• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643727)   Today's Articles (2842)   Subscriber (50650)
For: Tsouris C, Mayes R, Kiggans J, Sharma K, Yiacoumi S, DePaoli D, Dai S. Mesoporous carbon for capacitive deionization of saline water. Environ Sci Technol 2011;45:10243-9. [PMID: 22032802 DOI: 10.1021/es201551e] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Number Cited by Other Article(s)
1
Ni Y, Pu Y, Zhang J, Cui W, Gao M, You D. Charged functional groups modified porous spherical hollow carbon material as CDI electrode for salty water desalination. J Environ Sci (China) 2025;149:254-267. [PMID: 39181640 DOI: 10.1016/j.jes.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 08/27/2024]
2
Liu Q, Bi S, Xu X, Xiao X, Lei Y. N, O-codoped carbon aerogel electrode improves capacitive deionization performance. J Colloid Interface Sci 2024;680:54-63. [PMID: 39488899 DOI: 10.1016/j.jcis.2024.10.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
3
Yu H, Duan H, Chen L, Zhu W, Baranowska D, Hua Y, Zhang D, Chen X. Upcycling Waste Polyethylene Terephthalate to Produce Nitrogen-Doped Porous Carbon for Enhanced Capacitive Deionization. Molecules 2024;29:4934. [PMID: 39459302 PMCID: PMC11510522 DOI: 10.3390/molecules29204934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]  Open
4
Song Y, Zhang X, Klusener PAA, Nockemann P. Advancing mesoporous carbon synthesis for supercapacitors: a systematic investigation of cross-linking agent effects on pore structure and functionality. NANOSCALE 2023. [PMID: 38032274 DOI: 10.1039/d3nr03244b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
5
Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep Purif Technol 2023;306:122643. [PMID: 36406342 PMCID: PMC9661547 DOI: 10.1016/j.seppur.2022.122643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
6
Huynh LTN, Nguyen HA, Pham HV, Tran TN, Ho TTN, Doan TLH, Le VH, Nguyen TH. Electrosorption of Cu(II) and Zn(II) in Capacitive Deionization by KOH Activation Coconut-Shell Activated Carbon. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Pseudocapacitive deionization with polypyrrole grafted CMC carbon aerogel electrodes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
8
Wadi VS, Ibrahim Y, Arangadi AF, Kilybay A, Mavukkandy MO, Alhseinat E, Hasan SW. Three‐dimensional graphene/MWCNT-MnO2 nanocomposites for high‐performance capacitive deionization (CDI) application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
9
Li Y, Yang Z, Yang K, Wei J, Li Z, Ma C, Yang X, Wang T, Zeng G, Yu G, Yu Z, Zhang C. Removal of chloride from water and wastewater: Removal mechanisms and recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;821:153174. [PMID: 35051452 DOI: 10.1016/j.scitotenv.2022.153174] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
10
Knowledge and Technology Used in Capacitive Deionization of Water. MEMBRANES 2022;12:membranes12050459. [PMID: 35629785 PMCID: PMC9143758 DOI: 10.3390/membranes12050459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
11
Qiu B, Gorgojo P, Fan X. Adsorption desalination: Advances in porous adsorbents. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
12
Wang R, Xu B, Chen Y, Yin X, Liu Y, Yang W. Electro-enhanced adsorption of lead ions from slightly-polluted water by capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
13
Zhou J, Zhang X, Zhang Y, Wang D, Zhou H, Li J. Effective inspissation of uranium(VI) from radioactive wastewater using flow electrode capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
14
Capacitive deionization of NaCl solution with hierarchical porous carbon materials derived from Mg-MOFs. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
15
Wang K, Liu Y, Ding Z, Chen Z, Zhu G, Xu X, Lu T, Pan L. Controlled synthesis of NaTi2(PO4)3/Carbon composite derived from Metal-organic-frameworks as highly-efficient electrodes for hybrid capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
16
Talebi M, Mahdi Ahadian M, Shahrokhian S, Amini MK. Fabrication of porous polyphosphate carbon composite on nickel foam as an efficient binder-less electrode for symmetric capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
17
Mamaril GSS, de Luna MDG, Bindumadhavan K, Ong DC, Pimentel JAI, Doong RA. Nitrogen and fluorine co-doped 3-dimensional reduced graphene oxide architectures as high-performance electrode material for capacitive deionization of copper ions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
18
Lee N, Liu ML, Wu MC, Chen TH, Hou CH. The effect of redox potential on the removal characteristic of divalent cations during activated carbon-based capacitive deionization. CHEMOSPHERE 2021;274:129762. [PMID: 33548648 DOI: 10.1016/j.chemosphere.2021.129762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/26/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
19
Jedrzejczyk M, Engelhardt J, Djokic MR, Bliznuk V, Van Geem KM, Verberckmoes A, De Clercq J, Bernaerts KV. Development of Lignin-Based Mesoporous Carbons for the Adsorption of Humic Acid. ACS OMEGA 2021;6:15222-15235. [PMID: 34151101 PMCID: PMC8210454 DOI: 10.1021/acsomega.1c01475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 06/04/2023]
20
Comparative desalination performance of activated carbon from coconut shell waste/carbon nanotubes composite in batch mode and single-pass mode. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01575-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
21
Belaustegui Y, Rincón I, Fernández-Carretero F, Azpiroz P, García-Luís A, Tanaka DAP. Three-dimensional reduced graphene oxide decorated with iron oxide nanoparticles as efficient active material for high performance capacitive deionization electrodes. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]  Open
22
Liu X, Wang J. Electro-adsorption characteristics and mechanism of Sr2+ ions by capacitive deionization and CFD analysis study. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2020.103628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
23
Effective electrochemically controlled removal of fluoride ions using electrodeposited polyaniline-carbon nanotube composite electrodes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117561] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
24
Zhao X, Wei H, Zhao H, Wang Y, Tang N. Electrode materials for capacitive deionization: A review. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114416] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
25
Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116998] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
26
Lu T, Xu X, Zhang S, Pan L, Wang Y, Alshehri SM, Ahamad T, Kim M, Na J, Hossain MSA, Shapter JG, Yamauchi Y. High-Performance Capacitive Deionization by Lignocellulose-Derived Eco-Friendly Porous Carbon Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
27
Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116813] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
28
Zhu Y, Zhang G, Xu C, Wang L. Interconnected Graphene Hollow Shells for High-Performance Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2020;12:29706-29716. [PMID: 32502337 DOI: 10.1021/acsami.0c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
29
A novel graphene oxide-based ceramic composite as an efficient electrode for capacitive deionization. Sci Rep 2020;10:9676. [PMID: 32541891 PMCID: PMC7295976 DOI: 10.1038/s41598-020-66700-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]  Open
30
Optimal conditions for efficient flow-electrode capacitive deionization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116626] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
31
Evaluation of long-term stability in capacitive deionization using activated carbon electrodes coated with ion exchange polymers. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0530-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
32
Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization. MEMBRANES 2020;10:membranes10050096. [PMID: 32408502 PMCID: PMC7281590 DOI: 10.3390/membranes10050096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
33
Tang K, Zhou K. Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:5853-5863. [PMID: 32271562 DOI: 10.1021/acs.est.9b07591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
34
Liu T, Serrano J, Elliott J, Yang X, Cathcart W, Wang Z, He Z, Liu G. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. SCIENCE ADVANCES 2020;6:eaaz0906. [PMID: 32426453 PMCID: PMC7164930 DOI: 10.1126/sciadv.aaz0906] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/22/2020] [Indexed: 05/26/2023]
35
Chaleawlert-umpon S, Pimpha N. Sustainable lignin-derived hierarchically porous carbon for capacitive deionization applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj02424d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
36
Ren L, Xu B, Wang G, Yin X, Liu Y, Yang W, Chen Y. Fabrication of an antimony doped tin oxide–graphene nanocomposite for highly effective capacitive deionization of saline water. RSC Adv 2020;10:39130-39136. [PMID: 35518392 PMCID: PMC9057354 DOI: 10.1039/d0ra08339a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022]  Open
37
Effect of Hydrophilicity of Activated Carbon Electrodes on Desalination Performance in Membrane Capacitive Deionization. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
38
Lee J, Lee J, Ahn J, Jo K, Hong SP, Kim C, Lee C, Yoon J. Enhancement in Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. ACS APPLIED MATERIALS & INTERFACES 2019;11:36580-36588. [PMID: 31560520 DOI: 10.1021/acsami.9b10003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
39
Zhang Y, Wang G, Wang S, Wang J, Qiu J. Boron-nitride-carbon nanosheets with different pore structure and surface properties for capacitive deionization. J Colloid Interface Sci 2019;552:604-612. [DOI: 10.1016/j.jcis.2019.05.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
40
Progress and outlook for capacitive deionization technology. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
41
Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113328] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
42
Kim J, Choi MS, Shin KH, Kota M, Kang Y, Lee S, Lee JY, Park HS. Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019;31:e1803444. [PMID: 31012183 DOI: 10.1002/adma.201803444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/22/2019] [Indexed: 05/23/2023]
43
Shi W, Xu X, Ye C, Sha D, Yin R, Shen X, Liu X, Liu W, Shen J, Cao X, Gao C. Bimetallic Metal-Organic Framework-Derived Carbon Nanotube-Based Frameworks for Enhanced Capacitive Deionization and Zn-Air Battery. Front Chem 2019;7:449. [PMID: 31275928 PMCID: PMC6593352 DOI: 10.3389/fchem.2019.00449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022]  Open
44
Ye G, Yu Z, Li Y, Li L, Song L, Gu L, Cao X. Efficient treatment of brine wastewater through a flow-through technology integrating desalination and photocatalysis. WATER RESEARCH 2019;157:134-144. [PMID: 30953848 DOI: 10.1016/j.watres.2019.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
45
Kim YH, Tang K, Chang J, Sharma K, Yiacoumi S, Mayes R, Bilheux H, Santodonato L, Tsouris C. Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1608243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
46
Influence of various experimental parameters on the capacitive removal of phosphate from aqueous solutions using LDHs/AC composite electrodes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
47
Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
48
Wang L, Dykstra JE, Lin S. Energy Efficiency of Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:3366-3378. [PMID: 30802038 DOI: 10.1021/acs.est.8b04858] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
49
Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
50
Sriramulu D, Yang HY. Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system. NANOSCALE 2019;11:5896-5908. [PMID: 30874713 DOI: 10.1039/c8nr09119f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
PrevPage 1 of 4 1234Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA