1
|
Ge P, Zhang Y, Fan S, Wang Y, Wu H, Wang X, Zhang S. Observational study of microphysical and chemical characteristics of size-resolved fog in different regional backgrounds in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175329. [PMID: 39122025 DOI: 10.1016/j.scitotenv.2024.175329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
To investigate the relationship between microphysical and chemical characteristics of size-resolved fog droplets in different regional backgrounds, we conducted observational experiments in urban, mountainous, rainforest, and rural areas of China. Fog water samples across different diameter ranges (4-16 μm, 16-22 μm, and >22 μm) were collected, alongside fog droplet spectra data. Our findings reveal a close relationship between pH value, electrical conductivity (EC), total ion concentration (TIC) of droplets, and droplet sizes, with smaller droplets exhibiting stronger acidity and higher ion concentrations. Significant differences in chemical composition are observed across size ranges and regional backgrounds. Droplet number concentration (N) and liquid water content (LWC) distributions in different regional backgrounds are skewed, with peak diameters of LWC spectra similar to those of N spectra, yet overall spectral distributions varied significantly. Droplet number concentrations are highest in urban area, while large droplets contribute more to overall LWC in mountainous, rainforest, and rural areas. No direct evidence linked LWC or surface area (S) to LWC ratio to water-soluble ion concentrations of size-resolved fog droplets in different regional backgrounds. However, by adjusting the contributions of S and LWC proportions of different-sized droplets to the ion concentration proportions, we find that expanding the LWC proportion to 2.43 times and decreasing the S proportion to 0.2 times for large droplets, while decreasing the LWC ratio to 0.76 times for small droplets, provided a better explanation for the distribution of ion concentrations. This study advances our understanding of the intricate relationship between the microphysical and chemical characteristics of fog, helping to develop more robust and comprehensive models for fog prediction and management.
Collapse
Affiliation(s)
- Panyan Ge
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China; High Impact Weather Key Laboratory of CMA, Changsha 410073, China
| | - Yun Zhang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China; High Impact Weather Key Laboratory of CMA, Changsha 410073, China.
| | - Shuxian Fan
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Yuan Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Haopeng Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; Department of Atmospheric Science, Yonsei University, Seoul 03722, South Korea
| | - Xinyi Wang
- Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, CMA, China; Ningxia Key Lab of Meteorological Disaster Prevention and Reduction, China
| | - Sirui Zhang
- Meteorological Bureau, Shangrao 334000, China
| |
Collapse
|
2
|
Cai B, Wang Y, Yang X, Li Y, Zhai J, Zeng Y, Ye J, Zhu L, Fu TM, Zhang Q. Rapid aqueous-phase dark reaction of phenols with nitrosonium ions: Novel mechanism for atmospheric nitrosation and nitration at low pH. PNAS NEXUS 2024; 3:pgae385. [PMID: 39295950 PMCID: PMC11410049 DOI: 10.1093/pnasnexus/pgae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024]
Abstract
Dark aqueous-phase reactions involving the nitrosation and nitration of aromatic organic compounds play a significant role in the production of light-absorbing organic carbon in the atmosphere. This process constitutes a crucial aspect of tropospheric chemistry and has attracted growing research interest, particularly in understanding the mechanisms governing nighttime reactions between phenols and nitrogen oxides. In this study, we present new findings concerning the rapid dark reactions between phenols containing electron-donating groups and inorganic nitrite in acidic aqueous solutions with pH levels <3.5. This reaction generates a substantial amount of nitroso- and nitro-substituted phenolic compounds, known for their light-absorbing properties and toxicity. In experiments utilizing various substituted phenols, we demonstrate that their reaction rates with nitrite depend on the electron cloud density of the benzene ring, indicative of an electrophilic substitution reaction mechanism. Control experiments and theoretical calculations indicate that the nitrosonium ion (NO+) is the reactive nitrogen species responsible for undergoing electrophilic reactions with phenolate anions, leading to the formation of nitroso-substituted phenolic compounds. These compounds then undergo partial oxidation to form nitro-substituted phenols through reactions with nitrous acid (HONO) or other oxidants like oxygen. Our findings unveil a novel mechanism for swift atmospheric nitrosation and nitration reactions that occur within acidic cloud droplets or aerosol water, providing valuable insights into the rapid nocturnal formation of nitrogen-containing organic compounds with significant implications for climate dynamics and human health.
Collapse
Affiliation(s)
- Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yanchen Li
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Mai TTH, Kim H. Occurrence of N-nitrosamines in the atmosphere and human health risk: A case study in an urban area of Chuncheon, Gangwon State, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123802. [PMID: 38522602 DOI: 10.1016/j.envpol.2024.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to investigate the occurrence of eight nitrosamines (NAs) in particulate (PM2.5) and gaseous phases and assess the human health risk associated with these compounds in an urban area of Chuncheon, Gangwon State, South Korea, across four sampling seasons. The findings revealed that the total concentrations of eight NAs measured during the sampling period exceeded the public health recommendation of 0.3 ng/m3 provided by the Norwegian Institute of Public Health, indicating a potential human health risk from NA exposures. In particular, the average total NA concentration observed in the gaseous samples during the winter of 2021 was 18.1 ± 6.46 ng/m3. The primary emission sources could potentially impact the concentrations of NAs in the atmosphere due to their significant positive correlation with primary emission species such as NO2, CO, and SO2. Moreover, the levels of particulate NAs during the summer were negatively correlated with O3, suggesting that their formation might be influenced by ozonation in the aqueous aerosol phase. In addition, the total NA concentrations measured in the gaseous phase were four to six times higher than those measured in the PM2.5 phase throughout the sampling period. Thus, domestic sources have the potential to impact the pollution levels of the research area more significantly than long-range atmospheric transport. In particular, the highest concentrations of NAs in the gas phase were observed during the winter, while the lowest concentrations were recorded in the summer, possibly influenced by photolysis. Nevertheless, the study suggested that tertiary amines might contribute to the presence of gaseous NAs in sunlight. Consequently, further studies focusing on the occurrence of tertiary amines in the gas phase should be considered. The cumulative lifetime cancer risks estimated from inhalation exposure exceeded the acceptable risk level of 10⁻6 for all age groups across all four seasons. Therefore, it is crucial to implement effective control measures to mitigate potential health risks associated with exposure to NAs.
Collapse
Affiliation(s)
- Thu Thi Hoai Mai
- Department of Environmental Science, Kangwon National University, Chuncheon, Gangwon State, 24341, Republic of Korea
| | - Hekap Kim
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, Gangwon State, 24341, Republic of Korea.
| |
Collapse
|
4
|
Sulay R, Mathew J, Krishnan A, Thomas DVI. Comprehensive computational study on reaction mechanism of N-Nitroso dimethyl amine formation from substituted hydrazine derivatives during ozonation. Heliyon 2023; 9:e14511. [PMID: 36967895 PMCID: PMC10033754 DOI: 10.1016/j.heliyon.2023.e14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
N- Nitrosodimethyl amine, the simplest member of the N-Nitrosamine family, is a carcinogenic and mutagenic agent that has gained considerable research interest owing to its toxic nature. Ozonation of industrially important hydrazines, such as unsymmetrical dimethylhydrazine (UDMH) or monomethylhydrazine (MMH), has been associated with NDMA formation and accumulation in the environment. UDMH/MMH - ozonation also leads to several other transformation products such as acetaldehyde dimethyl hydrazine (ADMH), tetramethyl tetra azene (TMT), diazomethane, methyl diazene, etc, which can be either precursors or competitors for NDMA formation. However, the relevant chemistry detailing the formation of these transformation products from UDMH/MMH -ozone reaction and their subsequent conversion to NDMA is not well understood. In this work, we explored the formation mechanism of ADMH and TMT from UDMH-ozonation and their further oxidation to NDMA using the second-order Moller Plesset perturbation theory employing the 6-311G(d) basis set. We have also investigated how MMH selectively forms methyl diazene and diazomethane under normal conditions and NDMA in the presence of excess ozone. Our calculations indicate that the reactions proceed via an initial H abstraction from the hydrazine -NH2 group, followed by the oxidation of the generated N-radical species. The formation of ADMH from the UDMH-ozone reaction involves an acetaldehyde intermediate, which then reacts with a second UDMH molecule to generate ADMH. The preferable attack of ozone molecule on N=C bond of ADMH generates DMAN intermediate, which subsequently undergoes oxidation to form NDMA. Unlike other transformation products, TMT formation occurs via the dimerization of DMAN. 1Though there exists an N=N bond in the TMT, which are preferable attacking sites for ozone, experimental studies show the lower yields of NDMA formation, which corroborates with the high activation barrier required for the process (42 kcal/mol). Overall, our calculated results agree well with the experimental observations and rate constants. Computational calculations bring new insights into the electronic nature and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.
Collapse
Affiliation(s)
- Rehin Sulay
- Department of Chemistry, CMS College (Autonomous), Kottayam, 686001, Kerala, India
| | - Jintumol Mathew
- Department of Chemistry, CMS College (Autonomous), Kottayam, 686001, Kerala, India
| | - Anandhu Krishnan
- Department of Chemistry, CMS College (Autonomous), Kottayam, 686001, Kerala, India
| | - Dr. Vibin Ipe Thomas
- Department of Chemistry, CMS College (Autonomous), Kottayam, 686001, Kerala, India
| |
Collapse
|
5
|
Choi NR, Park S, Ju S, Lim YB, Lee JY, Kim E, Kim S, Shin HJ, Kim YP. Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119142. [PMID: 35292313 DOI: 10.1016/j.envpol.2022.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m3 and 0.65 ± 0.71 ng/m3, respectively) than Seoul (7.41 ± 13.59 ng/m3 and 0.24 ± 0.15 ng/m3, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m3) was higher than that in Seoul (6.20 ± 5.35 μg/m3) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m3 (Seosan); 0.08 ± 0.01 μmol/m3 (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m3 (Seosan); 0.04 ± 0.02 μmol/m3 (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m3) only observed probably due to the higher LWC (>10 μg/m3) in Seosan. It implies that aqueous phase reactions involving NO2 and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
Collapse
Affiliation(s)
- Na Rae Choi
- Department of Environment and Energy Engineering, Chonnan National University, 77 Yongbongro, Gwangju 61186, South Korea
| | - Seungshik Park
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju, 34134, South Korea
| | - Seoryeong Ju
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju, 34134, South Korea
| | - Yong Bin Lim
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, Seoul, 03760, South Korea
| | - Ji Yi Lee
- Department of Environment and Energy Engineering, Chonnan National University, 77 Yongbongro, Gwangju 61186, South Korea
| | - Eunhye Kim
- Department of Environmental and Safety Engineering, Ajou University, Gyeung-gi, 16499, South Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Gyeung-gi, 16499, South Korea
| | - Hye Jung Shin
- Department of Air Quality Research, National Institute of Environmental Research of Korea, Incheon, 22689, South Korea
| | - Yong Pyo Kim
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, Seoul, 03760, South Korea.
| |
Collapse
|
6
|
Lakra K, Avishek K. A review on factors influencing fog formation, classification, forecasting, detection and impacts. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:319-353. [PMID: 35309246 PMCID: PMC8918085 DOI: 10.1007/s12210-022-01060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
With the changing climate and environment, the nature of fog has also changed and because of its impact on humans and other systems, study of fog becomes essential. Hence, the study of its controlling factors such as the characteristics of condensation nuclei, microphysics, air–surface interaction, moisture, heat fluxes and synoptic conditions also become crucial, along with research in the field of prediction and detection. The current review expands for the period between 1976 to 2021, however, especially focused on the research articles published in the last two decades. It considers 250 research papers/research letters, 24 review papers, four book chapters/manuals, five news articles, 15 reports, six conference papers and five other online readings. This review is a compilation of the pros and cons of the techniques used to determine the factors influencing fog formation, its classification, tools and techniques available for its detection and forecast. Some recent advanced are also discussed in this review: role of soil properties on fogs, application of microwave communication links in the detection of fog, new class of smog, and how the cognitive abilities of humans are affected by fog. Recently India and China are facing an emergence and repetitions of fog haze/smog and thus their policies initiatives are also briefly discussed. It is concluded that the complexity in fog forecasting is high due to multiple factors playing a role at multiple levels. Most of the researchers have worked upon the role of humidity, temperature, wind, and boundary layer to predict fogs. However, the role of global wind circulations, soil properties, and anthropogenic heat requires further investigations. Literature shows that fog is being harnessed to address water insecurity in various countries, however, coastal areas of Angola, Namibia and South Africa, Kenya, Eastern Yemen, Oman, China, India, Sri Lanka, Mexico, along with the mountainous regions of Peru, Chile, and Ecuador, are some of the potential sites that can benefit from the installation of fog water harvesting systems.
Collapse
|
7
|
Choi NR, Ahn YG, Lee JY, Kim E, Kim S, Park SM, Song IH, Shin HJ, Kim YP. Particulate Nitrosamines and Nitramines in Seoul and Their Major Sources: Primary Emission versus Secondary Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7841-7849. [PMID: 34041906 DOI: 10.1021/acs.est.1c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Seven nitrosamines and three nitramines in particulate matter with an aerodynamic diameter of less than or equal to 2.5 μm (PM2.5) collected in 2018 in Seoul, South Korea, were quantified. Annual mean concentrations of the sum of nitrosamines and nitramines were 9.81 ± 18.51 and 1.12 ± 0.70 ng/m3, respectively, and nitrosodi-methylamine (NDMA) and dimethyl-nitramine (DMN) comprised the largest portion of nitrosamines and nitramines, respectively. Statistical analyses such as non-parametric correlation analysis, positive matrix factorization, analysis of covariance, and orthogonal partial least squared discrimination analysis were carried out to identify contribution of the atmospheric reactions in producing NDMA and DMN. In addition, kinetic calculation using reaction information obtained from the previous chamber studies was performed to estimate concentrations of NDMA and DMN that might be produced from the atmospheric reactions. It was concluded that (1) the atmospheric reactions contributed to the concentrations of NDMA more than they did for those of DMN, (2) the contribution of atmospheric reactions to the concentrations of NDMA and DMN was significant due to high NO2 concentrations in winter, and (3) primary emissions predominantly affected the ambient concentrations of NDMA and DMN in spring, summer, and autumn.
Collapse
Affiliation(s)
- Na Rae Choi
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Yun Gyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, South Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Eunhye Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Gyeung-gi 16499, South Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Gyeung-gi 16499, South Korea
| | - Seung Myung Park
- Department of Air Quality Research, National Institute of Environmental Research of Korea, Incheon 22689, South Korea
| | - In Ho Song
- Department of Air Quality Research, National Institute of Environmental Research of Korea, Incheon 22689, South Korea
| | - Hye Jung Shin
- Department of Air Quality Research, National Institute of Environmental Research of Korea, Incheon 22689, South Korea
| | - Yong Pyo Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Seoul 003760, South Korea
| |
Collapse
|
8
|
Choi NR, Lee JY, Ahn YG, Kim YP. Determination of atmospheric amines at Seoul, South Korea via gas chromatography/tandem mass spectrometry. CHEMOSPHERE 2020; 258:127367. [PMID: 32947676 DOI: 10.1016/j.chemosphere.2020.127367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Due to their important roles in salt-producing acid-base reactions, new particle formation (NPF), and as precursors in secondary organic aerosol (SOA) producing reactions, the atmospheric concentrations of particulate volatile amines (dimethylamine (DMA), ethylamine, diethylamine (DEA), propylamine, and butylamine) at Seoul were analyzed and evaluated. To quantify the presence of volatile amines in particulate matter with aerodynamic diameters less than or equal to a nominal 2.5 μm (PM2.5), an efficient and rapid analytical method based on in-matrix ethyl chloroformate (ECF) derivatization followed by headspace solid-phase microextraction (HS-SPME) was developed and validated using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) in the multiple reaction monitoring (MRM) mode. The annual mean concentration of the total 5 target amines was 5.56±2.76 ng/m3 and the seasonal difference was small. The concentrations of particulate amines measured in this study were lower than those observed in Zongludak, Turkey, Nanjing, China, and Jeju, Korea but slightly higher than that reported in Kobe, Japan. The concentrations of the nitrosamines (nitrosodimethylamine (NDMA) and nitrosodiethylamine (NDEA)), and of the nitramines (dimethylnitramine (DMN) and diethylnitramine (DEN)) measured along with those of the target amines were used in a simple linear regression analysis. It indicates the contribution of DMA to the formation of NDMA in all seasons (except the fall) and DEA to the formation of NDEA in the summer, while DMA and DEA did not significantly contribute to the formation of nitramines.
Collapse
Affiliation(s)
- Na Rae Choi
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Yun Gyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, South Korea.
| | - Yong Pyo Kim
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
9
|
Inami K, Asada Y, Harada T, Okayama Y, Usui N, Mochizuki M. Antimutagenic components in Spatholobus suberectus Dunn against N-methyl- N-nitrosourea. Genes Environ 2019; 41:22. [PMID: 31890055 PMCID: PMC6907206 DOI: 10.1186/s41021-019-0137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND An extract from Spatholobus suberectus (S. suberectus) Dunn has been reported to show potent antimutagenic effects against N-alkyl-N-nitrosoureas in umu screening. The aim of this study was to identify the antimutagenic components from extracts of S. suberectus against N-methyl-N-nitrosourea (MNU) in the Ames assay with Salmonella typhimurium strain TA1535 and to elucidate the antimutagenic mechanism of the flavonoids. RESULTS From the ethyl acetate fraction obtained from fractionation of the methanol extract of S. suberectus Dunn, medicarpin, formononetin and isoliquiritigenin were successfully isolated through a combination of normal- and reversed-phase chromatography. Genistein and naringenin, which were already reported to be contained in S. suberectus Dunn, were also tested for their antimutagenicity towards MNU, along with formononetin, isoliquiritigenin and medicarpin. Our results demonstrated that genistein, isoliquiritigenin, medicarpin and naringenin were antimutagenic against MNU without showing cytotoxicity. MNU is reported to cause not only DNA alkylation but also induce reactive oxygen species. The hydroxyl radical scavenging capacity of the flavonoids was correlated with the antimutagenic capacity, indicating that the hydroxyl radical scavenging activity was involved in their antimutagenicity towards MNU. CONCLUSIONS It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention. Genistein, isoliquiritigenin, medicarpin and naringenin were demonstrated to possess an antigenotoxic effects against carcinogenic MNU due to their radical scavenging activity.
Collapse
Affiliation(s)
- Keiko Inami
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Takumi Harada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yuta Okayama
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Noriko Usui
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Masataka Mochizuki
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| |
Collapse
|
10
|
Lebedev AT, Polyakova OV, Mazur DM, Artaev VB, Canet I, Lallement A, Vaïtilingom M, Deguillaume L, Delort AM. Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:616-625. [PMID: 29886382 DOI: 10.1016/j.envpol.2018.05.089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Although organic species are transported and efficiently transformed in clouds, more than 60% of this organic matter remains unspeciated. Using GCxGC-HRMS technique we were able to detect and identify over 100 semi-volatile compounds in 3 cloud samples collected at the PUY station (puy de Dôme mountain, France) while they were present at low concentrations in a very small sample volume (<25 mL of cloud water). The vast majority (∼90%) of the detected compounds was oxygenated, while the absence of halogenated organic compounds should be specially mentioned. This could reflect both the oxidation processes in the atmosphere (gas and water phase) but also the need of the compounds to be soluble enough to be transferred and dissolved in the cloud droplets. Furans, esters, ketones, amides and pyridines represent the major classes of compounds demonstrating a large variety of potential pollutants. Beside these compounds, priority pollutants from the US EPA list were identified and quantified. We found phenols (phenol, benzyl alcohol, p-cresole, 4-ethylphenol, 3,4-dimethylphenol, 4-nitrophenol) and dialkylphthalates (dimethylphthalate, diethylphthalate, di-n-butylphthalate, bis-(2-ethylhexyl)-phthalate, butylbenzylphthalate, di-n-octyl phthalate). In general, the concentrations of phthalates (from 0.09 to 52 μg L-1) were much higher than those of phenols (from 0.03 to 0.74 μg L-1). To our knowledge phthalates in clouds are described here for the first time. We investigated the variability of phenols and phthalates concentrations with cloud air mass origins (marine vs continental) and seasons (winter vs summer). Although both factors seem to have an influence, it is difficult to deduce general trends; further work should be conducted on large series of cloud samples collected in different geographic areas and at different seasons.
Collapse
Affiliation(s)
- A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia.
| | - O V Polyakova
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - V B Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, Michigan, 49085, USA
| | - I Canet
- Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, CNRS, BP 10448, F-63000, Clermont-Ferrand, France
| | - A Lallement
- Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, CNRS, BP 10448, F-63000, Clermont-Ferrand, France
| | - M Vaïtilingom
- Université Clermont Auvergne, Laboratoire de Météorologie Physique, CNRS, BP 10448, F-63000, Clermont-Ferrand, France
| | - L Deguillaume
- Université Clermont Auvergne, Laboratoire de Météorologie Physique, CNRS, BP 10448, F-63000, Clermont-Ferrand, France
| | - A-M Delort
- Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, CNRS, BP 10448, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
11
|
Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health. WATER 2017. [DOI: 10.3390/w9100807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Hong Y, Kim KH, Sang BI, Kim H. Simple quantification method for N-nitrosamines in atmospheric particulates based on facile pretreatment and GC-MS/MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:324-334. [PMID: 28412030 DOI: 10.1016/j.envpol.2017.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Nine N-nitrosamines (i.e., N-nitrosomethylamine, N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodi-n-propylamine (NDPA), N-nitrosomorpholine (NMor), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), N-nitorosodi-n-butylamine (NDBA), and N-nitrosodiphenylamine (NDPhA) in atmospheric PM2.5 collected in the fall season from an roadside site and a residential in Seoul, Korea have been analyzed using a newly developed method consisting of simple direct liquid extraction assisted by ultrasonication and subsequent quantification using a gas chromatography-triple quadrupole mass spectrometry (GC-TQMS). Excellent recovery values (92-100%) and method detection limits for the target compounds atmospheric PM samples could be achieved even without an evaporation step for sample concentration. The concentration of total N-nitrosamines in PM2.5 was ranged from 0.3 to 9.4 ng m-3 in this study; NDMA, NDEA, NDBA, NPyr, and NMor in PM2.5 were found to be the most frequently encountered compounds at the sampling sites. Since no industrial plant is located in Seoul, vehicle exhausts were considered major cause of the formation of nitrosamines in this study. The mechanisms how these compounds are formed and detected in the atmosphere are explained from the viewpoint of secondary organic aerosol. Considering the concentrations of N-nitrosamines and their associated potential health risks, a systematic monitoring of nitrosamines present in both ambient air and PM2.5 including seasonal and diurnal variations of selected sites (including potential precursor sources) should be carried out in the future. The proposed sample pretreatment method along with the analytical method will definitely help us perform the monitoring study.
Collapse
Affiliation(s)
- Youngmin Hong
- Technical Research Center, Dong-il Shimadzu Co., Seoul 08506, Republic of Korea
| | - Kyung Hwan Kim
- Technical Research Center, Dong-il Shimadzu Co., Seoul 08506, Republic of Korea
| | - Byoung-In Sang
- Dept. of Chemical Engineering & Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunook Kim
- Dept. of Environmental Engineering, The University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
13
|
Maguta MM, Stenstrøm Y, Nielsen CJ. Kinetic and Theoretical Study of the Nitrate (NO3) Radical Gas Phase Reactions with N-Nitrosodimethylamine and N-Nitrosodiethylamine. J Phys Chem A 2016; 120:6970-7. [DOI: 10.1021/acs.jpca.6b05440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mihayo Musabila Maguta
- Division
of Agro-Processing Technologies and Industrial Chemistry, Tanzania Industrial Research and Development Organization (TIRDO), P.O. Box 23235, Dar es
Salaam, Tanzania
| | - Yngve Stenstrøm
- Department
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| | - Claus J. Nielsen
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
14
|
Wagner ED, Osiol J, Mitch WA, Plewa MJ. Comparative in vitro toxicity of nitrosamines and nitramines associated with amine-based carbon capture and storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8203-8211. [PMID: 24940705 DOI: 10.1021/es5018009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Amine-based CO2 capture is a prime contender for the first full-scale implementation of CO2 capture at fossil fuel-fired power plants postcombustion. However, the formation of potentially carcinogenic N-nitrosamines and N-nitramines from reactions of flue gas NOx with the amines presents a potential risk for contaminating airsheds and drinking water supplies. Setting regulatory emission limits is hampered by the dearth of toxicity information for the N-nitramines. This study employed quantitative in vitro bioassays for mutagenicity in Salmonella typhimurium, and chronic cytotoxicity and acute genotoxicity in Chinese hamster ovary (CHO) cells to compare the toxicity of analogous N-nitrosamines and N-nitramines relevant to CO2 capture. Although the rank order was similar for genotoxicity in CHO cells and mutagenicity in S. typhimurium, the Salmonella assay was far more sensitive. In general, mutagenicity was higher with S9 hepatic microsomal activation. The rank order of mutagenicity was N-nitrosodimethylamine (NDMA)>N-nitrosomorpholine>N-nitrodimethylamine>1,4-dinitrosopiperazine>N-nitromorpholine>1,4-dinitropiperazine>N-nitromonoethanolamine>N-nitrosodiethanolamine>N-nitrodiethanolamine. 1-Nitrosopiperazine and 1-nitropiperazine were not mutagenic. Overall, N-nitrosamines were ∼15-fold more mutagenic than their N-nitramine analogues.
Collapse
Affiliation(s)
- Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
15
|
Inami K, Takada M, Itoh K, Ishikawa S, Mochizuki M. Assessment of the Antimutagenic Effects of Aqueous Extracts from Herbal Medicines against N-Alkyl-N-nitrosoureas-induced Mutagenicity Using the umu Test. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Sharma VK, Zboril R, McDonald TJ. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:212-228. [PMID: 24380621 DOI: 10.1080/03601234.2014.858576] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Disinfection byproducts (DBPs) in drinking water exhibit considerable adverse health effects; recent focus is on the brominated disinfection byproducts (Br-DBPs). The chlorination and chloramination of bromide ion containing water produce reactive bromo species, which subsequently react with natural organic matter (NOM) to yield Br-DBPs. The possible reactions involved in generating DBPs are presented. Identified Br-DBPs include bromomethanes, bromoacetic acid, bromoacetamides, bromoacetonitriles, and bromophenols. Mixed chloro- and bromo-species have also been identified. Pathways of the formation of Br-DBPs have been described. The concentration of Br- ion, pH, reaction time, and the presence of Cu(II) influence the yield of DBPs. The effects of water conditions on the production of Br-DBPs are presented. The epidemiological studies to understand the potential toxic effects of DBPs including Br-DBPs are summarized. Brominated DBPs may have higher health risks than their corresponding chlorinated DBPs. A potential role of an emerging alternate disinfectant, ferrate (FeV)O(2-)4), in minimizing DBPs is briefly discussed.
Collapse
Affiliation(s)
- Virender K Sharma
- a Department of Environmental and Occupational Health , School of Rural Public Health, Texas A&M University , College Station , Texas , USA
| | | | | |
Collapse
|
17
|
da Silva G. Formation of nitrosamines and alkyldiazohydroxides in the gas phase: the CH3NH + NO reaction revisited. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7766-7772. [PMID: 23786319 DOI: 10.1021/es401591n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aminyl free radicals of the form RN(•)H are formed in the photochemical oxidation of primary amines, and their reaction with (•)NO is an important tropospheric sink. Reaction of the parent methylamidogen radical (CH3N(•)H) with (•)NO in the gas phase has been studied using quantum chemical techniques and RRKM theory/master equation based kinetic modeling. Calculations with the G3X-K composite theoretical method indicate that reaction proceeds via exothermic formation of a primary nitrosamine intermediate, CH3NHNO, which can isomerize to an alkyldiazohydroxide, CH3NNOH, and further eliminate water to form diazomethane, CH2NN. Master equation simulations conducted at tropospheric conditions identify that the collisionally stabilized CH3NHNO and CH3NNOH isomers are the major reaction products, with smaller yields of CH2NN + H2O. A previously proposed mechanism in which the primary nitrosamine is destroyed via isomerization to CH2NHNOH, followed by reaction with O2 to produce CH2NH + HO2(•) + (•)NO, is disproved. In the atmosphere, CH2NN may be formed with sufficient vibrational energy to directly dissociate to singlet methylene ((1)CH2) and N2, whereas under combustion conditions this is expected to be the dominant pathway. This study suggests that stabilized primary nitrosamines can indeed form in the photochemical oxidation of amines, along with alkyldiazohydroxides and diazoalkanes. Both classes of compound are potent alkylating agents that may need to be considered in future atmospheric studies.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
18
|
Shah AD, Dai N, Mitch WA. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2799-2808. [PMID: 23425146 DOI: 10.1021/es304893m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although <1000 mJ/cm(2) UV fluence was generally needed for 90% removal of a series of model N-nitrosamines and N-nitramines, 280-1000 mJ/cm(2) average fluence was needed for 90% removal of total N-nitrosamines in pilot washwaters associated with two different solvents. While AOPs were somewhat more efficient than ozone for acetaldehyde destruction, ozone was more efficient for amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.
Collapse
Affiliation(s)
- Amisha D Shah
- Department of Chemical and Environmental Engineering, Yale University, Mason Lab 313b, 9 Hillhouse Avenue, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
19
|
Inami K, Yoshimitsu K, Seino H, Mochizuki M. Ruthenium porphyrin and oxidant convert N-nitrosodialkylamines into direct-acting mutagen in the Ames assay. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx50036e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Leclair JP, Collett JL, Mazzoleni LR. Fragmentation analysis of water-soluble atmospheric organic matter using ultrahigh-resolution FT-ICR mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4312-4322. [PMID: 22435467 DOI: 10.1021/es203509b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Isolated water-soluble atmospheric organic matter (AOM) analytes extracted from radiation fogwater samples were analyzed using collision induced dissociation with ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Tandem mass analysis was performed on several mass ranges between 100 and 400 Da to characterize the functional groups of AOM species. Compounds containing nitrogen and/or sulfur were targeted because of the high number of oxygen atoms contained in their molecular formulas. Due to the large number of isobaric ions in the precursor isolation ranges, large numbers of product ions resulted from collision induced dissociation. Common neutral losses were assigned by matching the molecular formulas of the expected product ions with the detected product ions within the appropriate mass spectra. Since polar functional groups are expected to affect the hygroscopic properties of aerosols, the losses of H(2)O, CO(2), CH(3)OH, HNO(3), CH(3)NO(3), SO(3), SO(4) and combinations of these were specifically targeted. Among the 421 compounds studied, the most frequently observed neutral losses were CO(2) (54%), H(2)O (43%) and CH(3)OH (40%). HNO(3) losses were observed for 63% of the studied nitrogen containing compounds and 33% of the studied compounds containing both nitrogen and sulfur. SO(3) losses were observed for 85% of the studied sulfur containing compounds and 42% of studied compounds containing both nitrogen and sulfur. A number of molecular formulas matching those of monoterpene ozonolysis SOA were observed; they include organonitrates, organosulfates, and nitroxy-organosulfates. Overall, the results of fragmentation analysis of 400+ individual molecular precursors elucidate the complexity and multifunctional nature of the isolated water-soluble AOM.
Collapse
Affiliation(s)
- Jeffrey P Leclair
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | | | | |
Collapse
|
21
|
Sharma VK. Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water – A review. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2011.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Nielsen CJ, Herrmann H, Weller C. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 2012; 41:6684-704. [DOI: 10.1039/c2cs35059a] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|