, 0.50, and 0.17 mg-substrate/mg-protein/day for 17beta-estradiol, estrone, and testosterone, respectively. The half-velocity constants (K(s)) are 1.9 mg/L for 17beta-estradiol, 2.7 mg/L for estrone, and 2.4 mg/L for testosterone. Strain KC8 can grow on testosterone, glucose, sodium succinate, and sodium acetate, but not on phenol. Also, strain KC8 cannot degrade two common wastewater micropollutants, bisphenol A (a plasticizer) and triclosan (an antimicrobial agent). Unlike Novosphingobium sp. ARI-1 (a known estrogen-degrader) that would lose its degradation ability toward estrone after growing on a nutrient-rich estrogen-free medium for 7 days, strain KC8 was still able to degrade both 17beta-estradiol and estrone after growing on the same medium for 15 days. Strains KC8 and ARI-1 were molecularly detected in activated sludge of municipal wastewater treatment plants (WWTPs) operating under solid retention times of 2-30 days. The concentrations of strain KC8 were 2-3 orders higher than those of strain ARI-1 in the WWTPs, suggesting that strain KC8 is ubiquitous in WWTPs and might play an important role in estrogen removal.
Collapse
Affiliation(s)
- Hyungkeun Roh
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX77843-3136, USA
| | | |
Collapse
|
22
|
Xie S, Sun W, Luo C, Cupples AM. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 2010; 22:71-81. [PMID: 20549308 DOI: 10.1007/s10532-010-9377-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/28/2010] [Indexed: 11/26/2022]
Abstract
The remediation of benzene contaminated groundwater often involves biodegradation and although the mechanisms of aerobic benzene biodegradation in laboratory cultures have been well studied, less is known about the microorganisms responsible for benzene degradation in mixed culture samples or at contaminated sites. To address this knowledge gap, DNA based stable isotope probing (SIP) was utilized to identify active benzene degraders in microcosms constructed with soil from three sources (a contaminated site and two agricultural sites). For this, replicate microcosms were amended with either labeled (¹³C) or unlabeled benzene and the extracted DNA samples were ultracentrifuged, fractioned and subject to terminal restriction fragment length polymorphism (TRFLP). The dominant benzene degraders (responsible for ¹³C uptake) were determined by comparing relative abundance of TRFLP phylotypes in heavy fractions of labeled benzene (¹³C) amended samples to the controls (from unlabeled benzene amended samples). Two phylotypes (a Polaromonas sp. and an Acidobacterium) were the major benzene degraders in the microcosms constructed from the contaminated site soil, whereas one phylotype incorporated the majority of the benzene-derived ¹³C in each of the agricultural soils ("candidate" phylum TM7 and an unclassified Sphingomonadaceae).
Collapse
|
23
|
Ciric L, Philp JC, Whiteley AS. Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiol Lett 2010; 303:116-22. [DOI: 10.1111/j.1574-6968.2009.01871.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
24
|
Abstract
DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.
Collapse
|
25
|
Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl Environ Microbiol 2009; 75:4644-7. [PMID: 19447956 DOI: 10.1128/aem.00283-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dominant bacterium responsible for carbon uptake from toluene in an agricultural soil was identified by stable isotope probing. Samples were amended with unlabeled toluene or labeled [ring-(13)C(6)]toluene, and DNA was extracted over time. Sequencing indicated that the organism involved belongs to the candidate phylum TM7. Microorganisms in this candidate phylum are of particular interest because although they have been found in a variety of habitats, no stable culture of any species exists, so their general metabolic capabilities are largely unknown.
Collapse
|
26
|
Roh H, Yu CP, Fuller ME, Chu KH. Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:2505-2511. [PMID: 19452908 DOI: 10.1021/es802336c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study reported the application of 15N-stable isotope probing (SIP) to identify active hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-utilizing microorganisms in groundwater microcosms. Fifteen 16S rRNA gene sequences were derived from the 15N-DNA fraction (contributed from active microorganisms capable of using RDX as a nitrogen source) of microcosms receiving cheese whey. The 16S rRNA gene sequences belonged to Actinobacteria (two clones), alpha-Proteobacteria (seven clones), and gamma-Proteobacteria (six clones). Except for five sequences with high similarity to two known RDX degraders (Enterobacter cloacae and Pseudomonas fluorescens I-C), our results suggested that phylogenetically diverse microorganisms were capable of using RDX as a nitrogen source. Six sequences of the xplA gene (a known RDX-degrading catabolic gene) were detected from the 15N-DNA fraction. The xplA gene sequences were 96-99% similar to the xplA gene of Rhodococcus sp. DN22(a known RDX utilizer), suggesting that other RDX utilizers might contain xplA-like genes. Twenty-five 16S rRNA gene sequences recovered from the unenriched, RDX-contaminated groundwater clustered differently from those obtained from the 15N-DNA fraction of the cheese-whey-amended microcosm. Our results suggested that active RDX utilizers can be stimulated by nutrient source additions even if they are present at low densities, and that use of 15N-SIP can identifythese functional members of the microbial community.
Collapse
Affiliation(s)
- Hyungkeun Roh
- Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas 77843-3136, USA
| | | | | | | |
Collapse
|
27
|
Stenuit B, Eyers L, Schuler L, George I, Agathos SN. Molecular Tools for Monitoring and Validating Bioremediation. SOIL BIOLOGY 2009. [DOI: 10.1007/978-3-540-89621-0_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Stenuit B, Eyers L, Schuler L, Agathos SN, George I. Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 2008; 26:561-75. [DOI: 10.1016/j.biotechadv.2008.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 07/27/2008] [Accepted: 07/28/2008] [Indexed: 12/01/2022]
|
29
|
|
30
|
Powell SN, Singleton DR, Aitken MD. Effects of enrichment with salicylate on bacterial selection and PAH mineralization in a microbial community from a bioreactor treating contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4099-4105. [PMID: 18589972 DOI: 10.1021/es703007n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We investigated enrichment with salicylate as a method to stimulate the degradation of polycyclic aromatic hydrocarbons (PAHs) by a microbial communityfrom a bioreactortreating PAH-contaminated soil. DNA-based stable isotope probing (SIP) was used to compare the effect of alternate methods of salicylate addition (spike vs slow, continuous addition) on the diversity of the enriched microbial community. After identification of salicylate degraders by SIP, real-time quantitative PCR (qPCR) primers were developed to quantify the abundances of three groups containing salicylate-utilizing organisms in the bioreactor community before and after enrichment. The different methods of salicylate addition were found to select for different microbial communities. Two groups containing salicylate-degrading bacteria increased in abundance substantially after enrichment by continuous addition of salicylate but did not increase in abundance in response to the spike addition, whereas a third group increased in abundance in response to both methods of salicylate addition. The initial rate of naphthalene mineralization increased significantly after enrichment by spike addition of salicylate, but neither phenanthrene nor benzo[a] pyrene mineralization rates were enhanced. Continuous addition of salicylate did not enhance the mineralization rate for any of the PAHs. These results suggest that enrichment with salicylate can select for naphthalene-degrading bacteria, but does not select for organisms responsible for degrading PAHs of higher molecular weight. Differences in microbial selection observed in this study that resulted from different rates of carbon source addition also have implications for the design of SIP experiments with water-soluble carbon sources.
Collapse
Affiliation(s)
- Sabrina N Powell
- Department of Environmental Sciences and Engineering, School of Public Health, CB#7431, 166 Rosenau Hall, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| | | | | |
Collapse
|
31
|
Kunapuli U, Lueders T, Meckenstock RU. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME JOURNAL 2007; 1:643-53. [PMID: 18043671 DOI: 10.1038/ismej.2007.73] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here, we present a detailed functional and phylogenetic characterization of an iron-reducing enrichment culture maintained in our lab with benzene as sole carbon and energy source. We used DNA-stable isotope probing to identify microbes within the enrichment most active in the assimilation of (13)C-label. When (12)C(6)- and (13)C(6)-benzene were added as comparative substrates, marked differences in the quantitative buoyant density distribution became apparent especially for uncultured microbes within the Gram-positive Peptococcaceae, closely related to environmental clones retrieved from contaminated aquifers world wide and only distantly related to cultured representatives of the genus Thermincola. Prominent among the other constituents of the enrichment were uncultured Deltaproteobacteria, as well as members of the Actinobacteria. Although their presence within the enrichment seems to be stable they did not assimilate (13)C-label as significantly as the Clostridia within the time course of our experiment. We hypothesize that benzene degradation in our enrichment involves an unusual syntrophy, where members of the Clostridia primarily oxidize benzene. Electrons from the contaminant are both directly transferred to ferric iron by the primary oxidizers, but also partially shared with the Desulfobulbaceae as syntrophic partners. Alternatively, electrons may also be quantitatively transferred to the partners, which then reduce the ferric iron. Thus our results provide evidence for the importance of a novel clade of Gram-positive iron-reducers in anaerobic benzene degradation, and a role of syntrophic interactions in this process. These findings shed a totally new light on the factors controlling benzene degradation in anaerobic contaminated environments.
Collapse
Affiliation(s)
- Umakanth Kunapuli
- GSF-National Research Center for Environment and Health, Institute of Groundwater Ecology, Neuherberg, Germany
| | | | | |
Collapse
|
32
|
Muller JF, Stevens AM, Craig J, Love NG. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress. Appl Environ Microbiol 2007; 73:4550-8. [PMID: 17526777 PMCID: PMC1932803 DOI: 10.1128/aem.00169-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.
Collapse
Affiliation(s)
- Jocelyn Fraga Muller
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
33
|
Cébron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC. Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 2006; 73:798-807. [PMID: 17122398 PMCID: PMC1800760 DOI: 10.1128/aem.01491-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable isotope probing (SIP) can be used to analyze the active bacterial populations involved in a process by incorporating 13C-labeled substrate into cellular components such as DNA. Relatively long incubation times are often used with laboratory microcosms in order to incorporate sufficient 13C into the DNA of the target organisms. Addition of nutrients can be used to accelerate the processes. However, unnatural concentrations of nutrients may artificially change bacterial diversity and activity. In this study, methanotroph activity and diversity in soil was examined during the consumption of 13CH4 with three DNA-SIP experiments, using microcosms with natural field soil water conditions, the addition of water, and the addition of mineral salts solution. Methanotroph population diversity was studied by targeting 16S rRNA and pmoA genes. Clone library analyses, denaturing gradient gel electrophoresis fingerprinting, and pmoA microarray hybridization analyses were carried out. Most methanotroph diversity (type I and type II methanotrophs) was observed in non-amended SIP microcosms. Although this treatment probably best reflected the in situ environmental conditions, one major disadvantage of this incubation was that the incorporation of 13CH4 was slow and some cross-feeding of 13C occurred, thereby leading to labeling of nonmethanotroph microorganisms. Conversely, microcosms supplemented with mineral salts medium exhibited rapid consumption of 13CH4, resulting in the labeling of a less diverse population of only type I methanotrophs. DNA-SIP incubations using water-amended microcosms yielded faster incorporation of 13C into active methanotrophs while avoiding the cross-feeding of 13C.
Collapse
Affiliation(s)
- Aurélie Cébron
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|