1
|
Cruz Viggi C, Tucci M, Resitano M, Palushi V, Crognale S, Matturro B, Petrangeli Papini M, Rossetti S, Aulenta F. Enhancing the Anaerobic Biodegradation of Petroleum Hydrocarbons in Soils with Electrically Conductive Materials. Bioengineering (Basel) 2023; 10:bioengineering10040441. [PMID: 37106628 PMCID: PMC10135592 DOI: 10.3390/bioengineering10040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Anaerobic bioremediation is a relevant process in the management of sites contaminated by petroleum hydrocarbons. Recently, interspecies electron transfer processes mediated by conductive minerals or particles have been proposed as mechanisms through which microbial species within a community share reducing equivalents to drive the syntrophic degradation of organic substrates, including hydrocarbons. Here, a microcosm study was set up to investigate the effect of different electrically conductive materials (ECMs) in enhancing the anaerobic biodegradation of hydrocarbons in historically contaminated soil. The results of a comprehensive suite of chemical and microbiological analyses evidenced that supplementing the soil with (5% w/w) magnetite nanoparticles or biochar particles is an effective strategy to accelerate the removal of selected hydrocarbons. In particular, in microcosms supplemented with ECMs, the removal of total petroleum hydrocarbons was enhanced by up to 50% relative to unamended controls. However, chemical analyses suggested that only a partial bioconversion of contaminants occurred and that longer treatment times would have probably been required to drive the biodegradation process to completion. On the other hand, biomolecular analyses confirmed the presence of several microorganisms and functional genes likely involved in hydrocarbon degradation. Furthermore, the selective enrichment of known electroactive bacteria (i.e., Geobacter and Geothrix) in microcosms amended with ECMs, clearly pointed to a possible role of DIET (Diet Interspecies Electron Transfer) processes in the observed removal of contaminants.
Collapse
Affiliation(s)
- Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Marco Resitano
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Valentina Palushi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Simona Crognale
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | | | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
2
|
Viggi CC, Tucci M, Resitano M, Matturro B, Crognale S, Feigl V, Molnár M, Rossetti S, Aulenta F. Passive electrobioremediation approaches for enhancing hydrocarbons biodegradation in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157325. [PMID: 35839884 DOI: 10.1016/j.scitotenv.2022.157325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Electrobioremediation technologies hold considerable potential for the treatment of soils contaminated by petroleum hydrocarbons (PH), since they allow stimulating biodegradation processes with no need for subsurface chemicals injection and with little to no energy consumption. Here, a microbial electrochemical snorkel (MES) was applied for the treatment of a soil contaminated by hydrocarbons. The MES consists of direct coupling of a microbial anode with a cathode, being a single conductive, non-polarized material positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated soil) and the oxic zone (the overlying oxygenated water). Soil was also supplemented with electrically conductive particles of biochar as a strategy to construct a conductive network with microbes in the soil matrix, thus extending the radius of influence of the snorkel. The results of a comprehensive suite of chemical, microbiological and ecotoxicological analyses evidenced that biochar addition, rather than the presence of a snorkel, was the determining factor in accelerating PH removal from contaminated soils, possibly accelerating syntrophic and/or cooperative metabolisms involved in the degradation of PH. The enhancement of biodegradation was mirrored by an increased abundance of anaerobic and aerobic microorganisms known to be involved in the degradation of PH and related functional genes. Plant ecotoxicity assays confirmed a reduction of soils toxicity in treatments receiving electrically conductive biochar.
Collapse
Affiliation(s)
- Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy.
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Marco Resitano
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Simona Crognale
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Viktória Feigl
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM) 00010, Italy
| |
Collapse
|
3
|
Geng S, Qin W, Cao W, Wang Y, Ding A, Zhu Y, Fan F, Dou J. Pilot-scale bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using an indigenous bacterial consortium in soil-slurry bioreactors. CHEMOSPHERE 2022; 287:132183. [PMID: 34500332 DOI: 10.1016/j.chemosphere.2021.132183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Soil-slurry bioreactor based bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil was studied through laboratory and pilot-scale trials, in which the degradation mechanism was explored. Indigenous PAH-degrading consortium was firstly screened out and it degraded 80.5% of total PAHs in lab-scale bioreactors. Then a pilot-scale trial lasting 410 days was conducted in two bioreactors of 1.5 m3 to examine the operating parameters and validate the optimum running conditions. During the initial 200 days, the crucial running parameters affecting PAH removal were evaluated and selected. Subsequently, an average PAH removal rate of 93.4% was achieved during 15 consecutive batches (210 days) under the optimum running conditions. The kinetic analysis showed that the reactor under optimum conditions achieved the highest PAH degradation rate of 0.1795 day-1 and the shortest half-life of 3.86 days. Notably, efficient mass transfer of PAHs and high biodegradation capability by bioaugmented consortia in soil-slurry bioreactors were two key mechanisms for appreciable PAH removal performance. Under the optimal operating conditions, the degradation rate of low-molecular-weight (LMW) PAHs was significantly higher than high-molecular-weight (HMW) PAHs; when the mass transfer was limited, there was no significant difference between their degradation behaviors. Both microbial co-metabolism and collaborative metabolism might occur when all PAHs demonstrated low degradation rates. The findings provide insightful guidance on the future assessment and remediation practices of PAH-contaminated sites.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Wei Qin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wei Cao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yingying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
4
|
Titaley IA, Simonich SLM, Larsson M. Recent Advances in the Study of the Remediation of Polycyclic Aromatic Compound (PAC)-Contaminated Soils: Transformation Products, Toxicity, and Bioavailability Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:873-882. [PMID: 35634165 PMCID: PMC9139952 DOI: 10.1021/acs.estlett.0c00677] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic compounds (PACs) encompass a diverse group of compounds, often found in historically contaminated sites. Different experimental techniques have been used to remediate PACs-contaminated soils. This brief review surveyed over 270 studies concerning remediation of PACs-contaminated soils and found that, while these studies often measured the concentration of 16 parent polycyclic aromatic hydrocarbons (PAHs) pre- and post-remediation, only a fraction of the studies included the measurement of PAC-transformation products (PAC-TPs) and other PACs (n = 33). Only a few studies also incorporated genotoxicity/toxicity/mutagenicity analysis pre- and post-remediation (n = 5). Another aspect that these studies often neglected to include was bioavailability, as none of the studies that included measurement of PAH-TPs and PACs included bioavailability investigation. Based on the literature analysis, future remediation studies need to consider chemical analysis of PAH-TPs and PACs, genotoxicity/toxicity/mutagenicity, and bioavailability analyses pre- and post-remediation. These assessments will help address numerous concerns including, among others, the presence, properties, and toxicity of PACs and PAH-TPs, risk assessment of soil post-remediation, and the bioavailability of PAH-TPs. Other supplementary techniques that help assist these analyses and recommendations for future analyses are also discussed.
Collapse
Affiliation(s)
- Ivan A. Titaley
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding Author: Phone: +1 541 737 9208, Fax: +1 541 737 0497
| | - Staci L. Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Maria Larsson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
| |
Collapse
|
5
|
Song B, Tang J, Zhen M, Liu X. Effect of rhamnolipids on enhanced anaerobic degradation of petroleum hydrocarbons in nitrate and sulfate sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:438-447. [PMID: 31077922 DOI: 10.1016/j.scitotenv.2019.04.383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic degradation of petroleum hydrocarbons (PH) is an important process in contaminated environment. The application of rhamnolipids in anaerobic degradation of PH was not extensively studied and inconclusive. This study explored the combined effect of rhamnolipids and electron acceptors on the anaerobic degradation process of total petroleum hydrocarbons (TPH) in sediment from an oil field. The results indicated that rhamnolipids decreased the surface tension of the medium and increased the desorption of TPH from the sediment. After 10-wk culture, the maximum degradation rate of TPH in nitrate and sulfate condition was found to be 32.2% and 24.0%, respectively, with rhamnolipids concentration of 150 mg/L. The addition of 45 and 150 mg/L rhamnolipids increased the degradation rate of TPH but the promotion effect was weakened in the treatment with 450 mg/L rhamnolipids. The copy number of two degradation genes (1-methylalkyl) succinate synthase gene (masD) and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase gene (bamA) increased with incubation time and showed higher copy numbers in treatments with 45 and 150 mg/L rhamnolipids. In the first week, with the increase of rhamnolipids concentration, the copy number of 16S rDNA increased rapidly and the concentration of electron receptors decreased correspondingly. Moreover, no nitrate was detected in treatments of nitrate with 450 mg/L rhamnolipids after the first week. Microbial community structure analysis result showed that Thiobacillus was the dominant bacteria in all treatments with nitrate as electron acceptor and its proportion gradually decreased with the increase of rhamnolipids concentration. The addition of rhamnolipids changed the subdominant bacteria in the treatments with nitrate as electron acceptor. Methanothrix was the dominant archaea in all treatments with rhamnolipids content of lower than 45 mg/L. When the rhamnolipids concentration increased, the dominant archaea changed to Methanogenium or Methanobacterium. In conclusion, suitable concentrations of rhamnolipids could promote the anaerobic degradation of PH in the sediment.
Collapse
Affiliation(s)
- Benru Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Meinan Zhen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Surfactant-induced bacterial community changes correlated with increased polycyclic aromatic hydrocarbon degradation in contaminated soil. Appl Microbiol Biotechnol 2016; 100:10165-10177. [PMID: 27695967 DOI: 10.1007/s00253-016-7867-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
Bioremediation as a method for removing polycyclic aromatic hydrocarbons (PAHs) from contaminated environments has been criticized for poor removal of potentially carcinogenic but less bioavailable high molecular weight (HMW) compounds. As a partial remedy to this constraint, we studied surfactant addition at sub-micellar concentrations to contaminated soil to enhance the biodegradation of PAHs remaining after conventional aerobic bioremediation. We demonstrated increased removal of four- and five-ring PAHs using two nonionic surfactants, polyoxyethylene(4)lauryl ether (Brij 30) and polyoxyethylene sorbitol hexaoleate (POESH), and analyzed bacterial community shifts associated with those conditions. Eight groups of abundant bacteria were implicated as potentially being involved in increased HMW PAH removal. A group of unclassified Alphaproteobacteria and members of the Phenylobacterium genus in particular showed significantly increased relative abundance in the two conditions exhibiting increased PAH removal. Other implicated groups included members of the Sediminibacterium, Terrimonas, Acidovorax, and Luteimonas genera, as well as uncharacterized organisms within the families Chitinophagaceae and Bradyrhizobiaceae. Targeted isolation identified a subset of the community likely using the surfactants as a growth substrate, but few of the isolates exhibited PAH-degradation capability. Isolates recovered from the Acidovorax and uncharacterized Bradyrhizobiaceae groups suggest the abundance of those groups may have been attributable to growth on surfactants. Understanding the specific bacteria responsible for HMW PAH removal in natural and engineered systems and their response to stimuli such as surfactant amendment may improve bioremediation efficacy during treatment of contaminated environmental media.
Collapse
|
7
|
Adrion AC, Nakamura J, Shea D, Aitken MD. Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic Hydrocarbons Remaining in Soil After Conventional Biological Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3838-45. [PMID: 26919662 PMCID: PMC4973855 DOI: 10.1021/acs.est.5b05243] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A total of five nonionic surfactants (Brij 30, Span 20, Ecosurf EH-3, polyoxyethylene sorbitol hexaoleate, and R-95 rhamnolipid) were evaluated for their ability to enhance PAH desorption and biodegradation in contaminated soil after treatment in an aerobic bioreactor. Surfactant doses corresponded to aqueous-phase concentrations below the critical micelle concentration in the soil-slurry system. The effect of surfactant amendment on soil (geno)toxicity was also evaluated for Brij 30, Span 20, and POESH using the DT40 B-lymphocyte cell line and two of its DNA-repair-deficient mutants. Compared to the results from no-surfactant controls, incubation of the bioreactor-treated soil with all surfactants increased PAH desorption, and all except R-95 substantially increased PAH biodegradation. POESH had the greatest effect, removing 50% of total measured PAHs. Brij 30, Span 20, and POESH were particularly effective at enhancing biodegradation of four- and five-ring PAHs, including five of the seven carcinogenic PAHs, with removals up to 80%. Surfactant amendment also significantly enhanced the removal of alkyl-PAHs. Most treatments significantly increased soil toxicity. Only the no-surfactant control and Brij 30 at the optimum dose significantly decreased soil genotoxicity, as evaluated with either mutant cell line. Overall, these findings have implications for the feasibility of bioremediation to achieve cleanup levels for PAHs in soil.
Collapse
Affiliation(s)
- Alden C. Adrion
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Michael D. Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
- Corresponding author (T: 1-919-966-1024; F: 1-919-966-7911; )
| |
Collapse
|
8
|
Yadav T, Tikariha D, Lakra J, Satnami ML, Tiwari AK, Saha SK, Ghosh KK. Solubilization of polycyclic aromatic hydrocarbons in structurally different gemini and monomeric surfactants: A comparative study. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ali N, Al-Awadhi H, Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Radwan SS. Bioremediation of Atmospheric Hydrocarbons via Bacteria Naturally Associated with Leaves of Higher Plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:1160-1170. [PMID: 25946637 DOI: 10.1080/15226514.2015.1045125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacteria associated with leaves of sixteen cultivated and wild plant species from all over Kuwait were analyzed by a culture-independent approach. This technique depended on partial sequencing of 16S rDNA regions in total genomic DNA from the bacterial consortia and comparing the resulting sequences with those in the GenBank database. To release bacterial cells from leaves, tough methods such as sonication co-released too much leaf chloroplasts whose DNA interfered with the bacterial DNA. A more satisfactory bacterial release with a minimum of chloroplast co-release was done by gently rubbing the leaf surfaces with soft tooth brushes in phosphate buffer. The leaves of all plant species harbored on their surfaces bacterial communities predominated by hydrocarbonoclastic (hydrocarbon-utilizing) bacterial genera. Leaves of 6 representative plants brought about in the laboratory effective removal of volatile hydrocarbons in sealed microcosms. Each individual plant species had a unique bacterial community structure. Collectively, the phyllospheric microflora on the studied plants comprised the genera Flavobacterium, Halomonas, Arthrobacter, Marinobacter, Neisseria, Ralstonia, Ochrobactrum. Exiguobacterium, Planomicrobium, Propionibacterium, Kocuria, Rhodococcus and Stenotrophomonas. This community structure was dramatically different from the structure we determined earlier for the same plants using the culture-dependent approach, although in both cases, hydrocarbonoclastic bacteria were frequent.
Collapse
Affiliation(s)
- N Ali
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - H Al-Awadhi
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - N Dashti
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - M Khanafer
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - I El-Nemr
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - N Sorkhoh
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| | - S S Radwan
- a Department of Biological Sciences , Faculty of Science, Kuwait University , Safat , Kuwait
| |
Collapse
|
10
|
Jones MD, Rodgers-Vieira EA, Hu J, Aitken MD. Association of Growth Substrates and Bacterial Genera with Benzo[ a]pyrene Mineralization in Contaminated Soil. ENVIRONMENTAL ENGINEERING SCIENCE 2014; 31:689-697. [PMID: 25469077 PMCID: PMC4245834 DOI: 10.1089/ees.2014.0275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/27/2014] [Indexed: 05/24/2023]
Abstract
Benzo[a]pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon (PAH) that is not known to be a bacterial growth substrate. Organisms capable of cometabolizing BaP in complex field-contaminated systems have not previously been identified. We evaluated BaP mineralization by a bacterial community from a bioreactor treating PAH-contaminated soil during coincubation with or after pre-enrichment on various PAHs as growth substrates. Pyrosequence libraries of 16S rRNA genes were used to identify bacteria that were enriched on the added growth substrate as a means of associating specific organisms with BaP mineralization. Coincubating the bioreactor-treated soil with naphthalene, phenanthrene, or pyrene inhibited BaP mineralization, whereas pre-enriching the soil on the same three PAHs enhanced BaP mineralization. Combined, these results suggest that bacteria in the bioreactor community that are capable of growing on naphthalene, phenanthrene, and/or pyrene can metabolize BaP, with coincubation competitively inhibiting BaP metabolism. Anthracene, fluoranthene, and benz[a]anthracene had little effect on BaP mineralization compared to incubations without an added growth substrate under either coincubation or pre-enrichment conditions. Substantial increases in relative abundance after pre-enrichment with phenanthrene, naphthalene, or pyrene, but not the other PAHs, suggest that members of the genera Cupriavidus and Luteimonas may have been associated with BaP mineralization.
Collapse
Affiliation(s)
- Maiysha D. Jones
- Present Address: The Procter & Gamble Company, Mason Business Center, 8700 S. Mason Montgomery Road, Mason, OH 45040. Phone:+1-513-622-5592; E-mail:
| | | | - Jing Hu
- Present Address: The Dow Chemical Company, 1803 Building, Midland, MI 48674. Phone:+1-989-638-4847; E-mail:
| | | |
Collapse
|
11
|
ElSayed EM, Prasher SO. Fate and transport of monensin in the presence of nonionic surfactant Brij35 in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:629-638. [PMID: 24887190 DOI: 10.1016/j.scitotenv.2014.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
As fresh water is a limited resource in many parts of the world, the use of wastewater for irrigation has become an important alternative. Therefore, many countries facing a water deficit, use partially treated, or even untreated, wastewater. This may increase the input of many contaminants into the environment. In the present study, we investigated the effect of using surfactant rich water in irrigation on the mobility of the most commonly-used veterinary antibiotic, monensin. Nine PVC lysimeters, 1.0m long×0.45 m diameter, were packed with a sandy soil to a bulk density of 1.35 Mg m(-3). Cattle manure, containing monensin, was applied at the surface of the lysimeters at the recommended rate of 10t/ha. Each of three aqueous Brij 35 solutions, 0, 0.5 and 5 g L(-1), was applied to the lysimeters in triplicate. Over a 90 day period, soil and leachate samples were collected and analyzed. The results of the laboratory sorption experiment showed that when the nonionic surfactant Brij 35 is present, the sorption coefficient of monensin was reduced significantly from 120.22 mL g(-1) in the aqueous medium to 112.20, 100 and 63.09 mL g(-1) with Brij35 concentrations of 0.25, 2.5 and 5 g L(-1), respectively. The lysimeter results indicated a significant downward movement of monensin at depths of 60 cm in the soil profile and leachate in the presence of the surfactant. Thus, the continuous use of poor quality water could influence the transport of monensin in agricultural soils, and consequently, pose a risk for groundwater pollution.
Collapse
Affiliation(s)
- Eman M ElSayed
- Department of Bioresource Engineering, McGill University, Ste Anne de Bellevue, Quebec, Canada, H9X 3V9.
| | - Shiv O Prasher
- Department of Bioresource Engineering, McGill University, Ste Anne de Bellevue, Quebec, Canada, H9X 3V9
| |
Collapse
|
12
|
Wang L, Yang C, Cheng Y, Huang J, He H, Zeng G, Lu L. Effects of surfactant and Zn (II) at various concentrations on microbial activity and ethylbenzene removal in biotricking filter. CHEMOSPHERE 2013; 93:2909-2913. [PMID: 24183630 DOI: 10.1016/j.chemosphere.2013.09.109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 06/02/2023]
Abstract
The effects of Tween-20, a non-ionic surfactant, and Zn (II) on microbial activity and removal performance for ethylbenzene in a biotrickling filter (BTF) were evaluated. Batch experiments were conducted to evaluate the surfactant and Zn (II) at various concentrations for their toxicity to microorganisms, and results indicated that Tween-20 was beneficial to microbial activity at all the tested concentration, while Zn (II) affected adversely when the concentration overpassed 5.0mgL(-1). Then effects of the two additives on removal efficiency of ethylbenzene were evaluated in a BTF at an empty-bed retention time of 30s and an ethylbenzene concentration of 1100mgm(-3). Results showed that the optimal concentrations of Tween-20 and Zn (II) were about 12 and 1.0mgL(-1), respectively. Compared to the results when neither of the two additives was added, Tween-20 improved ethylbenzene removal efficiency from 67% to 86% at the optimal condition, while on that basis, Zn (II) just increased the removal efficiency from 86% to 90%. The promoting effects of the two additives on recovering microbial activity and removing excessive biomass were also observed in this article.
Collapse
Affiliation(s)
- Lu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Singleton DR, Jones MD, Richardson SD, Aitken MD. Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 2013; 97:8381-91. [PMID: 23132343 PMCID: PMC3600395 DOI: 10.1007/s00253-012-4531-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/28/2022]
Abstract
Barcoded amplicon pyrosequencing was used to generate libraries of partial 16S rRNA genes from two columns designed to simulate in situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) in weathered, contaminated soil. Both columns received a continuous flow of artificial groundwater but one of the columns additionally tested the impact of biostimulation with oxygen and inorganic nutrients on indigenous soil bacterial communities. The penetration of oxygen to previously anoxic regions of the columns resulted in the most significant community changes. PAH-degrading bacteria previously determined by stable-isotope probing (SIP) of the untreated soil generally responded negatively to the treatment conditions, with only members of the Acidovorax and a group of uncharacterized PAH-degrading Gammaproteobacteria maintaining a significant presence in the columns. Additional groups of sequences associated with the Betaproteobacterial family Rhodocyclaceae (including those associated with PAH degradation in other soils), and the Thiobacillus, Thermomonas, and Bradyrhizobium genera were also present in high abundance in the biostimulated column. Similar community responses were previously observed during biostimulated ex situ treatment of the same soil in aerobic, slurry-phase bioreactors. While the low relative abundance of many SIP-determined groups in the column libraries may be a reflection of the slow removal of PAHs in that system, the similar response of known PAH degraders in a higher-rate bioreactor system suggests that alternative PAH-degrading bacteria, unidentified by SIP of the untreated soil, may also be enriched in engineered systems.
Collapse
Affiliation(s)
- David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | | | | | | |
Collapse
|
14
|
Al-Awadhi H, Dashti N, Khanafer M, Al-Mailem D, Ali N, Radwan S. Bias problems in culture-independent analysis of environmental bacterial communities: a representative study on hydrocarbonoclastic bacteria. SPRINGERPLUS 2013; 2:369. [PMID: 24040582 PMCID: PMC3769543 DOI: 10.1186/2193-1801-2-369] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022]
Abstract
Culture-dependent methods for bacterial community analysis are currently considered obsolete; therefore, molecular techniques are usually used instead. The results of the current study on hydrocarbonoclastic bacteria in various oily habitats in Kuwait showed however, that the bacterial identities varied dramatically according to the analytical approach used. For six desert and six seawater samples used in this study, the culture-independent and culture-dependent techniques each led to a unique bacterial composition. Problems related to the culture-dependent technique are well known. The results of the current study highlighted bias problems other than those already recorded in the literature for the molecular approaches. Thus, for example, in contrast to the culture-dependent technique, the primers used in the molecular approach preferentially amplified the 16S rDNAs of hydrocarbonoclastic bacteria in total genomic DNAs of all the studied environmental samples, and in addition, failed to reveal in any environmental sample members of the Actinobacteria. The primers used in the molecular approach also amplified certain “pure” 16S rDNAs, but failed to do so when these DNAs were in mixture. In view of these results, it is recommended that the two analytical approaches should be used simultaneously because their combined results would reflect the bacterial community composition more precisely than either of them can do alone.
Collapse
Affiliation(s)
- Husain Al-Awadhi
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060 Kuwait
| | | | | | | | | | | |
Collapse
|
15
|
Elsayed EM, Prasher SO, Patel RM. Effect of nonionic surfactant Brij 35 on the fate and transport of oxytetracycline antibiotic in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 116:125-134. [PMID: 23295679 DOI: 10.1016/j.jenvman.2012.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/14/2012] [Accepted: 11/23/2012] [Indexed: 06/01/2023]
Abstract
In many parts of the world, river water is used for irrigation. Treated, partially treated, and even untreated water from wastewater treatment plants is discharged directly into rivers, thereby degrading the quality of the water. Consequently, irrigation water may contain surfactants which may affect the fate and transport of chemicals such as pesticides and antibiotics in agricultural soils. A field lysimeter study was undertaken to investigate the effect of the nonionic surfactant, Brij 35, on the fate and transport of an antibiotic, Oxytetracycline, commonly used in cattle farms. Nine PVC lysimeters, 1.0 m long × 0.45 m diameter, were packed with a sandy soil to a bulk density of 1.35 Mg m(-3). Cattle manure, containing Oxytetracycline, was applied at the surface of the lysimeters at the recommended rate of 10 t/ha. Each of three aqueous Brij 35 solutions, 0, 0.5 and 5 g L(-1) (i.e., 'good,' 'poor' and 'very poor' quality irrigation water) were each applied to the lysimeters in triplicate. Over a 90 day period, soil and leachate samples were collected and analyzed. Batch experiment results showed that the presence of the nonionic surfactant Brij 35 significantly reduced the sorption coefficient of OTC from 23.55 mL g(-1) in the aqueous medium to 19.49, 12.49 and 14.53 in the presence of Brij 35 at concentrations of 0.25, 2.5 and 5 g L(-1), respectively. Lysimeter results indicted the significant downward movement of OTC at depths of 60 cm into soil profile and leachate in the presence of surfactant. Thus, the reuse of wastewater containing surfactants might enhance the mobility of contaminants and increase ground water pollution.
Collapse
Affiliation(s)
- Eman M Elsayed
- Department of Bioresource Engineering, McGill University, Ste Anne de Bellevue, H9X 3V9 Quebec, Canada.
| | | | | |
Collapse
|
16
|
Zhang ZX, Zhu YX, Li CM, Zhang Y. Investigation into the causes for the changed biodegradation process of dissolved pyrene after addition of hydroxypropyl-β-cyclodextrin (HPCD). JOURNAL OF HAZARDOUS MATERIALS 2012; 243:139-145. [PMID: 23107290 DOI: 10.1016/j.jhazmat.2012.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
Bioremediation of surface waters contaminated with polycyclic aromatic hydrocarbons (PAHs) is a serious problem, often limited by the low bioavailability of contaminants as a result of their low aqueous solubility. In this study, we studied the influence of hydroxypropyl-β-cyclodextrin (HPCD) addition on the biodegradation of dissolved pyrene in aqueous solution. Five types of unidentified bacterial strains were used with a concentration of pyrene under its solubility limit. The reduction of pyrene content was monitored during the biodegradation process using synchronous fluorimetry. The presence of HPCD changed the rate of pyrene biodegradation by microorganisms due to the formation of an inclusion complex between pyrene and HPCD. The hydrophobicity and the emulsifying activity of microorganisms relative to their biodegrading capacity were investigated. The results indicated that hydrophobicity and emulsifying activity of the microorganisms were important factors that can influence the biodegradation process. The hydrophobicity and emulsifying activity were strongly correlated with the biodegrading capacity of the microorganisms toward pyrene in the presence of solubilizing agents or organized media.
Collapse
Affiliation(s)
- Zhen-Xuan Zhang
- State Key Laboratory of Marine Environmental Science (Xiamen University), College of the Environmental and Ecology, Xiamen University, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
17
|
Chrzanowski Ł, Dziadas M, Ławniczak Ł, Cyplik P, Białas W, Szulc A, Lisiecki P, Jeleń H. Biodegradation of rhamnolipids in liquid cultures: effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. BIORESOURCE TECHNOLOGY 2012; 111:328-335. [PMID: 22366606 DOI: 10.1016/j.biortech.2012.01.181] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Bacterial utilization of rhamnolipids during biosurfactant-supplemented biodegradation of diesel and B20 (20% biodiesel and 80% diesel v/v) fuels was evaluated under conditions with full aeration or with nitrate and nitrite as electron acceptors. Rhamnolipid-induced changes in community dynamics were assessed by employing real-time PCR and the ddCt method for relative quantification. The experiments with rhamnolipids at 150 mg/l, approx. double critical micelle concentration (CMC) and diesel oil confirmed that rhamnolipids were readily degraded by a soil-isolated consortium of hydrocarbon degraders in all samples, under both aerobic and nitrate-reducing conditions. The presence of rhamnolipids increased the dissipation rates for B20 constituents under aerobic conditions, but did not influence the biodegradation rate of pure diesel. No effect was observed under nitrate-reducing conditions. The biodegradation of rhamnolipids did not favor the growth of any specific consortium member, which proved that the employed biosurfactant did not interfere with the microbial equilibrium during diesel/biodiesel biodegradation.
Collapse
Affiliation(s)
- Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhu H, Aitken MD. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7260-5. [PMID: 20586488 PMCID: PMC2947565 DOI: 10.1021/es100112a] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C(12)E(8)), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant's critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C(12)E(8) did not enhance PAH removal at any dose. In the absence of surfactant, <5% of any PAH desorbed from the soil over an 18 day period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C(12)E(8) at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited.
Collapse
|