1
|
Silva AC, Viçozzi GP, Farina M, Ávila DS. Caenorhabditis elegans as a Model for Evaluating the Toxicology of Inorganic Nanoparticles. J Appl Toxicol 2024. [PMID: 39506203 DOI: 10.1002/jat.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
Inorganic nanoparticles are nanomaterials with a central core composed of inorganic specimens, especially metals, which give them interesting applications but can impact the environment and human health. Their short- and long-term effects are not completely known and to investigate that, alternative models have been successfully used. Among these, the nematode Caenorhabditis elegans has been increasingly applied in nanotoxicology in recent years because of its many features and advantages for toxicological screening. This non-parasitic nematode may inhabit any environment where organic matter is available; therefore, it is interesting for ecotoxicological assessments. Moreover, this worm has a high genetic homology to humans, making the findings translatable. A notable number of published studies unraveled the level of toxicity of different nanoparticles, including the mechanisms by which their toxicity occurs. This narrative review collects and describes the most relevant toxicological data for inorganic nanoparticles obtained using C. elegans and also supports its application in safety assessments for regulatory purposes.
Collapse
Affiliation(s)
- Aline Castro Silva
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Gabriel Pedroso Viçozzi
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Daiana Silva Ávila
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
2
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
3
|
Agarrayua DA, Silva AC, Saraiva NR, Soares AT, Aschner M, Avila DS. Neurotoxicology of metals and metallic nanoparticles in Caenorhabditis elegans. ADVANCES IN NEUROTOXICOLOGY 2023; 9:107-148. [PMID: 37384197 PMCID: PMC10306323 DOI: 10.1016/bs.ant.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Danielle Araujo Agarrayua
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Aline Castro Silva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Nariani Rocha Saraiva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daiana Silva Avila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduate Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Cochran JP, Unrine JM, Coyne M, Tsyusko OV. Multiple stressor effects on a model soil nematode, Caenorhabditis elegans: Combined effects of the pathogen Klebsiella pneumoniae and zinc oxide nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161307. [PMID: 36596421 PMCID: PMC9896629 DOI: 10.1016/j.scitotenv.2022.161307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Research utilizing the model soil nematode Caenorhabditis elegans has revealed that agriculturally relevant nanoparticles (NP), such as zinc oxide NP (ZnONP), cause toxicity at low concentrations and disrupt molecular pathways of pathogen resistance. However, in most nanotoxicity assessments, model organisms are exposed to a single stressor but in nature organisms are affected by multiple sources of stress, including infections, which might exacerbate or mitigate negative effects of NP exposure. Thus, to expand our understanding of the environmental consequences of released NP, this project examined the synergistic/antagonistic effects of ZnONP on C. elegans infected with a common pathogen, Klebsiella pneumoniae. Individual exposures of C. elegans to ZnONP, zinc sulfate (Zn2+ ions) or K. pneumoniae significantly decreased nematode reproduction compared to controls. To assess the combined stress of ZnONP and K. pneumoniae, C. elegans were exposed to equitoxic EC30 concentrations of ZnONP (or Zn ions) and K. pneumoniae. After the combined exposure there was no decrease in reproduction. This complete elimination of reproductive toxicity was unexpected because exposures were conducted at EC30 Zn concentrations and reproductive toxicity due to Zn should have occurred. Amelioration of the pathogen effects by Zn are partially explained by the Zn impact on the K. pneumoniae biofilm. Quantitative assessments showed that external biofilm production and estimated colony forming units (CFU) of K. pneumoniae within the nematodes were significantly decreased. Taken together, our results suggest that during the combined exposure of C. elegans to both stressors Zn in ionic or particulate form inhibits K. pneumoniae ability to colonize nematode's intestine through decreasing pathogen biofilm formation. This highlights the unpredictable nature of combined stressor effects, calling into question the utility of exposures in simplified laboratory media.
Collapse
Affiliation(s)
- Jarad P Cochran
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA; Kentucky Water Resources Research Institute, University of Kentucky, Lexington, KY, USA
| | - Mark Coyne
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Wang M, Zhang Z, Sun N, Yang B, Mo J, Wang D, Su M, Hu J, Wang M, Wang L. Gold Nanoparticles Reduce Food Sensation in Caenorhabditis elegans via the Voltage-Gated Channel EGL-19. Int J Nanomedicine 2023; 18:1659-1676. [PMID: 37020688 PMCID: PMC10069523 DOI: 10.2147/ijn.s394666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction The increasing use of gold nanoparticles (Au NPs) in the medical field has raised concerns about the potential adverse effect of Au NPs exposure. However, it is difficult to assess the health risks of Au NPs exposure at the individual organ level using current measurement techniques. Methods The physical and chemical properties of Au NPs were characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR), and zeta sizer. The RNA-seq data of Au NPs-exposed worms were analyzed. The food intake was measured by liquid culture and Pharyngeal pumping rate. The function of the smell and taste neurons was evaluated by the chemotaxis and avoidance assay. The activation of ASE neurons was analyzed by calcium imaging. The gene expression of ins-22 and egl-19 was obtained from the C. elegans single cell RNA-seq databases. Results Our data analysis indicated that 62.8% of the significantly altered genes were functional in the nervous system. Notably, developmental stage analysis demonstrated that exposure to Au NPs interfered with animal development by regulating foraging behavior. Also, our chemotaxis results showed that exposure to Au NPs reduced the sensation of C. elegans to NaCl, which was consistent with the decrease in calcium transit of ASEL. Further studies confirmed that the reduced calcium transit was dependent on voltage-gated calcium channel EGL-19. The neuropeptide INS-22 was partially involved in Au NPs-induced NaCl sensation defect. Therefore, we proposed that Au NPs reduced the calcium transit in the ASEL neuron through egl-19-dependent calcium channels. It was partially regulated by the DAF-16 targeting neuropeptide INS-22. Discussion Our results demonstrate that Au NPs affect food sensation by reducing the calcium transit in ASEL neurons, which further leads to reduced pharynx pumping and feeding defects. The toxicology studies of Au NPs from worms have great potential to guide the usage of Au NPs in the medical field such as targeted drug delivery.
Collapse
Affiliation(s)
- Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Zhenzhen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Ning Sun
- Institute of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Baolin Yang
- Institute of Technical Biology & Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230032, People’s Republic of China
| | - Jihao Mo
- Department of Medical Laboratory, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Institute of Henan Province, Luoyang, Henan, 459001, People’s Republic of China
| | - Daping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jian Hu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Miaomiao Wang
- School of Medical Science, Huang He Science and Technology University, Zhengzhou, Henan, 459001, People’s Republic of China
| | - Lei Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Correspondence: Lei Wang, Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA, Tel +1 786-620-1400, Email
| |
Collapse
|
6
|
Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021; 13:1719. [PMID: 34684012 PMCID: PMC8537602 DOI: 10.3390/pharmaceutics13101719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Daniela Salado-Leza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
- Cátedras CONACyT, México City 03940, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Zaira López
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Flor Y. Flores-Hernández
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Sara Elisa Herrera-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Alejandro Cabrera-Wrooman
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Edgar Krötzsch
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Zaira Y. García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rodolfo Hernández-Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| |
Collapse
|
7
|
Liu H, Kwak JI, Wang D, An YJ. Multigenerational effects of polyethylene terephthalate microfibers in Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2021; 193:110569. [PMID: 33275924 DOI: 10.1016/j.envres.2020.110569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Microfibers (MFs) have recently become an increasingly prevalent pollutant in ecosystems and pose a direct threat to organisms and an indirect threat via adsorption of other pollutants. Here, we used Caenorhabditis elegans to study multigenerational effects of polyethylene terephthalate (PET) MFs (diameter 17.4 μm) by observing the maternal generation (P0) to the seventh offspring generation (F7) with continuous MF exposure. Exposure to 250-μm PET MFs decreased locomotion behavior and induced intestinal reactive oxygen species (ROS) in the P0 generation compared with other PET MF sizes. Moreover, no notably negative effects on survival were observed in any generation during continuous exposure to 250-μm PET MFs. However, the reproduction rate clearly decreased in the F2 and F3 generations but gradually recovered in the F4-F7 generations. Developmental abnormalities showed a close relationship with body length. Although some recovery was confirmed, there were significant decreases in body length in the F2-F5 generations. Interestingly, growth inhibition was also observed in the F6 generation without MF exposure. ROS production and dermal damage in the P0-F5 generations might have resulted in the toxicological responses. To the best of our knowledge, this is the first study to provide evidence of multigenerational toxicity of MFs in C. elegans.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
8
|
Kim HM, Long NP, Min JE, Anh NH, Kim SJ, Yoon SJ, Kwon SW. Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123005. [PMID: 32937704 DOI: 10.1016/j.jhazmat.2020.123005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
There is a growing concern regarding the toxic effects of terrestrial nanoplastic contaminants. However, an all-encompassing phenotyping- and omics-based strategy for the toxicity assessment of nanoplastics with different surface properties on soil living organisms remains to be established. Herein, we devised a comprehensive phenotyping and multi-omic profiling method to examine the molecular disturbance of nanopolystyrene (PS)-exposed Caenorhabditis elegans. The exposure time was 24 h with either 1 μg/mL or 10 μg/mL of PS. We found that PS considerably affected the reproduction and locomotion, as well as increased the oxidative stress of worms regardless of their surface properties. Nevertheless, each type of PS affected the metabolome and lipidome of the nematodes differently. Uncharged PS (PS-N) triggered significant metabolic disturbances, whereas the metabolic influences from PS-NH2 and PS-COOH were subtle. The dysregulated transcriptome profiles of PS-N were strongly associated with the metabolic pathways. Besides, the altered expression of several genes associated with autophagy and longevity was observed. Collectively, we demonstrated that comprehensive phenotyping and omics-based profiling establish a practical framework that allows us to gain deeper insights into the maladaptive consequences of PS in nematodes. It can be utilized for the evaluation of other environmental contaminants in the terrestrial ecosystem.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Nanohybrid Membrane Synthesis with Phosphorene Nanoparticles: A Study of the Addition, Stability and Toxicity. Polymers (Basel) 2020; 12:polym12071555. [PMID: 32674304 PMCID: PMC7408299 DOI: 10.3390/polym12071555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability of phosphorene nanoparticles in different environments was also examined. Furthermore, given that phosphorene is a new material, toxicity studies with a model nematode, Caenorhabditis elegans, were carried out to provide insight into the biocompatibility and safety of phosphorene. Results showed that membranes modified with phosphorene displayed a higher protein rejection, but lower flux values. Phosphorene also led to a 70% reduction in dye fouling after filtration. Additionally, data showed that phosphorene loss was negligible within the membrane matrix irrespective of the pH environment. Phosphorene caused toxicity to nematodes in a free form, while no toxicity was observed for membrane permeates.
Collapse
|
10
|
Burkard M, Betz A, Schirmer K, Zupanic A. Common Gene Expression Patterns in Environmental Model Organisms Exposed to Engineered Nanomaterials: A Meta-Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:335-344. [PMID: 31752483 PMCID: PMC6950232 DOI: 10.1021/acs.est.9b05170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 05/25/2023]
Abstract
The use of omics is gaining importance in the field of nanoecotoxicology; an increasing number of studies are aiming to investigate the effects and modes of action of engineered nanomaterials (ENMs) in this way. However, a systematic synthesis of the outcome of such studies regarding common responses and toxicity pathways is currently lacking. We developed an R-scripted computational pipeline to perform reanalysis and functional analysis of relevant transcriptomic data sets using a common approach, independent from the ENM type, and across different organisms, including Arabidopsis thaliana, Caenorhabditis elegans, and Danio rerio. Using the pipeline that can semiautomatically process data from different microarray technologies, we were able to determine the most common molecular mechanisms of nanotoxicity across extremely variable data sets. As expected, we found known mechanisms, such as interference with energy generation, oxidative stress, disruption of DNA synthesis, and activation of DNA-repair but also discovered that some less-described molecular responses to ENMs, such as DNA/RNA methylation, protein folding, and interference with neurological functions, are present across the different studies. Results were visualized in radar charts to assess toxicological response patterns allowing the comparison of different organisms and ENM types. This can be helpful to retrieve ENM-related hazard information and thus fill knowledge gaps in a comprehensive way in regard to the molecular underpinnings and mechanistic understanding of nanotoxicity.
Collapse
Affiliation(s)
- Michael Burkard
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Alexander Betz
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- School
of Architecture, Civil and Environmental Engineering, EPFL Lausanne, 1015 Lausanne, Switzerland
| | - Anze Zupanic
- Swiss
Federal Institute of Technology, Eawag, 8600 Dübendorf, Switzerland
| |
Collapse
|
11
|
Fine Particulate Matter Leads to Unfolded Protein Response and Shortened Lifespan by Inducing Oxidative Stress in C. elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2492368. [PMID: 31885780 PMCID: PMC6925806 DOI: 10.1155/2019/2492368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Oxidative stress has been proven as one of the most critical regulatory mechanisms involved in fine Particulate Matter- (PM2.5-) mediated toxicity. For a better understanding of the underlying mechanisms that enable oxidative stress to participate in PM2.5-induced toxic effects, the current study explored the effects of oxidative stress induced by PM2.5 on UPR and lifespan in C. elegans. The results implicated that PM2.5 exposure induced oxidative stress response, enhanced metabolic enzyme activity, activated UPR, and shortened the lifespan of C. elegans. Antioxidant N-acetylcysteine (NAC) could suppress the UPR through reducing the oxidative stress; both the antioxidant NAC and UPR inhibitor 4-phenylbutyric acid (4-PBA) could rescue the lifespan attenuation caused by PM2.5, indicating that the antioxidant and moderate proteostasis contribute to the homeostasis and adaptation to oxidative stress induced by PM2.5.
Collapse
|
12
|
Darweesh RS, Ayoub NM, Nazzal S. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomedicine 2019; 14:7643-7663. [PMID: 31571869 PMCID: PMC6756918 DOI: 10.2147/ijn.s223941] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vessels. It is a highly regulated process as determined by the interplay between pro-angiogenic and anti-angiogenic factors. Under certain conditions the balance between angiogenesis stimulators and inhibitors is altered, which results in a shift from physiological to pathological angiogenesis. Therefore, the goal of therapeutic targeting of angiogenic process is to normalize vasculature in target tissues by enhancing angiogenesis in disease conditions of reduced vascularity and blood flow, such as tissue ischemia, or alternatively to inhibit excessive and abnormal angiogenesis in disorders like cancer. Gold nanoparticles (AuNPs) are special particles that are generated by nanotechnology and composed of an inorganic core containing gold which is encircled by an organic monolayer. The ability of AuNPs to alter vasculature has captured recent attention in medical literature as potential therapeutic agents for the management of pathologic angiogenesis. This review provides an overview of the effects of AuNPs on angiogenesis and the molecular mechanisms and biomedical applications associated with their effects. In addition, the main synthesis methods, physical properties, uptake mechanisms, and toxicity of AuNPs are briefly summarized.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX75235-6411, USA
| |
Collapse
|
13
|
Eom HJ, Choi J. Clathrin-mediated endocytosis is involved in uptake and toxicity of silica nanoparticles in Caenohabditis elegans. Chem Biol Interact 2019; 311:108774. [DOI: 10.1016/j.cbi.2019.108774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
14
|
Patel M, Siddiqi NJ, Sharma P, Alhomida AS, Khan HA. Reproductive Toxicity of Pomegranate Peel Extract Synthesized Gold Nanoparticles: A Multigeneration Study in C. elegans. JOURNAL OF NANOMATERIALS 2019; 2019:1-7. [DOI: 10.1155/2019/8767943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C. elegans is a preferential model for testing environmental toxicity of compounds including nanomaterials. The impact of multigeneration exposure of gold nanoparticles (AuNPs) on the lifespan and fertility of C. elegans is not known and therefore is investigated in this study. We used pomegranate (Punica granatum) peel extracts as a reducing agent to synthesize gold nanoparticles (PPE-AuNPs) from chloroauric acid. Nematodes were grown till adult stage and then exposed to 25, 50, and 100 μg/ml of PPE-AuNPs at 20°C for 72 hours and then assessed for lifespan and fertility. The same protocols were followed for subsequent F1, F2, and F3 generations. The results showed that PPE-AuNPs dose-dependently but insignificantly reduced the lifespan of C. elegans. Exposure of PPE-AuNPs significantly and dose-dependently reduced the fertility of C. elegans in terms of the number of eggs produced. The reproductive toxicity of PPE-AuNPs was found to be minimal in parental generation (F0) and maximal in F3 generation. In conclusion, biologically synthesized PPE-AuNPs adversely affect the fertility of C. elegans while the factors responsible for reproductive toxicity are inherited by subsequent generations.
Collapse
Affiliation(s)
- Mahnoor Patel
- Department of Biotechnology, Veer Narmad South Gujarat University, 395007, Surat, Gujarat, India
| | - Nikhat J. Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Preeti Sharma
- Department of Biotechnology, Veer Narmad South Gujarat University, 395007, Surat, Gujarat, India
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Bourdineaud JP, Štambuk A, Šrut M, Radić Brkanac S, Ivanković D, Lisjak D, Sauerborn Klobučar R, Dragun Z, Bačić N, Klobučar GIV. Gold and silver nanoparticles effects to the earthworm Eisenia fetida - the importance of tissue over soil concentrations. Drug Chem Toxicol 2019; 44:12-29. [PMID: 30945571 DOI: 10.1080/01480545.2019.1567757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To address and to compare the respective impact of gold and silver nanoparticles (Au and Ag NPs) in soil invertebrate, the earthworm Eisenia fetida was exposed to soil containing 2, 10, and 50 mg/kg of Au and Ag in both nanoparticulate and ionic forms for 10 days. Both metal NPs were 2-15 times less bioavailable than their ionic forms, and displayed similar transfer coefficients from soil to earthworm tissues. Both metal NPs triggered the onset of an oxidative stress as illustrated by increased glutathione S-transferase levels, decreased catalase levels, and increased malondialdehyde concentrations. Protein carbonylation distinguished the nanoparticular from the ionic forms as its increase was observed only after exposure to the highest concentration of both metal NPs. Au and Ag NPs triggered DNA modifications even at the lowest concentration, and both repressed the expression of genes involved in the general defense and stress response at high concentrations as did their ionic counterparts. Despite the fact that both metal NPs were less bioavailable than their ionic forms, at equivalent concentrations accumulated within earthworms tissues they exerted equal or higher toxic potential than their ionic counterparts.Capsule: At equivalent concentrations accumulated within earthworm tissues Au and Ag NPs exert equal or higher toxic potential than their ionic forms.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- CNRS, Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, University of Bordeaux, Bordeaux, France
| | - Anamaria Štambuk
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| | - Maja Šrut
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| | - Sandra Radić Brkanac
- Department of Biology, Faculty of Science, Division of Botany, University of Zagreb, Zagreb, Croatia
| | - Dušica Ivanković
- Department for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Damir Lisjak
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| | | | - Zrinka Dragun
- Department for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Niko Bačić
- Department for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Göran I V Klobučar
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 254:126909. [PMID: 30778927 DOI: 10.1016/j.chemosphere.2020.126909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 05/25/2023]
Abstract
Soil contaminated with heavy metals (HMs) is a serious problem throughout the world that threatens all living organisms in the soil. Therefore, large-scale remediation is necessary. This study investigated a new combination of remediation techniques on heavy metal contaminated soil, phytoremediation, and soil amendment with nano-sized zero-valent iron (nZVI) and rhizosphere microorganisms. White willow (Salix alba L.) was grown for 160 days in pots containing Pb, Cu, and Cd and amended with 0, 150, and 300 (mg kg-1) of nZVI and rhizosphere microorganisms, including the arbuscular mycorrhizal fungus (AMF), Rhizophagus irregularis, and the plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens. The results showed that inoculation with PGPR and AMF, particularly dual inoculation, improved plant growth as well as the physiological and biochemical parameters of white willow, and increased the bioconcentration factor (BCF) of Pb, Cu, and Cd. The low dose of nZVI significantly increased the root length and the leaf area of the seedlings and increased the BCF of Cd. In contrast, the high dose of nZVI had negative effects on the seedlings growth and the BCF of Pb and Cu, about - 32% and - 63%, respectively. Our results demonstrate that nZVI at low doses can improve plant performance in a phytoremediation context and that the use of beneficial rhizosphere microorganisms can minimize nZVI stress in plants and make them less susceptible to stress even under high dose conditions.
Collapse
Affiliation(s)
| | - Seyed Mohsen Hosseini
- Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
| | | | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
18
|
Starnes D, Unrine J, Chen C, Lichtenberg S, Starnes C, Svendsen C, Kille P, Morgan J, Baddar ZE, Spear A, Bertsch P, Chen KC, Tsyusko O. Toxicogenomic responses of Caenorhabditis elegans to pristine and transformed zinc oxide nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:917-926. [PMID: 30823346 DOI: 10.1016/j.envpol.2019.01.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Manufactured nanoparticles (MNPs) undergo transformation immediately after they enter wastewater treatment streams and during their partitioning to sewage sludge, which is applied to agricultural soils in form of biosolids. We examined toxicogenomic responses of the model nematode Caenorhabditis elegans to pristine and transformed ZnO-MNPs (phosphatized pZnO- and sulfidized sZnO-MNPs). To account for the toxicity due to dissolved Zn, a ZnSO4 treatment was included. Transformation of ZnO-MNPs reduced their toxicity by nearly ten-fold, while there was almost no difference in the toxicity of pristine ZnO-MNPs and ZnSO4. This combined with the fact that far more dissolved Zn was released from ZnO- compared to pZnO- or sZnO-MNPs, suggests that dissolution of pristine ZnO-MNPs is one of the main drivers of their toxicity. Transcriptomic responses at the EC30 for reproduction resulted in a total of 1161 differentially expressed genes. Fifty percent of the genes differentially expressed in the ZnSO4 treatment, including the three metal responsive genes (mtl-1, mtl-2 and numr-1), were shared among all treatments, suggesting that responses to all forms of Zn could be partially attributed to dissolved Zn. However, the toxicity and transcriptomic responses in all MNP treatments cannot be fully explained by dissolved Zn. Two of the biological pathways identified, one essential for protein biosynthesis (Aminoacyl-tRNA biosynthesis) and another associated with detoxification (ABC transporters), were shared among pristine and one or both transformed ZnO-MNPs, but not ZnSO4. When comparing pristine and transformed ZnO-MNPs, 66% and 40% of genes were shared between ZnO-MNPs and sZnO-MNPs or pZnO-MNPs, respectively. This suggests greater similarity in transcriptomic responses between ZnO-MNPs and sZnO-MNPs, while toxicity mechanisms are more distinct for pZnO-MNPs, where 13 unique biological pathways were identified. Based on these pathways, the toxicity of pZnO-MNPs is likely to be associated with their adverse effect on digestion and metabolism.
Collapse
Affiliation(s)
- Daniel Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA; Department of Math and Computer Science, Belmont University, Nashville, TN, USA
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Chun Chen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Stuart Lichtenberg
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Catherine Starnes
- Department of Math and Computer Science, Belmont University, Nashville, TN, USA; Biostatics, Epidemiology, and Research Design, Center for Clinical and Translational Science, University of Kentucky, Lexington, KY, USA
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - Peter Kille
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - John Morgan
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Zeinah Elhaj Baddar
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Amanda Spear
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Paul Bertsch
- Division of Land and Water, CSIRO, Ecosciences Precinct, Brisbane, QLD, Australia
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Olga Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
19
|
Shi L, Jia X, Guo T, Cheng L, Han X, Wu Q, Wang D. A circular RNA circ_0000115 in response to graphene oxide in nematodes. RSC Adv 2019; 9:13722-13735. [PMID: 35519596 PMCID: PMC9063864 DOI: 10.1039/c9ra00997c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/29/2019] [Indexed: 12/03/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in regulating various biological processes; however, their roles in regulating the toxicity of engineered nanomaterials (ENMs) are still unclear. Based on Illumina HiSeq2500 sequencing, we here identified 43 dysregulated circRNAs in graphene oxide (GO) (1 mg L−1) exposed nematodes. Five of these candidate circRNAs could be further dysregulated by GO exposure in the range of μg L−1. Using the RNA interference (RNAi) technique, we found that the alteration in expressions of circ_0000115, circ_0000247, and circ_0000665 mediated a protective response to GO exposure; however, the alteration in expressions of circ_0000201 and circ_0000308 mediated the toxicity induction of GO. In nematodes, the circ_0000115 acted in certain tissues (intestine and neurons) to regulate GO toxicity. Moreover, an intermediate filament protein IFC-2 required for intestinal development was identified as a target of circ_0000115 in regulating the GO toxicity. In the intestine, intestinal IFC-2 acted further upstream of FOXO transcriptional factor DAF-16 in the insulin signaling pathway to regulate the GO toxicity. Therefore, intestinal circ_0000115 in the signaling cascade of circ_0000115-IFC-2-DAF-16 regulates the GO toxicity by modulating the function of IFC-2. Circular RNAs (circRNAs) play important roles in regulating various biological processes; however, their roles in regulating the toxicity of engineered nanomaterials (ENMs) are still unclear.![]()
Collapse
Affiliation(s)
- Lifang Shi
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Xiaohuan Jia
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Tiantian Guo
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Lu Cheng
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Xiaoxiao Han
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| |
Collapse
|
20
|
Teirlinck E, Xiong R, Brans T, Forier K, Fraire J, Van Acker H, Matthijs N, De Rycke R, De Smedt SC, Coenye T, Braeckmans K. Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat Commun 2018; 9:4518. [PMID: 30375378 PMCID: PMC6207769 DOI: 10.1038/s41467-018-06884-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Hindered penetration of antibiotics through biofilms is one of the reasons for the alarming increase in bacterial tolerance to antibiotics. Here, we investigate the potential of laser-induced vapour nanobubbles (VNBs) formed around plasmonic nanoparticles to locally disturb biofilm integrity and improve antibiotics diffusion. Our results show that biofilms of both Gram-negative (Burkholderia multivorans, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria can be loaded with cationic 70-nm gold nanoparticles and that subsequent laser illumination results in VNB formation inside the biofilms. In all types of biofilms tested, VNB formation leads to substantial local biofilm disruption, increasing tobramycin efficacy up to 1-3 orders of magnitude depending on the organism and treatment conditions. Altogether, our results support the potential of laser-induced VNBs as a new approach to disrupt biofilms of a broad range of organisms, resulting in improved antibiotic diffusion and more effective biofilm eradication.
Collapse
Affiliation(s)
- Eline Teirlinck
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - Katrien Forier
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
- Laboratory of Toxicology, Ghent University Hospital, Ghent, 9000, Belgium
| | - Juan Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, VIB Center for Inflammation Research, Ghent University, 9052, Ghent, Belgium
- Expertise Centre for Transmission Electron Microscopy, VIB BioImaging Core, Ghent University, Ghent, 9052, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium.
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium.
- IEMN UMR 8520, Université de Lille, Villeneuve d'Ascq, 59652, France.
- Laboratoire de Physique des Lasers, Atomes et Molécules UMR 8523, Villeneuve d'Ascq, 59655, France.
| |
Collapse
|
21
|
Hu CC, Wu GH, Lai SF, Muthaiyan Shanmugam M, Hwu Y, Wagner OI, Yen TJ. Toxic Effects of Size-tunable Gold Nanoparticles on Caenorhabditis elegans Development and Gene Regulation. Sci Rep 2018; 8:15245. [PMID: 30323250 PMCID: PMC6189128 DOI: 10.1038/s41598-018-33585-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
We utilized size-tunable gold nanoparticles (Au NPs) to investigate the toxicogenomic responses of the model organism Caenorhabditis elegans. We demonstrated that the nematode C. elegans can uptake Au NPs coated with or without 11-mercaptoundecanoic acid (MUA), and Au NPs are detectable in worm intestines using X-ray microscopy and confocal optical microscopy. After Au NP exposure, C. elegans neurons grew shorter axons, which may have been related to the impeded worm locomotion behavior detected. Furthermore, we determined that MUA to Au ratios of 0.5, 1 and 3 reduced the worm population by more than 50% within 72 hours. In addition, these MUA to Au ratios reduced the worm body size, thrashing frequency (worm mobility) and brood size. MTT assays were employed to analyze the viability of cultured C. elegans primary neurons exposed to MUA-Au NPs. Increasing the MUA to Au ratios increasingly reduced neuronal survival. To understand how developmental changes (after MUA-Au NP treatment) are related to changes in gene expression, we employed DNA microarray assays and identified changes in gene expression (e.g., clec-174 (involved in cellular defense), cut-3 and fil-1 (both involved in body morphogenesis), dpy-14 (expressed in embryonic neurons), and mtl-1 (functions in metal detoxification and homeostasis)).
Collapse
Affiliation(s)
- Chun-Chih Hu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Gong-Her Wu
- Department of Life Science and Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Feng Lai
- Institute of Physics, Academia Sinica, Taipei, 115, Taiwan
| | - Muniesh Muthaiyan Shanmugam
- Department of Life Science and Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Y Hwu
- Institute of Physics, Academia Sinica, Taipei, 115, Taiwan
| | - Oliver I Wagner
- Department of Life Science and Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
22
|
Simonin M, Colman BP, Anderson SM, King RS, Ruis MT, Avellan A, Bergemann CM, Perrotta BG, Geitner NK, Ho M, de la Barrera B, Unrine JM, Lowry GV, Richardson CJ, Wiesner MR, Bernhardt ES. Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1435-1449. [PMID: 29939451 PMCID: PMC6635952 DOI: 10.1002/eap.1742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 05/29/2023]
Abstract
Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging contaminants and that synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms.
Collapse
Affiliation(s)
- Marie Simonin
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Benjamin P Colman
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Steven M Anderson
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Ryan S King
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Baylor University, Waco, Texas, 76798, USA
| | - Matthew T Ruis
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Astrid Avellan
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15289, USA
| | - Christina M Bergemann
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Brittany G Perrotta
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Baylor University, Waco, Texas, 76798, USA
| | - Nicholas K Geitner
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Mengchi Ho
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Duke University Wetland Center, Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Belen de la Barrera
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Duke University Wetland Center, Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Jason M Unrine
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40526, USA
| | - Gregory V Lowry
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15289, USA
| | - Curtis J Richardson
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Duke University Wetland Center, Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Mark R Wiesner
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Emily S Bernhardt
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina, 27708, USA
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
23
|
Walczynska M, Jakubowski W, Wasiak T, Kadziola K, Bartoszek N, Kotarba S, Siatkowska M, Komorowski P, Walkowiak B. Toxicity of silver nanoparticles, multiwalled carbon nanotubes, and dendrimers assessed with multicellular organism Caenorhabditis elegans. Toxicol Mech Methods 2018; 28:432-439. [DOI: 10.1080/15376516.2018.1449277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Marta Walczynska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Witold Jakubowski
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Tomasz Wasiak
- Laboratory of Molecular and Nanostructural Biophysics, BioNanoPark Ltd, Lodz, Poland
| | - Kinga Kadziola
- Laboratory of Molecular and Nanostructural Biophysics, BioNanoPark Ltd, Lodz, Poland
| | - Nina Bartoszek
- Laboratory of Molecular and Nanostructural Biophysics, BioNanoPark Ltd, Lodz, Poland
| | - Sylwia Kotarba
- Laboratory of Molecular and Nanostructural Biophysics, BioNanoPark Ltd, Lodz, Poland
| | - Malgorzata Siatkowska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
- Laboratory of Molecular and Nanostructural Biophysics, BioNanoPark Ltd, Lodz, Poland
| | - Piotr Komorowski
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
- Laboratory of Molecular and Nanostructural Biophysics, BioNanoPark Ltd, Lodz, Poland
| | - Bogdan Walkowiak
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
- Laboratory of Molecular and Nanostructural Biophysics, BioNanoPark Ltd, Lodz, Poland
| |
Collapse
|
24
|
Hu H, Li L, Guo Q, Zong H, Yan Y, Yin Y, Wang Y, Oh Y, Feng Y, Wu Q, Gu N. RNA sequencing analysis shows that titanium dioxide nanoparticles induce endoplasmic reticulum stress, which has a central role in mediating plasma glucose in mice. Nanotoxicology 2018; 12:341-356. [DOI: 10.1080/17435390.2018.1446560] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hailong Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Qian Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - He Zong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yuheng Yan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yao Yin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
25
|
Arndt DA, Oostveen EK, Triplett J, Butterfield DA, Tsyusko OV, Collin B, Starnes DL, Cai J, Klein JB, Nass R, Unrine JM. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:1-10. [PMID: 28888877 DOI: 10.1016/j.cbpc.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2-5nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials.
Collapse
Affiliation(s)
- Devrah A Arndt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Judy Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Blanche Collin
- CNRS, IRD, Coll. France, CEREGE, Aix Marseille Université, Aix-en-Provence, France
| | - Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Jian Cai
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Jon B Klein
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
26
|
Gonzalez-Moragas L, Maurer LL, Harms VM, Meyer JN, Laromaine A, Roig A. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans. MATERIALS HORIZONS 2017; 4:719-746. [PMID: 29057078 PMCID: PMC5648024 DOI: 10.1039/c7mh00166e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the in vivo fate and transport of nanoparticles (NPs) is challenging, but critical. We review recent studies of metal and metal oxide NPs using the model organism Caenorhabditis elegans, summarizing major findings to date. In a joint transdisciplinary effort, we highlight underutilized opportunities offered by powerful techniques lying at the intersection of mechanistic toxicology and materials science,. To this end, we firstly summarize the influence of exposure conditions (media, duration, C. elegans lifestage) and NP physicochemical properties (size, coating, composition) on the response of C. elegans to NP treatment. Next, we focus on the techniques employed to study NP entrance route, uptake, biodistribution and fate, emphasizing the potential of extending the toolkit available with novel and powerful techniques. Next, we review findings on several NP-induced biological responses, namely transport routes and altered molecular pathways, and illustrate the molecular biology and genetic strategies applied, critically reviewing their strengths and weaknesses. Finally, we advocate the incorporation of a set of minimal materials and toxicological science experiments that will permit meta-analysis and synthesis of multiple studies in the future. We believe this review will facilitate coordinated integration of both well-established and underutilized approaches in mechanistic toxicology and materials science by the nanomaterials research community.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ 08801-3059, United States
| | - Victoria M Harms
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Joel N Meyer
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
27
|
Hu H, Asweto CO, Wu J, Shi Y, Feng L, Yang X, Liang S, Cao L, Duan J, Sun Z. Gene expression profiles and bioinformatics analysis of human umbilical vein endothelial cells exposed to PM 2.5. CHEMOSPHERE 2017; 183:589-598. [PMID: 28575702 DOI: 10.1016/j.chemosphere.2017.05.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/20/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
Cardiovascular system is demonstrated the main target of PM2.5 and the objective of this study was to explore the toxic effect and molecular mechanisms caused by PM2.5 in primary human umbilical vein endothelial cells (HUVECs) using microarray and bioinformatics analysis. The results showed that 591 genes were differentially expressed triggered by PM2.5, of which 174 genes were down-regulated, while 417 genes were up-regulated. Gene ontology analysis revealed that PM2.5 caused significant changes in gene expression patterns, including response to stimuli, immune response, and cellular processes. Pathway analysis and Signal-net analysis suggested that endocytosis, chemokine signaling pathway, RNA transport, protein processing in endoplasmic reticulum (ER) and autophagy regulation were the most critical pathways in PM2.5-induced toxicity in HUVECs. Moreover, gene expression confirmation of LIF, BCL2L1, CSF3, HMOX1, RPS6, PFKFB, CAPN1, HSPBP1, MOGS, PREB, TUBB2A, GABARAP by qRT-PCR indicated that endocytosis might be involved in the cellular uptake of PM2.5 by forming phagosomes, and subsequently inflammation, hypoxia and ER stress was occurred, which finally activated autophagy after PM2.5 exposure in HUVECs. In summary, our data can serve as fundamental research clues for further studies of PM2.5-induced toxicity in HUVECs.
Collapse
Affiliation(s)
- Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Collins Otieno Asweto
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lige Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
28
|
Gonzalez-Moragas L, Yu SM, Benseny-Cases N, Stürzenbaum S, Roig A, Laromaine A. Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans. Nanotoxicology 2017; 11:647-657. [PMID: 28673184 DOI: 10.1080/17435390.2017.1342011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a mechanistic study of the effect of iron oxide nanoparticles (SPIONs) in Caenorhabditis elegans combining a genome-wide analysis with the investigation of specific molecular markers frequently linked to nanotoxicity. The effects of two different coatings were explored: citrate, an anionic stabilizer, and bovine serum albumin, as a pre-formed protein corona. The transcriptomic study identified differentially expressed genes following an exposure to SPIONs. The expression of genes involved in oxidative stress, metal detoxification response, endocytosis, intestinal integrity and iron homeostasis was quantitatively evaluated. The role of oxidative stress was confirmed by gene expression analysis and by synchrotron Fourier Transform infrared microscopy based on the higher tissue oxidation of NP-treated animals. The observed transcriptional modulation of key signaling pathways such as MAPK and Wnt suggests that SPIONs might be endocytosed by clathrin-mediated processes, a putative mechanism of nanotoxicity which deserves further mechanistic investigations.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Si-Ming Yu
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain.,b Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| | | | - Stephen Stürzenbaum
- d Faculty of Life Sciences & Medicine, Analytical and Environmental Sciences Division , King's College London , London , UK
| | - Anna Roig
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Anna Laromaine
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| |
Collapse
|
29
|
Lin S, Mortimer M, Chen R, Kakinen A, Riviere JE, Davis TP, Ding F, Ke PC. NanoEHS beyond Toxicity - Focusing on Biocorona. ENVIRONMENTAL SCIENCE. NANO 2017; 7:1433-1454. [PMID: 29123668 PMCID: PMC5673284 DOI: 10.1039/c6en00579a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first phase of environmental health and safety of nanomaterials (nanoEHS) studies has been mainly focused on evidence-based investigations that probe the impact of nanoparticles, nanomaterials and nano-enabled products on biological and ecological systems. The integration of multiple disciplines, including colloidal science, nanomaterial science, chemistry, toxicology/immunology and environmental science, is necessary to understand the implications of nanotechnology for both human health and the environment. While strides have been made in connecting the physicochemical properties of nanomaterials with their hazard potential in tiered models, fundamental understanding of nano-biomolecular interactions and their implications for nanoEHS is largely absent from the literature. Research on nano-biomolecular interactions within the context of natural systems not only provides important clues for deciphering nanotoxicity and nanoparticle-induced pathology, but also presents vast new opportunities for screening beneficial material properties and designing greener products from bottom up. This review highlights new opportunities concerning nano-biomolecular interactions beyond the scope of toxicity.
Collapse
Affiliation(s)
- Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Ran Chen
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jim E. Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
30
|
Gonzalez-Moragas L, Berto P, Vilches C, Quidant R, Kolovou A, Santarella-Mellwig R, Schwab Y, Stürzenbaum S, Roig A, Laromaine A. In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomater 2017; 53:598-609. [PMID: 28161575 DOI: 10.1016/j.actbio.2017.01.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Gold nanoparticles (AuNPs) are present in many man-made products and cosmetics and are also used by the food and medical industries. Tight regulations regarding the use of mammalian animals for product testing can hamper the study of the specific interactions between engineered nanoparticles and biological systems. Invertebrate models, such as the nematode Caenorhabditis elegans (C. elegans), can offer alternative approaches during the early phases of nanoparticle discovery. Here, we thoroughly evaluated the biodistribution of 11-nm and 150-nm citrate-capped AuNPs in the model organism C. elegans at multiple scales, moving from micrometric to nanometric resolution and from the organismal to cellular level. We confirmed that the nanoparticles were not able to cross the intestinal and dermal barriers. We investigated the effect of AuNPs on the survival and reproductive performance of C. elegans, and correlated these effects with the uptake of AuNPs in terms of their number, surface area, and metal mass. In general, exposure to 11-nm AuNPs resulted in a higher toxicity than the larger 150-nm AuNPs. NP aggregation inside C. elegans was determined using absorbance microspectroscopy, which allowed the plasmonic properties of AuNPs to be correlated with their confinement inside the intestinal lumen, where anatomical traits, acidic pH and the presence of biomolecules play an essential role on NP aggregation. Finally, quantitative PCR of selected molecular markers indicated that exposure to AuNPs did not significantly affect endocytosis and intestinal barrier integrity. STATEMENT OF SIGNIFICANCE This work highlights how the simple, yet information-rich, animal model C. elegans is ideally suited for preliminary screening of nanoparticles or chemicals mitigating most of the difficulties associated with mammalian animal models, namely the ethical issues, the high cost, and time constraints. This is of particular relevance to the cosmetic, food, and pharmaceutical industries, which all have to justify the use of animals, especially during the discovery, development and initial screening phases. This work provides a detailed and thorough analysis of 11-nm and 150-nm AuNPs at multiple levels of organization (the whole organism, organs, tissues, cells and molecules).
Collapse
|
31
|
da Luz CM, Boyles MSP, Falagan-Lotsch P, Pereira MR, Tutumi HR, de Oliveira Santos E, Martins NB, Himly M, Sommer A, Foissner I, Duschl A, Granjeiro JM, Leite PEC. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J Nanobiotechnology 2017; 15:11. [PMID: 28143572 PMCID: PMC5282631 DOI: 10.1186/s12951-016-0238-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
Background Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. Methods We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells’ proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Results Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells’ proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. Conclusions These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0238-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Macedo da Luz
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Matthew Samuel Powys Boyles
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.,Heriot-Watt University, Edinburg, UK
| | - Priscila Falagan-Lotsch
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Laboratory of Chemical Signaling in Nervous System, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Henrique Rudolf Tutumi
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Eidy de Oliveira Santos
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil.,Laboratory of Biochemistry, State University Center of West Zone (UEZO), Rio de Janeiro, RJ, Brazil
| | - Nathalia Balthazar Martins
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil
| | - Martin Himly
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Aniela Sommer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Ilse Foissner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - José Mauro Granjeiro
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil.,Dental School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque De Caxias, RJ, Brazil. .,, Av. Nossa Senhora das Gracas 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.
| |
Collapse
|
32
|
Riebeling C, Jungnickel H, Luch A, Haase A. Systems Biology to Support Nanomaterial Grouping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:143-171. [PMID: 28168668 DOI: 10.1007/978-3-319-47754-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The assessment of potential health risks of engineered nanomaterials (ENMs) is a challenging task due to the high number and great variety of already existing and newly emerging ENMs. Reliable grouping or categorization of ENMs with respect to hazards could help to facilitate prioritization and decision making for regulatory purposes. The development of grouping criteria, however, requires a broad and comprehensive data basis. A promising platform addressing this challenge is the systems biology approach. The different areas of systems biology, most prominently transcriptomics, proteomics and metabolomics, each of which provide a wealth of data that can be used to reveal novel biomarkers and biological pathways involved in the mode-of-action of ENMs. Combining such data with classical toxicological data would enable a more comprehensive understanding and hence might lead to more powerful and reliable prediction models. Physico-chemical data provide crucial information on the ENMs and need to be integrated, too. Overall statistical analysis should reveal robust grouping and categorization criteria and may ultimately help to identify meaningful biomarkers and biological pathways that sufficiently characterize the corresponding ENM subgroups. This chapter aims to give an overview on the different systems biology technologies and their current applications in the field of nanotoxicology, as well as to identify the existing challenges.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany.
| |
Collapse
|
33
|
Yi X, Zhao W, Li J, Zhang B, Yu Q, Li M. Mn3O4nanoparticles cause endoplasmic reticulum stress-dependent toxicity to Saccharomyces cerevisiae. RSC Adv 2017. [DOI: 10.1039/c7ra07458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Model figure illustrating the toxicity mechanism of Mn3O4NPs to yeast cells.
Collapse
Affiliation(s)
- Xiao Yi
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Weili Zhao
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| |
Collapse
|
34
|
Moon J, Kwak JI, Kim SW, An YJ. Multigenerational effects of gold nanoparticles in Caenorhabditis elegans: Continuous versus intermittent exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:46-52. [PMID: 27634002 DOI: 10.1016/j.envpol.2016.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 05/29/2023]
Abstract
Nanomaterials can become disseminated directly or indirectly into the soil ecosystem through various exposure routes. Thus, it is important to study various deposition routes of nanomaterials into the soil, as well as their toxicities. Here, we investigated the multigenerational effects of gold nanoparticles (AuNPs) on C. elegans after continuous or intermittent food intake. Following continuous exposure, significant differences were observed in the reproduction rate of C. elegans in the F2-F4 generations, which were associated with reproductive system abnormalities. However, following intermittent AuNP exposure in P0 and F3, reproductive system abnormalities and inhibited reproduction rates were observed in F2 and F3. While continuous AuNP exposure impaired reproduction from F2 to F4, intermittent exposure caused more pronounced effects on F3 worms, which may have resulted from damage during the convalescence period up through F2. These data showed the occurrence of multigenerational effects following different exposure patterns, exposure levels, and recovery periods. To our knowledge, this is the first study to demonstrate that multigenerational nano-toxicity is caused by different exposure patterns and provides insights into the unpredictable exposure scenarios of AuNPs and their adverse effects.
Collapse
Affiliation(s)
- Jongmin Moon
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin Woong Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
35
|
Wang Q, Zhou Y, Song B, Zhong Y, Wu S, Cui R, Cong H, Su Y, Zhang H, He Y. Linking Subcellular Disturbance to Physiological Behavior and Toxicity Induced by Quantum Dots in Caenorhabditis elegans. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3143-3154. [PMID: 27121203 DOI: 10.1002/smll.201600766] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 06/05/2023]
Abstract
The wide-ranging applications of fluorescent semiconductor quantum dots (QDs) have triggered increasing concerns about their biosafety. Most QD-related toxicity studies focus on the subcellular processes in cultured cells or global physiological effects on whole animals. However, it is unclear how QDs affect subcellular processes in living organisms, or how the subcellular disturbance contributes to the overall toxicity. Here the behavior and toxicity of QDs of three different sizes in Caenorhabditis elegans (C. elegans) are systematically investigated at both the systemic and the subcellular level. Specifically, clear size-dependent distribution and toxicity of the QDs in the digestive tract are observed. Short-term exposure of QDs leads to acute toxicity on C. elegans, yet incurring no lasting, irreversible damage. In contrast, chronic exposure of QDs severely inhibits development and shortens lifespan. Subcellular analysis reveals that endocytosis and nutrition storage are disrupted by QDs, which likely accounts for the severe deterioration in growth and longevity. This work reveals that QDs invasion disrupts key subcellular processes in living organisms, and may cause permanent damage to the tissues and organs over long-term retention. The findings provide invaluable information for safety evaluations of QD-based applications and offer new opportunities for design of novel nontoxic nanoprobes.
Collapse
Affiliation(s)
- Qin Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanfeng Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bin Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yiling Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Sicong Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rongrong Cui
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Haixia Cong
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yuanyuan Su
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huimin Zhang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
36
|
Starnes DL, Lichtenberg SS, Unrine JM, Starnes CP, Oostveen EK, Lowry GV, Bertsch PM, Tsyusko OV. Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:314-321. [PMID: 26925754 DOI: 10.1016/j.envpol.2016.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Manufactured nanoparticles (MNP) rapidly undergo aging processes once released from products. Silver sulfide (Ag2S) is the major transformation product formed during the wastewater treatment process for Ag-MNP. We examined toxicogenomic responses of pristine Ag-MNP, sulfidized Ag-MNP (sAg-MNP), and AgNO3 to a model soil organism, Caenorhabditis elegans. Transcriptomic profiling of nematodes which were exposed at the EC30 for reproduction for AgNO3, Ag-MNP, and sAg-MNP resulted in 571 differentially expressed genes. We independently verified expression of 4 genes (numr-1, rol-8, col-158, and grl-20) using qRT-PCR. Only 11% of differentially expressed genes were common among the three treatments. Gene ontology enrichment analysis also revealed that Ag-MNP and sAg-MNP had distinct toxicity mechanisms and did not share any of the biological processes. The processes most affected by Ag-MNP relate to metabolism, while those processes most affected by sAg-MNP relate to molting and the cuticle, and the most impacted processes for AgNO3 exposed nematodes was stress related. Additionally, as observed from qRT-PCR and mutant experiments, the responses to sAg-MNP were distinct from AgNO3 while some of the effects of pristine MNP were similar to AgNO3, suggesting that effects from Ag-MNP is partially due to dissolved silver ions.
Collapse
Affiliation(s)
- Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States
| | - Stuart S Lichtenberg
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States
| | - Catherine P Starnes
- Department of Statistics, University of Kentucky, 725 Rose Street, MDS Building 305, Lexington, KY 40536, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States
| | - Gregory V Lowry
- Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States; Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Paul M Bertsch
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States; Division of Land and Water, CSIRO, Ecosciences Precinct, Brisbane, QLD, Australia
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States.
| |
Collapse
|
37
|
Moor KJ, Cates EL, Kim JH. Porous Silicon's Photoactivity in Water: Insights into Environmental Fate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:756-764. [PMID: 26741883 DOI: 10.1021/acs.est.5b05183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interest in porous silicon (pSi) (and, more broadly, silicon nanoparticles (NPs)) has increased along with their concomitant use in various commercial and consumer products, yet little is known about their behavior in the natural environment. In this study, we have investigated the photosensitization, optical, and surface properties of pSi as a function of time in aqueous systems. Samples were prepared via an anodic electrochemical etching procedure, resulting in pSi particles with diameters of ca. 500 nm, composed of a porous network of Si nanocrystallites of 2-4 nm. Initially, pSi particles generated significant amounts of (1)O2, yet they rapidly lost much of this ability due to the formation of an oxide layer on the surface, as determined by X-ray photoelectron spectroscopy, which likely prevented further photosensitization events. Addition of natural organic matter (NOM) did not significantly impact pSi's photosensitization abilities. The pSi lacked any intrinsic bactericidal properties on Escherichia coli and did not produce enough (1)O2 to considerably affect populations of a model virus, PR772, highlighting its relatively benign nature toward microbial communities. Results from this study suggest that the photoactivity of pSi is unlikely to persist in aqueous systems and that it may instead behave more similarly to silica particles from an environmental perspective.
Collapse
Affiliation(s)
- Kyle J Moor
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University , New Haven, Connecticut 06511, United States
| | - Ezra L Cates
- Department of Environmental Engineering & Earth Sciences, College of Engineering and Science, Clemson University , Clemson, South Carolina 29634, United States
| | - Jae-Hong Kim
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
38
|
Liu L, Sun M, Zhang H, Yu Q, Li M, Qi Y, Zhang C, Gao G, Yuan Y, Zhai H, Chen W, Alvarez PJJ. Facet Energy and Reactivity versus Cytotoxicity: The Surprising Behavior of CdS Nanorods. NANO LETTERS 2016; 16:688-94. [PMID: 26673313 DOI: 10.1021/acs.nanolett.5b04487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Responsible development of nanotechnology calls for improved understanding of how nanomaterial surface energy and reactivity affect potential toxicity. Here, we challenge the paradigm that cytotoxicity increases with nanoparticle reactivity. Higher-surface-energy {001}-faceted CdS nanorods (CdS-H) were less toxic to Saccharomyces cerevisiae than lower-energy ({101}-faceted) nanorods (CdS-L) of similar morphology, aggregate size, and charge. CdS-H adsorbed to the yeast's cell wall to a greater extent than CdS-L, which decreased endocytosis and cytotoxicity. Higher uptake of CdS-L decreased cell viability and increased endoplasmatic reticulum stress despite lower release of toxic Cd(2+) ions. Higher toxicity of CdS-L was confirmed with five different unicellular microorganisms. Overall, higher-energy nanocrystals may exhibit greater propensity to adsorb to or react with biological protective barriers and/or background constituents, which passivates their reactivity and reduces their bioavailability and cytotoxicity.
Collapse
Affiliation(s)
- Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Meiqing Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Haijun Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, College of Life Science, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, College of Life Science, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Yu Qi
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Chengdong Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Guandao Gao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Yingjin Yuan
- Ministry of Education Key Laboratory of Systems Bioengineering, Tianjin University , Wei Jin Rd. 92, Tianjin 300072, China
| | - Huanhuan Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Airport Economic Zone, Seven West Rd. 32, Tianjin 300308, China
| | - Wei Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
39
|
Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery. Int J Biol Macromol 2016; 82:13-21. [DOI: 10.1016/j.ijbiomac.2015.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 09/05/2015] [Accepted: 10/11/2015] [Indexed: 01/08/2023]
|
40
|
Mahapatra I, Sun TY, Clark JRA, Dobson PJ, Hungerbuehler K, Owen R, Nowack B, Lead J. Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J Nanobiotechnology 2015; 13:93. [PMID: 26694868 PMCID: PMC4688950 DOI: 10.1186/s12951-015-0150-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/18/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The use of gold nanoparticles (Au-NP) based medical applications is rising due to their unique physical and chemical properties. Diagnostic devices based on Au-NP are already available in the market or are in clinical trials and Au-NP based therapeutics and theranostics (combined diagnostic and treatment modality) are in the research and development phase. Currently, no information on Au-NP consumption, material flows to and concentrations in the environment are available. Therefore, we estimated prospective maximal consumption of Au-NP from medical applications in the UK and US. We then modelled the Au-NP flows post-use and predicted their environmental concentrations. Furthermore, we assessed the environment risks of Au-NP by comparing the predicted environmental concentrations (PECs) with ecological threshold (PNEC) values. RESULTS The mean annual estimated consumption of Au-NP from medical applications is 540 kg for the UK and 2700 kg for the US. Among the modelled concentrations of Au-NP in environmental compartments, the mean annual PEC of Au-NP in sludge for both the UK and US was estimated at 124 and 145 μg kg(-1), respectively. The mean PEC in surface water was estimated at 468 and 4.7 pg L(-1), respectively for the UK and US. The NOEC value for the water compartment ranged from 0.12 up to 26,800 μg L(-1), with most values in the range of 1000 μg L(-1). CONCLUSION The results using the current set of data indicate that the environmental risk from Au-NP used in nanomedicine in surface waters and from agricultural use of biosolids is minimal in the near future, especially because we have used a worst-case use assessment. More Au-NP toxicity studies are needed for the soil compartment.
Collapse
Affiliation(s)
- Indrani Mahapatra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Tian Yin Sun
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland. .,Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH-Hoenggerberg, 8093, Zurich, Switzerland.
| | - Julian R A Clark
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Peter J Dobson
- The Queen's College, Oxford, OX1 4AW, UK. .,Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL, UK.
| | - Konrad Hungerbuehler
- Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH-Hoenggerberg, 8093, Zurich, Switzerland.
| | - Richard Owen
- Business School, University of Exeter, Exeter, EX4 4PU, UK.
| | - Bernd Nowack
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| | - Jamie Lead
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
41
|
Maurer LL, Yang X, Schindler AJ, Taggart RK, Jiang C, Hsu-Kim H, Sherwood DR, Meyer JN. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology 2015; 10:831-5. [PMID: 26559224 DOI: 10.3109/17435390.2015.1110759] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We used the nematode Caenorhabditis elegans to study the roles of endocytosis and lysosomal function in uptake and subsequent toxicity of silver nanoparticles (AgNP) in vivo. To focus on AgNP uptake and effects rather than silver ion (AgNO3) effects, we used a minimally dissolvable AgNP, citrate-coated AgNPs (CIT-AgNPs). We found that the clathrin-mediated endocytosis inhibitor chlorpromazine reduced the toxicity of CIT-AgNPs but not AgNO3. We also tested the sensitivity of three endocytosis-deficient mutants (rme-1, rme-6 and rme-8) and two lysosomal function deficient mutants (cup-5 and glo-1) as compared to wild-type (N2 strain). One of the endocytosis-deficient mutants (rme-6) took up less silver and was resistant to the acute toxicity of CIT-AgNPs compared to N2s. None of those mutants showed altered sensitivity to AgNO3. Lysosome and lysosome-related organelle mutants were more sensitive to the growth-inhibiting effects of both CIT-AgNPs and AgNO3. Our study provides mechanistic evidence suggesting that early endosome formation is necessary for AgNP-induced toxicity in vivo, as rme-6 mutants were less sensitive to the toxic effects of AgNPs than C. elegans with mutations involved in later steps in the endocytic process.
Collapse
Affiliation(s)
- Laura L Maurer
- a Nicholas School of the Environment, Duke University , Durham , NC , USA .,b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA
| | - Xinyu Yang
- a Nicholas School of the Environment, Duke University , Durham , NC , USA .,b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA
| | | | - Ross K Taggart
- b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA .,d Department of Civil & Environmental Engineering , Duke University , Durham , NC , USA
| | - Chuanjia Jiang
- b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA .,d Department of Civil & Environmental Engineering , Duke University , Durham , NC , USA
| | - Heileen Hsu-Kim
- b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA .,d Department of Civil & Environmental Engineering , Duke University , Durham , NC , USA
| | | | - Joel N Meyer
- a Nicholas School of the Environment, Duke University , Durham , NC , USA .,b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA
| |
Collapse
|
42
|
Maurer LL, Ryde IT, Yang X, Meyer JN. Caenorhabditis elegans
as a Model for Toxic Effects of Nanoparticles: Lethality, Growth, and Reproduction. ACTA ACUST UNITED AC 2015; 66:20.10.1-20.10.25. [DOI: 10.1002/0471140856.tx2010s66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Laura L. Maurer
- Nicholas School of the Environment, Duke University Durham North Carolina
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University Durham North Carolina
| | - Xinyu Yang
- Nicholas School of the Environment, Duke University Durham North Carolina
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University Durham North Carolina
| |
Collapse
|
43
|
Chen C, Unrine JM, Judy JD, Lewis RW, Guo J, McNear DH, Tsyusko OV. Toxicogenomic Responses of the Model Legume Medicago truncatula to Aged Biosolids Containing a Mixture of Nanomaterials (TiO₂, Ag, and ZnO) from a Pilot Wastewater Treatment Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8759-68. [PMID: 26065335 DOI: 10.1021/acs.est.5b01211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Toxicogenomic responses in Medicago truncatula A17 were monitored following exposure to biosolids-amended soils. Treatments included biosolids produced using a pilot wastewater treatment plant with either no metal introduced into the influent (control); bulk/ionic TiO2, ZnO, and AgNO3 added to influent (bulk/dissolved treatment); or Ag, ZnO, and TiO2 engineered nanomaterials added to influent (ENM treatment) and then added to soil, which was aged in the field for 6 months. In our companion study, we found inhibition of nodulation in the ENM but not in the bulk/dissolved treatment. Gene expression profiling revealed highly distinct profiles with more than 10-fold down-regulation in 239 genes in M. truncatula roots from the ENM treatment, while gene expression patterns were similar between bulk/dissolved and control treatments. In response to ENM exposure, many of the identified biological pathways, gene ontologies, and individual genes are associated with nitrogen metabolism, nodulation, metal homeostasis, and stress responses. Expression levels of nine genes were independently confirmed with qRT-PCR. Exposure to ENMs induced unique shifts in expression profiles and biological pathways compared with bulk/dissolved treatment, despite the lack of difference in bioavailable metal fractions, metal oxidation state, and coordination environment between ENM and bulk/dissolved biosolids. As populations of Sinorhizobium meliloti Rm2011 were similar in bulk/dissolved and ENM treatments, our results suggest that inhibition of nodulation in the ENM treatment was primarily due to phytotoxicity, likely caused by enhanced bioavailability of Zn ions.
Collapse
Affiliation(s)
- Chun Chen
- †Department of Plant and Soil Sciences, University of Kentucky, Lexington Kentucky 40546, United States
- ‡Transatlantic Initiative for Nanotechnology and the Environment (TINE), University of Kentucky, Lexington, Kentucky 40546, Unites States
- §Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Jason M Unrine
- †Department of Plant and Soil Sciences, University of Kentucky, Lexington Kentucky 40546, United States
- ‡Transatlantic Initiative for Nanotechnology and the Environment (TINE), University of Kentucky, Lexington, Kentucky 40546, Unites States
- §Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Jonathan D Judy
- †Department of Plant and Soil Sciences, University of Kentucky, Lexington Kentucky 40546, United States
- ‡Transatlantic Initiative for Nanotechnology and the Environment (TINE), University of Kentucky, Lexington, Kentucky 40546, Unites States
- §Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
- ∥CSIRO Land and Water, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Ricky W Lewis
- †Department of Plant and Soil Sciences, University of Kentucky, Lexington Kentucky 40546, United States
- ‡Transatlantic Initiative for Nanotechnology and the Environment (TINE), University of Kentucky, Lexington, Kentucky 40546, Unites States
| | - Jing Guo
- ⊥Departments of Epidemiology and Biostatistics, University of Kentucky, Lexington Kentucky 40536, United States
| | - David H McNear
- †Department of Plant and Soil Sciences, University of Kentucky, Lexington Kentucky 40546, United States
- ‡Transatlantic Initiative for Nanotechnology and the Environment (TINE), University of Kentucky, Lexington, Kentucky 40546, Unites States
| | - Olga V Tsyusko
- †Department of Plant and Soil Sciences, University of Kentucky, Lexington Kentucky 40546, United States
- ‡Transatlantic Initiative for Nanotechnology and the Environment (TINE), University of Kentucky, Lexington, Kentucky 40546, Unites States
- §Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
44
|
Eom HJ, Roca CP, Roh JY, Chatterjee N, Jeong JS, Shim I, Kim HM, Kim PJ, Choi K, Giralt F, Choi J. A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chem Biol Interact 2015; 239:153-63. [PMID: 26111764 DOI: 10.1016/j.cbi.2015.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/05/2015] [Accepted: 06/21/2015] [Indexed: 01/08/2023]
Abstract
The increased volumes of carbon nanotubes (CNTs) being utilized in industrial and biomedical processes carries with it an increased risk of unintentional release into the environment, requiring a thorough hazard and risk assessment. In this study, the toxicity of pristine and hydroxylated (OH-) multiwall CNTs (MWCNTs) was investigated in the nematode Caenorhabditis elegans using an integrated systems toxicology approach. To gain an insight into the toxic mechanism of MWCNTs, microarray and proteomics were conducted for C. elegans followed by pathway analyses. The results of pathway analyses suggested endocytosis, phagocytosis, oxidative stress and endoplasmic reticulum (ER) stress, as potential mechanisms of uptake and toxicity, which were subsequently investigated using loss-of-function mutants of genes of those pathways. The expression of phagocytosis related genes (i.e. ced-10 and rab-7) were significantly increased upon exposure to OH-MWCNT, concomitantly with the rescued toxicity by loss-of-function mutants of those genes, such as ced-10(n3246) and rab-7(ok511). An increased sensitivity of the hsp-4(gk514) mutant by OH-MWCNT, along with a decreased expression of hsp-4 at both gene and protein level suggests that MWCNTs may affect ER stress response in C. elegans. Collectively, the results implied phagocytosis to be a potential mechanism of uptake of MWCNTs, and ER and oxidative stress as potential mechanisms of toxicity. The integrated systems toxicology approach applied in this study provided a comprehensive insight into the toxic mechanism of MWCNTs in C. elegans, which may eventually be used to develop an "Adverse Outcome Pathway (AOP)", a recently introduced concept as a conceptual framework to link molecular level responses to higher level effects.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Carlos P Roca
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Ji-Yeon Roh
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Jae-Seong Jeong
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Ilseob Shim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Hyun-Mi Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Phil-Je Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Kyunghee Choi
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Francesc Giralt
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea.
| |
Collapse
|
45
|
Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 2015; 10:32-41. [PMID: 25740379 PMCID: PMC4819577 DOI: 10.3109/17435390.2014.1002868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level.
Collapse
Affiliation(s)
- Nadine S Taylor
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Ruth Merrifield
- b SmartState Center for Environmental Nanoscience and Risk, The Arnold School of Public Health, Environmental Health Sciences, University of South Carolina , Columbia , SC , USA , and.,c School of Geography, Earth and Environmental Science, University of Birmingham , Edgbaston , Birmingham , UK
| | - Tim D Williams
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - J Kevin Chipman
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| | - Jamie R Lead
- b SmartState Center for Environmental Nanoscience and Risk, The Arnold School of Public Health, Environmental Health Sciences, University of South Carolina , Columbia , SC , USA , and.,c School of Geography, Earth and Environmental Science, University of Birmingham , Edgbaston , Birmingham , UK
| | - Mark R Viant
- a School of Biosciences, University of Birmingham , Edgbaston , Birmingham , UK
| |
Collapse
|
46
|
Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ. Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:239-261. [PMID: 25516483 DOI: 10.1007/s10646-014-1387-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Initiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10 years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs. Studies to date have shown that ENPs undergo a range of physical and chemical transformations in the environment to the extent that exposures to pristine well dispersed materials will occur only rarely in nature. Methods to track assimilation and internal distributions must, therefore, be capable of detecting these modified forms. The uptake mechanisms involved in ENP assimilation may include a range of trans-cellular trafficking and distribution pathways, which can be followed by passage to intracellular compartments. To trace toxicokinetics and distributions, analytical and imaging approaches are available to determine rates, states and forms. When used hierarchically, these tools can map ENP distributions to specific target organs, cell types and organelles, such as endosomes, caveolae and lysosomes and assess speciation states. The first decade of ENP ecotoxicology research, thus, points to an emerging paradigm where exposure is to transformed materials transported into tissues and cells via passive and active pathways within which they can be assimilated and therein identified using a tiered analytical and imaging approach.
Collapse
Affiliation(s)
- Carolin Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Starnes DL, Unrine JM, Starnes CP, Collin BE, Oostveen EK, Ma R, Lowry GV, Bertsch PM, Tsyusko OV. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:239-46. [PMID: 25463719 DOI: 10.1016/j.envpol.2014.10.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 05/19/2023]
Abstract
Sulfidation is a major transformation product for manufactured silver nanoparticles (Ag-MNPs) in the wastewater treatment process.We studied the dissolution, uptake, and toxicity of Ag-MNP and sulfidized Ag-MNPs (sAg-MNPs) to a model soil organism, Caenorhabditis elegans. Our results show that reproduction was the most sensitive endpoint tested for both Ag-MNPs and sAg-MNPs. We also demonstrate that sulfidation not only decreases solubility of Ag-MNP, but also reduces the bioavailability of intact sAg-MNP. The relative contribution of released Ag(+) compared to intact particles to toxicity was concentration dependent. At lower total Ag concentration, a greater proportion of the toxicity could be explained by dissolved Ag, whereas at higher total Ag concentration, the toxicity appeared to be dominated by particle specific effects.
Collapse
Affiliation(s)
- Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1401-10. [DOI: 10.1016/j.nano.2014.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022]
|
49
|
Rocheleau S, Arbour M, Elias M, Sunahara GI, Masson L. Toxicogenomic effects of nano- and bulk-TiO2 particles in the soil nematode Caenorhabditis elegans. Nanotoxicology 2014; 9:502-12. [DOI: 10.3109/17435390.2014.948941] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Mélanie Arbour
- National Research Council of Canada, Montreal, Quebec, Canada
| | - Miria Elias
- National Research Council of Canada, Montreal, Quebec, Canada
| | | | - Luke Masson
- National Research Council of Canada, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Wu Q, Zhao Y, Li Y, Wang D. Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1263-71. [DOI: 10.1016/j.nano.2014.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/08/2023]
|