1
|
Williamson AJ, Binet M, Sergeant C. Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents. Crit Rev Biotechnol 2024; 44:698-716. [PMID: 37258417 DOI: 10.1080/07388551.2023.2194505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/07/2022] [Accepted: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, via sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success via bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions via indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.
Collapse
Affiliation(s)
| | - Marie Binet
- EDF R&D, LNHE (Laboratoire National d'Hydraulique et Environnement), Chatou, France
| | | |
Collapse
|
2
|
Takeyama T, Tsushima S, Gericke R, Kaden P, März J, Takao K. Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5 f Orbitals. Chemistry 2023:e202302702. [PMID: 37671842 DOI: 10.1002/chem.202302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
We report the formation of a NpIV complex from the complexation of NpVI O2 2+ with the redox-active ligand tBu-pdiop2- =2,6-bis[N-(3,5-di-tert-butyl-2-hydroxyphenyl)iminomethyl]pyridine. To the best of our knowledge, this is the first example of the direct complexation-induced chemical reduction of NpVI O2 2+ to NpIV . In contrast, the complexation of UVI O2 2+ with tBu-pdiop2- did not induce the reduction of UVI O2 2+ , not even after the two-electron electrochemical reduction of [UVI O2 (tBu-pdiop)]. This contrast between the Np and U systems may be ascribed to the decrease of the energy of the 5 f orbitals in Np compared to those in U. The present findings indicate that the redox chemistry between UVI O2 2+ and NpVI O2 2+ should be clearly differentiated in redox-active ligand systems.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550, Tokyo, Japan
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550, Tokyo, Japan
| | - Robert Gericke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Peter Kaden
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Juliane März
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550, Tokyo, Japan
| |
Collapse
|
3
|
Sorption of Pu(IV) on biogenic Mn oxide and complexation of Pu(IV) with organic ligands secreted by fungal cells. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Bao L, Cai Y, Liu Z, Li B, Bian Q, Hu B, Wang X. High Sorption and Selective Extraction of Actinides from Aqueous Solutions. Molecules 2021; 26:molecules26237101. [PMID: 34885684 PMCID: PMC8658866 DOI: 10.3390/molecules26237101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
The selective elimination of long-lived radioactive actinides from complicated solutions is crucial for pollution management of the environment. Knowledge about the species, structures and interaction mechanism of actinides at solid–water interfaces is helpful to understand and to evaluate physicochemical behavior in the natural environment. In this review, we summarize recent works about the sorption and interaction mechanism of actinides (using U, Np, Pu, Cm and Am as representative actinides) on natural clay minerals and man-made nanomaterials. The species and microstructures of actinides on solid particles were investigated by advanced spectroscopy techniques and computational theoretical calculations. The reduction and solidification of actinides on solid particles is the most effective way to immobilize actinides in the natural environment. The contents of this review may be helpful in evaluating the migration of actinides in near-field nuclear waste repositories and the mobilization properties of radionuclides in the environment.
Collapse
Affiliation(s)
- Linfa Bao
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Yawen Cai
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Zhixin Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
- Correspondence:
| | - Bingfeng Li
- Power China Sichuan Electric Power Engineering Co., Ltd., Chengdu 610041, China;
| | - Qi Bian
- Shaoxing ZeYuan Science Technology Ltd., Shaoxing 312000, China;
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| |
Collapse
|
5
|
Molinas M, Faizova R, Brown A, Galanzew J, Schacherl B, Bartova B, Meibom KL, Vitova T, Mazzanti M, Bernier-Latmani R. Biological Reduction of a U(V)-Organic Ligand Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4753-4761. [PMID: 33705103 PMCID: PMC8154365 DOI: 10.1021/acs.est.0c06633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 05/20/2023]
Abstract
Metal-reducing microorganisms such as Shewanella oneidensis MR-1 reduce highly soluble species of hexavalent uranyl (U(VI)) to less mobile tetravalent uranium (U(IV)) compounds. The biologically mediated immobilization of U(VI) is being considered for the remediation of U contamination. However, the mechanistic underpinnings of biological U(VI) reduction remain unresolved. It has become clear that a first electron transfer occurs to form pentavalent (U(V)) intermediates, but it has not been definitively established whether a second one-electron transfer can occur or if disproportionation of U(V) is required. Here, we utilize the unusual properties of dpaea2- ((dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine)), a ligand forming a stable soluble aqueous complex with U(V), and investigate the reduction of U(VI)-dpaea and U(V)-dpaea by S. oneidensis MR-1. We establish U speciation through time by separating U(VI) from U(IV) by ion exchange chromatography and characterize the reaction end-products using U M4-edge high resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy. We document the reduction of solid phase U(VI)-dpaea to aqueous U(V)-dpaea but, most importantly, demonstrate that of U(V)-dpaea to U(IV). This work establishes the potential for biological reduction of U(V) bound to a stabilizing ligand. Thus, further work is warranted to investigate the possible persistence of U(V)-organic complexes followed by their bioreduction in environmental systems.
Collapse
Affiliation(s)
- Margaux Molinas
- Environmental
Microbiology Laboratory, and Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| | - Radmila Faizova
- Environmental
Microbiology Laboratory, and Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| | - Ashley Brown
- Environmental
Microbiology Laboratory, and Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| | - Jurij Galanzew
- Karlsruhe
Institute of Technology (KIT), Institute for Nuclear Waste Disposal
(INE), P.O. 3640, D-76021Karlsruhe, Germany
| | - Bianca Schacherl
- Karlsruhe
Institute of Technology (KIT), Institute for Nuclear Waste Disposal
(INE), P.O. 3640, D-76021Karlsruhe, Germany
| | - Barbora Bartova
- Environmental
Microbiology Laboratory, and Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| | - Karin L. Meibom
- Environmental
Microbiology Laboratory, and Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| | - Tonya Vitova
- Karlsruhe
Institute of Technology (KIT), Institute for Nuclear Waste Disposal
(INE), P.O. 3640, D-76021Karlsruhe, Germany
| | - Marinella Mazzanti
- Environmental
Microbiology Laboratory, and Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental
Microbiology Laboratory, and Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Carter KP, Smith KF, Tratnjek T, Shield KM, Moreau LM, Rees JA, Booth CH, Abergel RJ. Spontaneous Chelation‐Driven Reduction of the Neptunyl Cation in Aqueous Solution. Chemistry 2020; 26:2354-2359. [DOI: 10.1002/chem.201905695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Korey P. Carter
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Kurt F. Smith
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Toni Tratnjek
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Katherine M. Shield
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering University of California Berkeley CA 94709 USA
| | - Liane M. Moreau
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Julian A. Rees
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Corwin H. Booth
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Rebecca J. Abergel
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering University of California Berkeley CA 94709 USA
| |
Collapse
|
7
|
Qiu L, Feng J, Dai Y, Chang S. Mechanisms of strontium's adsorption by Saccharomyces cerevisiae: Contribution of surface and intracellular uptakes. CHEMOSPHERE 2019; 215:15-24. [PMID: 30300807 DOI: 10.1016/j.chemosphere.2018.09.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The objective of this work was to explore the mechanisms participating in strontium sorption by living Saccharomyces cerevisiae (S. cerevisiae). The location of strontium adsorbed by S. cerevisiae was studied by our plasmolysis treatment. The contribution of physical and chemical mechanisms was determined quantitatively by desorption and blockage of functional groups. Moreover, our results indicated that bioaccumulation also played a major role in biosorption by living cells. Thus, supplementary methods including 2-DE (two-dimensional electrophoresis) and Matrix-Assisted Laser Desorption/Ionization Tandem Time of Flight Mass Spectrometry (MALDI-TOF-TOF) were employed to analyze the different proteins. The subsequent desorption % of Sr2+ by Distilled Water (DW), NH4NO3 and EDTA-Na2 from Sr2+ loaded sorbents indicated a minor role for physical adsorption, while ion exchange and complexation were responsible for approximately 20% and 40%. Specific blockage of functional groups revealed that carboxyl and amine groups played an important role in Sr2+ binding to the living S. cerevisiae. From our MALDI-TOF-TOF results, we concluded that 38 proteins showed up-regulated expression profiles and 11 proteins showed down-regulated after biosorption. Moreover, proteins belong to: phagocytic function (Act1p); ion channel (S-adenosylmethionine synthase); glycolysis (Tubulin) may directly involve in strontium bioaccumulation. In conclusion, the present work indicates that the strontium sorption mechanism by living S. cerevisiae is complicated including ion-exchange along with complexation as the main mechanism, whereas the other mechanisms such as physical adsorption play a minor contribution. Metabolically-dependent proteins may play an important role in bioaccumulation.
Collapse
Affiliation(s)
- Liang Qiu
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China
| | - Jundong Feng
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China.
| | - Yaodong Dai
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China
| | - Shuquan Chang
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China
| |
Collapse
|
8
|
Srivastava A, Dumpala RMR, Rawat N, Tomar B. Electrochemical, spectroscopic and theoretical studies on redox speciation of neptunium with phenylphosphonic acid. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Shukla A, Parmar P, Saraf M. Radiation, radionuclides and bacteria: An in-perspective review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 180:27-35. [PMID: 29024816 DOI: 10.1016/j.jenvrad.2017.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
There has been a significant surge in consumption of radionuclides for various academic and commercial purposes. Correspondingly, there has been a considerable amount of generation of radioactive waste. Bacteria and archaea, being earliest inhabitants on earth serve as model microorganisms on earth. These microbes have consistently proven their mettle by surviving extreme environments, even extreme ionizing radiations. Their ability to accept and undergo stable genetic mutations have led to development of recombinant mutants that are been exploited for remediation of various pollutants such as; heavy metals, hydrocarbons and even radioactive waste (radwaste). Thus, microbes have repeatedly presented themselves to be prime candidates suitable for remediation of radwaste. It is interesting to study the behind-the-scenes interactions these microbes possess when observed in presence of radionuclides. The emphasis is on the indigenous bacteria isolated from radionuclide containing environments as well as the five fundamental interaction mechanisms that have been studied extensively, namely; bioaccumulation, biotransformation, biosorption, biosolubilisation and bioprecipitation. Application of microbes exhibiting such mechanisms in remediation of radioactive waste depends largely on the individual capability of the species. Challenges pertaining to its potential bioremediation activity is also been briefly discussed. This review provides an insight into the various mechanisms bacteria uses to tolerate, survive and carry out processes that could potentially lead the eco-friendly approach for removal of radionuclides.
Collapse
Affiliation(s)
- Arpit Shukla
- Department of Microbiology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Paritosh Parmar
- Department of Microbiology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
10
|
Abstract
Fifty years have passed since the foundation of organometallic neptunium chemistry, and yet only a handful of complexes have been reported, and even fewer have been fully characterized. Yet, increasingly, combined synthetic/spectroscopic/computational studies are demonstrating how covalently bonding, soft, carbocyclic organometallic ligands provide an excellent platform for advancing the fundamental understanding of the differences in orbital contributions and covalency in f-block metal-ligand bonding. Understanding the subtleties is the key to the safe handling and separations of the highly radioactive nuclei. This review describes the complexes that have been synthesized to date and presents a critical assessment of the successes and difficulties in their analysis and the bonding information they have provided. Because of increasing recent efforts to start new Np-capable air-sensitive inorganic chemistry laboratories, the importance of radioactivity, the basics of Np decay and its ramifications (including the radiochemical synthesis of one organometallic compound), and the available anhydrous starting materials are also surveyed. The review also highlights a range of instances in which important differences in the chemical behavior between Np and its closest neighbors, uranium and plutonium, are found.
Collapse
Affiliation(s)
- Polly L Arnold
- EaStCHEM School of Chemistry, University of Edinburgh , The King's Buildings, Edinburgh, EH9 3FJ, U.K
| | - Michał S Dutkiewicz
- EaStCHEM School of Chemistry, University of Edinburgh , The King's Buildings, Edinburgh, EH9 3FJ, U.K.,European Commission, DG Joint Research Centre, Directorate G-Nuclear Safety and Security, Advanced Nuclear Knowledge-G.I.5, Postfach 2340, D-76125, Karlsruhe, Germany
| | - Olaf Walter
- European Commission, DG Joint Research Centre, Directorate G-Nuclear Safety and Security, Advanced Nuclear Knowledge-G.I.5, Postfach 2340, D-76125, Karlsruhe, Germany
| |
Collapse
|
11
|
Ohnuki T, Kozai N, Sakamoto F, Utsunomiya S, Kato K. Sorption Behavior of Np(V) on Microbe Pure Culture and Consortia. CHEM LETT 2017. [DOI: 10.1246/cl.170068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshihiko Ohnuki
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195
| | - Naofumi Kozai
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195
| | - Fuminori Sakamoto
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581
| | - Kenji Kato
- Laboratory of Geomicrobial Ecology, Shizuoka University, 836 Ooya, Suruga-ku, Shizuoka 422-8529
| |
Collapse
|
12
|
Cherkouk A, Law GTW, Rizoulis A, Law K, Renshaw JC, Morris K, Livens FR, Lloyd JR. Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1. Dalton Trans 2016; 45:5030-7. [PMID: 26632613 DOI: 10.1039/c4dt02929a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides. Here, we studied the role of riboflavin in mediating the reduction of radionuclides in cultures of Shewanella oneidensis MR-1. Our results demonstrate that the addition of 10 μM riboflavin enhances the reduction rate of Tc(VII) to Tc(IV), Pu(IV) to Pu(III) and to a lesser extent, Np(V) to Np(IV), but has no significant influence on the reduction rate of U(VI) by Shewanella oneidensis MR-1. Thus riboflavin can act as an extracellular electron shuttle to enhance rates of Tc(VII), Np(V) and Pu(IV) reduction, and may therefore play a role in controlling the oxidation state of key redox active actinides and fission products in natural and engineered environments. These results also suggest that the addition of riboflavin could be used to accelerate the bioremediation of radionuclide-contaminated environments.
Collapse
Affiliation(s)
- Andrea Cherkouk
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Gareth T W Law
- Centre for Radiochemistry Research, School of Chemistry, Manchester, M13 9PL, UK
| | - Athanasios Rizoulis
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Katie Law
- Centre for Radiochemistry Research, School of Chemistry, Manchester, M13 9PL, UK
| | - Joanna C Renshaw
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Francis R Livens
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK. and Centre for Radiochemistry Research, School of Chemistry, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
13
|
Sorption of plutonium to bacteria and fungi isolated from groundwater and clay samples. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Natrajan LS, Swinburne AN, Andrews MB, Randall S, Heath SL. Redox and environmentally relevant aspects of actinide(IV) coordination chemistry. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.12.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Zakharova EV, Mikhailina AB, Konstantinova LI, Proshin IM, Luk’yanova EA, Nazina TN. Effect of biogeochemical factors on the Np(V) mobility under the conditions of remote zone of deep liquid radioactive waste repositories. RADIOCHEMISTRY 2011. [DOI: 10.1134/s1066362211040175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
O’Loughlin EJ, Boyanov MI, Antonopoulos DA, Kemner KM. Redox Processes Affecting the Speciation of Technetium, Uranium, Neptunium, and Plutonium in Aquatic and Terrestrial Environments. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1071.ch022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Edward J. O’Loughlin
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Maxim I. Boyanov
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Dionysios A. Antonopoulos
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Kenneth M. Kemner
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| |
Collapse
|
17
|
Law GTW, Geissler A, Lloyd JR, Livens FR, Boothman C, Begg JDC, Denecke MA, Rothe J, Dardenne K, Burke IT, Charnock JM, Morris K. Geomicrobiological redox cycling of the transuranic element neptunium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8924-8929. [PMID: 21047117 DOI: 10.1021/es101911v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.
Collapse
Affiliation(s)
- Gareth T W Law
- Research Centre for Radwaste and Decommissioning, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu S, Chen F, Simonetti A, Albrecht-Schmitt TE. Incorporation of neptunium(V) and iodate into a uranyl phosphate: implications for mitigating the release of 237Np and 129I in repositories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3192-3196. [PMID: 20225836 DOI: 10.1021/es100115k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The simultaneous incorporation of IO3(-) and NpO2+ into Ba3(UO2)2(HPO4)2(PO4)2 (BaUP), which serves as a model for uranyl alteration phases, was investigated. LA-ICP-MS data demonstrate that the incorporation of both of these species is significantly enhanced when they are present together. The most probable explanation is that charge balance is obtained by the coupled substitutions of NpO2+ <--> UO2(2+) and IO3(-) <--> HPO4(2-). According to the LA-ICP-MS results, in the absence of iodate as much as 2.91 +/- 0.14 to 3.44 +/- 0.25% of the uranium in BaUP can be replaced by neptunium. When iodate is present in the reaction, the amount of uranium substitution by neptunium increases to 6.05 +/- 0.65% to 7.93 +/- 0.83%. The net increase for neptunium is 116 +/- 0.30% to 225 +/- 0.25%. Similarly, in the absence of NpO2+, iodate incorporation into BaUP reaches an I/U level of 0.0021 +/- 0.0004 to 0.0038 +/- 0.0005; whereas in its presence there is an increase to as much as 100 +/- 0.11% to 0.0042 +/- 0.0008.
Collapse
Affiliation(s)
- Shijun Wu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS), Guangzhou 510640, China
| | | | | | | |
Collapse
|
19
|
Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf B Biointerfaces 2009; 73:75-9. [DOI: 10.1016/j.colsurfb.2009.04.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 11/20/2022]
|
20
|
Takao K, Takao S, Scheinost AC, Bernhard G, Hennig C. Complex Formation and Molecular Structure of Neptunyl(VI) and -(V) Acetates. Inorg Chem 2009; 48:8803-10. [DOI: 10.1021/ic900981q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koichiro Takao
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, P.O. Box 51 01 19, 01314 Dresden, Germany
| | - Shinobu Takao
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, P.O. Box 51 01 19, 01314 Dresden, Germany
| | - Andreas C. Scheinost
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, P.O. Box 51 01 19, 01314 Dresden, Germany
| | - Gert Bernhard
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, P.O. Box 51 01 19, 01314 Dresden, Germany
| | - Christoph Hennig
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, P.O. Box 51 01 19, 01314 Dresden, Germany
| |
Collapse
|
21
|
Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 2009; 75:3641-7. [PMID: 19363069 DOI: 10.1128/aem.00022-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.
Collapse
|
22
|
Cornet SM, Häller LJL, Sarsfield MJ, Collison D, Helliwell M, May I, Kaltsoyannis N. Neptunium(vi) chain and neptunium(vi/v) mixed valence cluster complexes. Chem Commun (Camb) 2009:917-9. [DOI: 10.1039/b818973k] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 2008; 74:6746-55. [PMID: 18791025 DOI: 10.1128/aem.01454-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of their cell surface locations, the outer membrane c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 have been suggested to be the terminal reductases for a range of redox-reactive metals that form poorly soluble solids or that do not readily cross the outer membrane. In this work, we determined the kinetics of reduction of a series of Fe(III) complexes with citrate, nitrilotriacetic acid (NTA), and EDTA by MtrC and OmcA using a stopped-flow technique in combination with theoretical computation methods. Stopped-flow kinetic data showed that the reaction proceeded in two stages, a fast stage that was completed in less than 1 s, followed by a second, relatively slower stage. For a given complex, electron transfer by MtrC was faster than that by OmcA. For a given cytochrome, the reaction was completed in the order Fe-EDTA > Fe-NTA > Fe-citrate. The kinetic data could be modeled by two parallel second-order bimolecular redox reactions with second-order rate constants ranging from 0.872 microM(-1) s(-1) for the reaction between MtrC and the Fe-EDTA complex to 0.012 microM(-1) s(-1) for the reaction between OmcA and Fe-citrate. The biphasic reaction kinetics was attributed to redox potential differences among the heme groups or redox site heterogeneity within the cytochromes. The results of redox potential and reorganization energy calculations showed that the reaction rate was influenced mostly by the relatively large reorganization energy. The results demonstrate that ligand complexation plays an important role in microbial dissimilatory reduction and mineral transformation of iron, as well as other redox-sensitive metal species in nature.
Collapse
|
24
|
Boukhalfa H, Icopini GA, Reilly SD, Neu MP. Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl Environ Microbiol 2007; 73:5897-903. [PMID: 17644643 PMCID: PMC2074912 DOI: 10.1128/aem.00747-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)(4) [Pu(IV)(OH)(4(am))] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)(4(am)) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species.
Collapse
Affiliation(s)
- Hakim Boukhalfa
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | |
Collapse
|