1
|
Pradela-Filho LA, Veloso WB, Arantes IVS, Gongoni JLM, de Farias DM, Araujo DAG, Paixão TRLC. Paper-based analytical devices for point-of-need applications. Mikrochim Acta 2023; 190:179. [PMID: 37041400 PMCID: PMC10089827 DOI: 10.1007/s00604-023-05764-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection systems can be accomplished with portable devices, allying with the features of both systems. These devices have been introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the devices' sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating their challenges. Therefore, this work can be a highly useful reference for new research and innovation.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Juliana L M Gongoni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi M de Farias
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diele A G Araujo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
3
|
Anushka, Bandopadhyay A, Das PK. Paper based microfluidic devices: a review of fabrication techniques and applications. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 232:781-815. [PMID: 36532608 PMCID: PMC9743133 DOI: 10.1140/epjs/s11734-022-00727-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/09/2022] [Indexed: 06/14/2023]
Abstract
A wide range of applications are possible with paper-based analytical devices, which are low priced, easy to fabricate and operate, and require no specialized equipment. Paper-based microfluidics offers the design of miniaturized POC devices to be applied in the health, environment, food, and energy sector employing the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free and Deliverable to end users) principle of WHO. Therefore, this field is growing very rapidly and ample research is being done. This review focuses on fabrication and detection techniques reported to date. Additionally, this review emphasises on the application of this technology in the area of medical diagnosis, energy generation, environmental monitoring, and food quality control. This review also presents the theoretical analysis of fluid flow in porous media for the efficient handling and control of fluids. The limitations of PAD have also been discussed with an emphasis to concern on the transformation of such devices from laboratory to the consumer.
Collapse
Affiliation(s)
- Anushka
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Prasanta Kumar Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
4
|
Electrochemistry and Electrochemiluminescence of Resorufin Dye: Synergetic Reductive-Oxidation Boosted by Hydrogen Peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jackson S, Lee S, Badu-Tawiah AK. Automated Immunoassay Performed on a 3D Microfluidic Paper-Based Device for Malaria Detection by Ambient Mass Spectrometry. Anal Chem 2022; 94:5132-5139. [PMID: 35293204 DOI: 10.1021/acs.analchem.1c05530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) are emerging as a prominent platform for disease detection, specifically in developing countries. This paper device offer simplicity and affordability not typically seen in centralized laboratory settings. However, detection limits in μPADs are inadequate and often require test results to be read within a specific time interval to ensure accuracy. To overcome these challenges, we are developing an on-chip mass spectrometry (MS) detection strategy for immunoassays performed on paper substrates. Herein, we present our initial results from a proof-of-concept study toward the development of μPADs capable of storing immunoassay reagents within the confinements of the 3D device, automatic splitting of biofluid into four individual test zones, immuno-capture of the disease biomarker, and on-chip MS detection of the captured species. The reported study encourages the development of point-of-care and direct-to-customer testing using disposable μPADs to collect samples, followed by sensitive analysis using portable MSs. We demonstrate this capability using malaria Plasmodium falciparum histidine-rich protein 2 (PfHRP2) antigen detection.
Collapse
Affiliation(s)
- Sierra Jackson
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Suji Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Sinha A, Basu M, Chandna P. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:109-158. [PMID: 35033281 DOI: 10.1016/bs.pmbts.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The microfluidic industry has evolved through years with acquired scientific knowledge from different, and already developed industries. Consequently, a wide range of materials like silicon from the electronic industry to all the way, silicone, from the chemical engineering industry, has been spotted to solve similar challenges. Although a typical microfluidic chip, fabricated from glass or polymer substrates offers definite benefits, however, paper-based microfluidic analytical devices (μPADs) possess numerous special benefits for practical implementation at a lower price. Owing to these features, in recent years, paper microfluidics has drawn immense interest from researchers in industry and academia alike. These devices have wider applications with advantages like lower cost, speedy detection, user-easiness, biocompatibility, sensitivity, and specificity etc. when compared to other microfluidic devices. Therefore, these sensitive but affordable devices fit themselves into point-of-care (POC) testing with features in demand like natural disposability, situational flexibility, and the capability to store and analyze the target at the point of requirement. Gradually, advancements in fabrication technologies, assay development techniques, and improved packaging capabilities, have contributed significantly to the real-time identification and health investigation through paper microfluidics; however, the growth has not been limited to the biomedical field; industries like electronics, energy storage and many more have expanded substantially. Here, we represent an overall state of the paper-based microfluidic technology by covering the fundamentals, working principles, different fabrication procedures, applications for various needs and then to make things more practical, the real-life scenario and practical challenges involved in launching a device into the market have been revealed. To conclude, recent contribution of μPADs in the 2020 pandemic and potential future possibilities have been reviewed.
Collapse
|
7
|
D'Alton L, Nguyen P, Carrara S, Hogan CF. Intense near-infrared electrochemiluminescence facilitated by energy transfer in bimetallic Ir-Ru metallopolymers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Zhang D, Li C, Ji D, Wang Y. Paper-Based Microfluidic Sensors for Onsite Environmental Detection: A Critical Review. Crit Rev Anal Chem 2021; 52:1432-1449. [PMID: 33660571 DOI: 10.1080/10408347.2021.1886900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A newly developed research topic, fabricated paper-based microfluidic sensors, was discussed in the field of low-cost environmental detection. Distinguished with the traditional dipstick or lateral-flow setups, these paper-based microfluidic sensors can serve as a tool for onsite quantitative and semi-quantitative measurements, without risks to cause environmental pollution. They have attracted increasing interest since the first easy-fabricated paper-based setup reported by Whitesides group in 2007. Most of the publications utilized paper-based sensors in clinical detection. In recent years, some groups started to use these sensors in environmental measurement, leading to precise, easy operation, low-cost, and eco-friendly methods for onsite detection. In this review, paper-based microfluidic sensors were briefly introduced, followed by literatures review and discussion for future perspectives.
Collapse
Affiliation(s)
- Daohong Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| | - Dongli Ji
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| | - Yufei Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China.,Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, China
| |
Collapse
|
9
|
Jones A, Czarnecki P, Dhanapala L, Rusling JF. Multiplexed Protein Biomarker Detection with Microfluidic Electrochemical Immunoarrays. Methods Mol Biol 2021; 2237:69-82. [PMID: 33237409 DOI: 10.1007/978-1-0716-1064-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Electrochemistry is a multidisciplinary field encompassing the study of analytes in solution for detection and quantification. For the medical field, this brings opportunities to the clinical practice of disease detection through measurements of disease biomarkers. Specifically, panels of biomarkers offer an important future option that can enable physicians' access to blood, saliva, or urine bioassays for screening diseases, as well as monitoring the progression and response to therapy. Here, we describe the simultaneous detection of eight protein cancer biomarkers in a 30-min assay by a microfluidic electrochemical immunoarray.
Collapse
Affiliation(s)
- Abby Jones
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | | | | | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, CT, USA.
- School of Chemistry, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
10
|
Mobed A, Hasanzadeh M, Shadjou N, Hassanpour S, Saadati A, Agazadeh M. Immobilization of ssDNA on the surface of silver nanoparticles-graphene quantum dots modified by gold nanoparticles towards biosensing of microorganism. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104286] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Research and Application Progress of Paper-based Microfluidic Sample Preconcentration. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61203-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Liu MM, Lian X, Guo ZZ, Liu H, Lei Y, Chen Y, Chen W, Lin XH, Liu AL, Xia XH. Improving quantitative control and homogeneous distribution of samples on paper-based analytical devices via drop-on-demand inkjet printing. Analyst 2019; 144:4013-4023. [PMID: 31139775 DOI: 10.1039/c9an00481e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A standard desktop printer with multiple ink cartridges can accurately deposit a broad variety of biomaterials on microfluidic paper-based analytical devices (μPADs) which have been extensively applied to environmental monitoring and screening of food and beverage contamination. Finding ways to realize sample quantitative control by tuning the CMYK value, however, remains challenging. Herein, we studied the influence of the CMYK value on the ink volume jetted by ink cartridges. The regularity research on a single-color and two-colors was performed in two print mode-grayscale printing and color printing. The results demonstrated that the number of ink dots increased with the increase of the gray value and opacity value, which means that the amount of the bio-ink increases with the increase of the CMYK value. The 3,3',5,5'-tetramethylbenzidine-horseradish peroxidase-hydrogen peroxide, glucose oxidase-horseradish peroxidase and bull serum albumin-citrate buffer-tetrabromophenol blue systems were chosen as examples to prove the print regularity. Samples and assay reagents can be quantitatively deposited on a substrate by adjusting the CMYK value with as many as four ink cartridges. The present approach has been successfully applied to assay the targets in real serum samples, showing the potential application of the most common office piezoelectric printer in μPADs.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gao Y, Wu X, Wang Z, Luo P, Xu L, Zheng Q, Kuang H. A sensitive lateral flow immunoassay for the multiple residues of five adamantanes. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1612331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yifan Gao
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Zhongxing Wang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Pengjie Luo
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | | | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
14
|
Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible Electronics Based on Micro/Nanostructured Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801588. [PMID: 30066444 DOI: 10.1002/adma.201801588] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/02/2018] [Indexed: 05/26/2023]
Abstract
Over the past several years, a new surge of interest in paper electronics has arisen due to the numerous merits of simple micro/nanostructured substrates. Herein, the latest advances and principal issues in the design and fabrication of paper-based flexible electronics are highlighted. Following an introduction of the fascinating properties of paper matrixes, the construction of paper substrates from diverse functional materials for flexible electronics and their underlying principles are described. Then, notable progress related to the development of versatile electronic devices is discussed. Finally, future opportunities and the remaining challenges are examined. It is envisioned that more design concepts, working principles, and advanced papermaking techniques will be developed in the near future for the advanced functionalization of paper, paving the way for the mass production and commercial applications of flexible paper-based electronic devices.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Xin Cheng
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| |
Collapse
|
15
|
Guo W, Ding H, Gu C, Liu Y, Jiang X, Su B, Shao Y. Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. J Am Chem Soc 2018; 140:15904-15915. [DOI: 10.1021/jacs.8b09422] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanhuan Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xuecheng Jiang
- Hangzhou Genesea Biotechnology Limited Company, Hangzhou 315000, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Singh AT, Lantigua D, Meka A, Taing S, Pandher M, Camci-Unal G. Paper-Based Sensors: Emerging Themes and Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2838. [PMID: 30154323 PMCID: PMC6164297 DOI: 10.3390/s18092838] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Paper is a versatile, flexible, porous, and eco-friendly substrate that is utilized in the fabrication of low-cost devices and biosensors for rapid detection of analytes of interest. Paper-based sensors provide affordable platforms for simple, accurate, and rapid detection of diseases, in addition to monitoring food quality, environmental and sun exposure, and detection of pathogens. Paper-based devices provide an inexpensive technology for fabrication of simple and portable diagnostic systems that can be immensely useful in resource-limited settings, such as in developing countries or austere environments, where fully-equipped facilities and highly trained medical staff are absent. In this work, we present the different types of paper that are currently utilized in fabrication of paper-based sensors, and common fabrication techniques ranging from wax printing to origami- and kirigami-based approaches. In addition, we present different detection techniques that are employed in paper-based sensors such as colorimetric, electrochemical, and fluorescence detection, chemiluminescence, and electrochemiluminescence, as well as their applications including disease diagnostics, cell cultures, monitoring sun exposure, and analysis of environmental reagents including pollutants. Furthermore, main advantages and disadvantages of different types of paper and future trends for paper-based sensors are discussed.
Collapse
Affiliation(s)
- Amrita Tribhuwan Singh
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Darlin Lantigua
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Akhil Meka
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Shainlee Taing
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Manjot Pandher
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
17
|
Wu M, Lai Q, Ju Q, Li L, Yu HD, Huang W. Paper-based fluorogenic devices for in vitro diagnostics. Biosens Bioelectron 2018; 102:256-266. [DOI: 10.1016/j.bios.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022]
|
18
|
Akyazi T, Basabe-Desmonts L, Benito-Lopez F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 2018; 1001:1-17. [DOI: 10.1016/j.aca.2017.11.010] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
|
19
|
Asano H, Shiraishi Y. Microfluidic Paper-based Analytical Device for the Determination of Hexavalent Chromium by Photolithographic Fabrication Using a Photomask Printed with 3D Printer. ANAL SCI 2018; 34:71-74. [PMID: 29321462 DOI: 10.2116/analsci.34.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article describes a simple and inexpensive microfluidic paper-based analytical device (μPAD) for the determination of hexavalent chromium (CrVI) in water samples. The μPADs were fabricated on paper by photolithography using a photomask printed with a 3D printer and functionalized with reagents for a colorimetric assay. In the μPAD, CrVI reacts with 1,5-diphenylcarbazide to form a violet-colored complex. Images of μPADs were captured with a digital camera; then the red, green, and blue color intensity of each detection zone were measured using images processing software. The green intensity analysis was the best sensitive among the RGB color. A linear working range (40 - 400 ppm; R2 = 0.981) between the CrVI and green intensity was obtained with a detection limit of 30 ppm. All of the recoveries were between 94 and 109% in recovery studies on water samples, and good results were obtained.
Collapse
Affiliation(s)
- Hitoshi Asano
- Center for Liberal Arts and Sciences, Tokyo University of Science, Yamaguchi
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Tokyo University of Science, Yamaguchi
| |
Collapse
|
20
|
Hua MZ, Li S, Wang S, Lu X. Detecting Chemical Hazards in Foods Using Microfluidic Paper-Based Analytical Devices (μPADs): The Real-World Application. MICROMACHINES 2018; 9:E32. [PMID: 30393308 PMCID: PMC6187612 DOI: 10.3390/mi9010032] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/06/2023]
Abstract
Food safety remains one of the most important issues in most countries and the detection of food hazards plays a key role in the systematic approach to ensuring food safety. Rapid, easy-to-use and low-cost analytical tools are required to detect chemical hazards in foods. As a promising candidate, microfluidic paper-based analytical devices (μPADs) have been rarely applied to real food samples for testing chemical hazards, although numerous papers have been published in this field in the last decade. This review discusses the current status and concerns of the μPAD applications in the detection of chemical hazards in foods from the perspective of food scientists, mainly for an audience with a background in mechanical and chemical engineering who may have interests in exploring the potential of μPAD to address real-world food safety issues.
Collapse
Affiliation(s)
- Marti Z Hua
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
21
|
SUNUNTA S, RATTANARAT P, CHAILAPAKUL O, PRAPHAIRAKSIT N. Microfluidic Paper-based Analytical Devices for Determination of Creatinine in Urine Samples. ANAL SCI 2018; 34:109-113. [DOI: 10.2116/analsci.34.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Suphanan SUNUNTA
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Poomrat RATTANARAT
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Orawon CHAILAPAKUL
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University
| | - Narong PRAPHAIRAKSIT
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University
| |
Collapse
|
22
|
Almeida MIG, Jayawardane BM, Kolev SD, McKelvie ID. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta 2018; 177:176-190. [DOI: 10.1016/j.talanta.2017.08.072] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/27/2022]
|
23
|
Chemiluminescence assay for detection of 2-hydroxyfluorene using the G-quadruplex DNAzyme-H 2O 2-luminol system. Mikrochim Acta 2017; 185:54. [PMID: 29594378 DOI: 10.1007/s00604-017-2555-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
A chemiluminescence (CL) based assay is described for the determination of the environmental pollutant 2-hydroxyfluorene (2-HOFlu) which is found to inhibit the CL of a system composed of the G-quadruplex/hemin complex (a DNAzyme), H2O2, and luminol. The G-rich aptamer PW17 is transformed to a potassium(I)-stabilized G-quadruplex-hemin complex which displays peroxidase-like activity to catalyze the oxidation of luminol by H2O2 which is accompanied by strong blue CL emission. On addition of 2-HOFlu, it will participate in the G-quadruplex DNAzyme-mediated oxidation by H2O2. As a result, CL intensity is decreased. The difference in CL intensity (ΔI) before and after addition of 2-HOFlu serves as the signal for its quantitation. In water of pH 9.0, a linear relationship is found for the 1 nM to 1 μM concentration range, with a 0.2 nM detection limit. The assay is highly selective over other fluorene derivatives. It was successfully applied to the determination of 2-HOFlu in spiked lake water samples. The method is rapid, cost-effective and convenient. Conceivably, it has a wide scope in that it may be applied to other target pollutants for which G-quadruplexes are available. Graphical abstract A chemiluminescence (CL) assay is described for the determination of the environmental pollutant 2-hydroxyfluorene (2-HOFlu) based on the inhibition of the CL system composed of the G-quadruplex/hemin complex (a DNAzyme), H2O2, and luminol.
Collapse
|
24
|
Yao Y, Zhang C. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed Microdevices 2017; 18:92. [PMID: 27628060 DOI: 10.1007/s10544-016-0115-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel screen-printed microfluidic paper-based analytical device with all-carbon electrode-enabled electrochemical assay (SP-ACE-EC-μPAD) has been developed. The fabrication of these devices involved wax screen-printing, which was simple, low-cost and energy-efficient. The working, counter and reference electrodes were screen-printed using carbon ink on the patterned paper devices. Different wax screen-printing processes were examined and optimized, which led to an improved method with a shorter heating time (~5 s) and a lower heating temperature (75 °C). Different printing screens were examined, with a 300-mesh polyester screen yielding the highest quality wax screen-prints. The carbon electrodes were screen-printed on the μPADs and then examined using cyclic voltammetry. The analytical performance of the SP-ACE-EC-μPADs for the detection of glucose and uric acid in standard solutions was investigated. The results were reproducible, with a linear relationship [R(2) = 0.9987 (glucose) or 0.9997 (uric acid)] within the concentration range of interest, and with detection limits as low as 0.35 mM (glucose) and 0.08 mM (uric acid). To determine the clinical utility of the μPADs, chronoamperometry was used to analyze glucose and uric acid in real urine samples using the standard addition method. Our devices were able to detect the analytes of interest in complex real-world biological samples, and have the potential for use in a wide variety of applications.
Collapse
Affiliation(s)
- Yong Yao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
25
|
Gross EM, Durant HE, Hipp KN, Lai RY. Electrochemiluminescence Detection in Paper-Based and Other Inexpensive Microfluidic Devices. ChemElectroChem 2017. [DOI: 10.1002/celc.201700426] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Erin M. Gross
- Department of Chemistry; Creighton University; Omaha NE 68178 USA
| | - Hannah E. Durant
- Department of Chemistry; Creighton University; Omaha NE 68178 USA
| | - Kenneth N. Hipp
- Department of Chemistry; University of Nebraska-Lincoln; Lincoln NE 68588-0304 USA
| | - Rebecca Y. Lai
- Department of Chemistry; University of Nebraska-Lincoln; Lincoln NE 68588-0304 USA
| |
Collapse
|
26
|
Guo W, Liu Y, Cao Z, Su B. Imaging Analysis Based on Electrogenerated Chemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Kadimisetty K, Malla S, Rusling JF. Automated 3-D Printed Arrays to Evaluate Genotoxic Chemistry: E-Cigarettes and Water Samples. ACS Sens 2017; 2:670-678. [PMID: 28723166 DOI: 10.1021/acssensors.7b00118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel, automated, low cost, three-dimensional (3-D) printed microfluidic array was developed to detect DNA damage from metabolites of chemicals in environmental samples. The electrochemiluminescent (ECL) detection platform incorporates layer-by-layer (LbL) assembled films of microsomal enzymes, DNA and an ECL-emitting ruthenium metallopolymer in ∼10 nm deep microwells. Liquid samples are introduced into the array, metabolized by the human enzymes, products react with DNA if possible, and DNA damage is detected by ECL with a camera. Measurements of relative DNA damage by the array assess the genotoxic potential of the samples. The array analyzes three samples simultaneously in 5 min. Measurement of cigarette and e-cigarette smoke extracts and polluted water samples was used to establish proof of concept. Potentially genotoxic reactions from e-cigarette vapor similar to smoke from conventional cigarettes were demonstrated. Untreated wastewater showed a high genotoxic potential compared to negligible values for treated wastewater from a pollution control treatment plant. Reactivity of chemicals known to produce high rates of metabolite-related DNA damage were measured, and array results for environmental samples were expressed in terms of equivalent responses from these standards to assess severity of possible DNA damage. Genotoxic assessment of wastewater samples during processing also highlighted future on-site monitoring applications.
Collapse
Affiliation(s)
- Karteek Kadimisetty
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Spundana Malla
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - James F. Rusling
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Storrs, Connecticut 06269, United States
- Department
of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06032, United States
- School
of Chemistry, National University of Ireland at Galway, Galaway, Ireland
| |
Collapse
|
28
|
Fernandes SC, Walz JA, Wilson DJ, Brooks JC, Mace CR. Beyond Wicking: Expanding the Role of Patterned Paper as the Foundation for an Analytical Platform. Anal Chem 2017; 89:5654-5664. [PMID: 28406607 DOI: 10.1021/acs.analchem.6b03860] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While a number of assays for soluble analytes have been developed using paper-based microfluidic devices, the detection and analysis of blood cells has remained an outstanding challenge. In this Feature, we discuss how the properties of paper determine the performance of paper-based microfluidic devices and permit the design of cellular assays, which can ultimately impact disparities in healthcare that exist in limited-resource settings.
Collapse
Affiliation(s)
- Syrena C Fernandes
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jenna A Walz
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Daniel J Wilson
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jessica C Brooks
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
29
|
Moschou D, Tserepi A. The lab-on-PCB approach: tackling the μTAS commercial upscaling bottleneck. LAB ON A CHIP 2017; 17:1388-1405. [PMID: 28294256 DOI: 10.1039/c7lc00121e] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Commercialization of lab-on-a-chip devices is currently the "holy grail" within the μTAS research community. While a wide variety of highly sophisticated chips which could potentially revolutionize healthcare, biology, chemistry and all related disciplines are increasingly being demonstrated, very few chips are or can be adopted by the market and reach the end-users. The major inhibition factor lies in the lack of an established commercial manufacturing technology. The lab-on-printed circuit board (lab-on-PCB) approach, while suggested many years ago, only recently has re-emerged as a very strong candidate, owing to its inherent upscaling potential: the PCB industry is well established all around the world, with standardized fabrication facilities and processes, but commercially exploited currently only for electronics. Owing to these characteristics, complex μTASs integrating microfluidics, sensors, and electronics on the same PCB platform can easily be upscaled, provided more processes and prototypes adapted to the PCB industry are proposed. In this article, we will be reviewing for the first time the PCB-based prototypes presented in the literature to date, highlighting the upscaling potential of this technology. The authors believe that further evolution of this technology has the potential to become a much sought-after standardized industrial fabrication technology for low-cost μTASs, which could in turn trigger the projected exponential market growth of μTASs, in a fashion analogous to the revolution of Si microchips via the CMOS industry establishment.
Collapse
Affiliation(s)
- Despina Moschou
- Centre for Advanced Sensor Technologies, Department of Electronic and Electrical Engineering, University of Bath, BA2 7AY, Bath, UK.
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou and 27 Neapoleos Str., 153 41 Aghia Paraskevi, Attiki, Greece.
| |
Collapse
|
30
|
Safavieh M, Kaul V, Khetani S, Singh A, Dhingra K, Kanakasabapathy MK, Draz MS, Memic A, Kuritzkes DR, Shafiee H. Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. NANOSCALE 2017; 9:1852-1861. [PMID: 27845796 PMCID: PMC5695240 DOI: 10.1039/c6nr06417e] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rapid and sensitive point-of-care diagnostics are of paramount importance for early detection of infectious diseases and timely initiation of treatment. Here, we present cellulose paper and flexible plastic chips with printed graphene-modified silver electrodes as universal point-of-care diagnostic tools for the rapid and sensitive detection of microbial pathogens or nucleic acids through utilizing electrical sensing modality and loop-mediated isothermal amplification (LAMP). We evaluated the ability of the developed paper-based assay to detect (i) viruses on cellulose-based paper microchips without implementing amplification in samples with viral loads between 106 and 108 copies per ml, and (ii) amplified HIV-1 nucleic acids in samples with viral loads between 10 fg μl-1 and 108 fg μl-1. The target HIV-1 nucleic acid was amplified using the RT-LAMP technique and detected through the electrical sensing of LAMP amplicons for a broad range of RNA concentrations between 10 fg μl-1 and 108 fg μl-1 after 40 min of amplification time. Our assay may be used for antiretroviral therapy monitoring where it meets the sensitivity requirement of the World Health Organization guidelines. Such a paper microchip assay without the amplification step may also be considered as a simple and inexpensive approach for acute HIV detection where maximum viral replication occurs.
Collapse
Affiliation(s)
- Mohammadali Safavieh
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Vivasvat Kaul
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sultan Khetani
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Anupriya Singh
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Karan Dhingra
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mohamed Shehata Draz
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Adnan Memic
- Center for Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Hadi Shafiee
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
31
|
A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. Anal Chim Acta 2017; 957:40-46. [PMID: 28107832 DOI: 10.1016/j.aca.2017.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/19/2016] [Accepted: 01/02/2017] [Indexed: 11/20/2022]
Abstract
This paper describes the fabrication of 2D and 3D microfluidic paper-based analytical devices (μPADs) for monitoring glucose, total protein, and nitrite in blood serum and artificial urine. A new method of cutting and sealing filter paper to construct μPADs was demonstrated. Using an inexpensive home cutter printer soft cellulose-based filter paper was easily and precisely cut to produce pattern hydrophilic microchannels. 2D and 3D μPADs were designed with three detection zones each for the colorimetric detection of the analytes. A small volume of samples was added to the μPADs, which was photographed after 15 min using a digital camera. Both μPADs presented an excellent analytical performance for all analytes. The 2D device was applied in artificial urine samples and reached limits of detection (LODs) of 0.54 mM, 5.19 μM, and 2.34 μM for glucose, protein, and nitrite, respectively. The corresponding LODs of the 3D device applied for detecting the same analytes in artificial blood serum were 0.44 mM, 1.26 μM, and 4.35 μM.
Collapse
|
32
|
Microchip-based ultrafast serodiagnostic assay for tuberculosis. Sci Rep 2016; 6:35845. [PMID: 27775039 PMCID: PMC5075771 DOI: 10.1038/srep35845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022] Open
Abstract
Access to point-of-care (POC), rapid, inexpensive, sensitive, and instrument-free tests for the diagnosis of tuberculosis (TB) remains a major challenge. Here, we report a simple and low-cost microchip-based TB ELISA (MTBE) platform for the detection of anti-mycobacterial IgG in plasma samples in less than 15 minutes. The MTBE employs a flow-less, magnet-actuated, bead-based ELISA for simultaneous detection of IgG responses against multiple mycobacterial antigens. Anti-trehalose 6,6′-dimycolate (TDM) IgG responses were the strongest predictor for differentiating active tuberculosis (ATB) from healthy controls (HC) and latent tuberculosis infections (LTBI). The TDM-based MTBE demonstrated superior sensitivity compared to sputum microscopy (72% vs. 56%) with 80% and 63% positivity among smear-positive and smear-negative confirmed ATB samples, respectively. Receiver operating characteristic analysis indicated good accuracy for differentiating ATB from HC (AUC = 0.77). Thus, TDM-based MTBE can be potentially used as a screening device for rapid diagnosis of active TB at the POC.
Collapse
|
33
|
Song B, Shen M, Jiang D, Malla S, Mosa IM, Choudhary D, Rusling JF. Microfluidic array for simultaneous detection of DNA oxidation and DNA-adduct damage. Analyst 2016; 141:5722-5729. [PMID: 27517117 PMCID: PMC5048564 DOI: 10.1039/c6an01237j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exposure to chemical pollutants and pharmaceuticals may cause health issues caused by metabolite-related toxicity. This paper reports a new microfluidic electrochemical sensor array with the ability to simultaneously detect common types of DNA damage including oxidation and nucleobase adduct formation. Sensors in the 8-electrode screen-printed carbon array were coated with thin films of metallopolymers osmium or ruthenium bipyridyl-poly(vinylpyridine) chloride (OsPVP, RuPVP) along with DNA and metabolic enzymes by layer-by-layer electrostatic assembly. After a reaction step in which test chemicals and other necessary reagents flow over the array, OsPVP selectively detects oxidized guanines on the DNA strands, and RuPVP detects DNA adduction by metabolites on nucleobases. We demonstrate array performance for test chemicals including 17β-estradiol (E2), its metabolites 4-hydroxyestradiol (4-OHE2), 2-hydroxyestradiol (2-OHE2), catechol, 2-nitrosotoluene (2-NO-T), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 2-acetylaminofluorene (2-AAF). Results revealed DNA-adduct and oxidation damage in a single run to provide a metabolic-genotoxic chemistry screen. The array measures damage directly in unhydrolyzed DNA, and is less expensive, faster, and simpler than conventional methods to detect DNA damage. The detection limit for oxidation is 672 8-oxodG per 106 bases. Each sensor requires only 22 ng of DNA, so the mass detection limit is 15 pg (∼10 pmol) 8-oxodG.
Collapse
Affiliation(s)
- Boya Song
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yuan M, Alocilja EC, Chakrabartty S. Self-Powered Wireless Affinity-Based Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled RFID Antennas. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:799-806. [PMID: 27214914 DOI: 10.1109/tbcas.2016.2535245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology.
Collapse
|
35
|
Busa LSA, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M. Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis. MICROMACHINES 2016; 7:E86. [PMID: 30404261 PMCID: PMC6189793 DOI: 10.3390/mi7050086] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023]
Abstract
Food and water contamination cause safety and health concerns to both animals and humans. Conventional methods for monitoring food and water contamination are often laborious and require highly skilled technicians to perform the measurements, making the quest for developing simpler and cost-effective techniques for rapid monitoring incessant. Since the pioneering works of Whitesides' group from 2007, interest has been strong in the development and application of microfluidic paper-based analytical devices (μPADs) for food and water analysis, which allow easy, rapid and cost-effective point-of-need screening of the targets. This paper reviews recently reported μPADs that incorporate different detection methods such as colorimetric, electrochemical, fluorescence, chemiluminescence, and electrochemiluminescence techniques for food and water analysis.
Collapse
Affiliation(s)
- Lori Shayne Alamo Busa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
- Physical Sciences Department, Nueva Vizcaya State University, Bayombong, Nueva Vizcaya 3700, Philippines.
| | - Saeed Mohammadi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
36
|
Wu L, Zhang Y, Wang Y, Ge S, Liu H, Yan M, Yu J. A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1827-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Meredith NA, Quinn C, Cate DM, Reilly TH, Volckens J, Henry CS. Paper-based analytical devices for environmental analysis. Analyst 2016; 141:1874-87. [PMID: 26901771 PMCID: PMC9423764 DOI: 10.1039/c5an02572a] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The field of paper-based microfluidics has experienced rapid growth over the past decade. Microfluidic paper-based analytical devices (μPADs), originally developed for point-of-care medical diagnostics in resource-limited settings, are now being applied in new areas, such as environmental analyses. Low-cost paper sensors show great promise for on-site environmental analysis; the theme of ongoing research complements existing instrumental techniques by providing high spatial and temporal resolution for environmental monitoring. This review highlights recent applications of μPADs for environmental analysis along with technical advances that may enable μPADs to be more widely implemented in field testing.
Collapse
Affiliation(s)
- Nathan A Meredith
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Casey Quinn
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - David M Cate
- Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA and Intellectual Ventures, Bellevue, Washington 98007, USA
| | - Thomas H Reilly
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. and Access Sensor Technologies, LLC, Fort Collins, Colorado 80524, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA. and Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. and Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA and Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
38
|
Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens Bioelectron 2016; 77:774-89. [DOI: 10.1016/j.bios.2015.10.032] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/27/2015] [Accepted: 10/10/2015] [Indexed: 01/06/2023]
|
39
|
Dixit CK, Kadimisetty K, Otieno BA, Tang C, Malla S, Krause CE, Rusling JF. Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst 2016; 141:536-47. [PMID: 26525998 PMCID: PMC4701586 DOI: 10.1039/c5an01829c] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.
Collapse
Affiliation(s)
- Chandra K. Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | - Brunah A. Otieno
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Chi Tang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Spundana Malla
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Colleen E. Krause
- Department of Chemistry, University of Hartford, West Hartford, CT 06117, USA
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- School of Chemistry, National University of Ireland at Galway, Ireland
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
40
|
Busa LSA, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M. A competitive immunoassay system for microfluidic paper-based analytical detection of small size molecules. Analyst 2016; 141:6598-6603. [DOI: 10.1039/c6an01475e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A colorimetric competitive immunoassay system involving the catalytic oxidation of TMB by H2O2 was developed for the microfluidic paper-based detection of small size molecules.
Collapse
Affiliation(s)
- Lori Shayne Alamo Busa
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
- Natural Sciences Department
| | - Saeed Mohammadi
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Akihiko Ishida
- Division of Applied Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Hirofumi Tani
- Division of Applied Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| |
Collapse
|
41
|
Shamsi MH, Choi K, Ng AHC, Chamberlain MD, Wheeler AR. Electrochemiluminescence on digital microfluidics for microRNA analysis. Biosens Bioelectron 2015; 77:845-52. [PMID: 26516684 DOI: 10.1016/j.bios.2015.10.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
Abstract
Electrochemiluminescence (ECL) is a sensitive analytical technique with great promise for biological applications, especially when combined with microfluidics. Here, we report the first integration of ECL with digital microfluidics (DMF). ECL detectors were fabricated into the ITO-coated top plates of DMF devices, allowing for the generation of light from electrically excited luminophores in sample droplets. The new system was characterized by making electrochemical and ECL measurements of soluble mixtures of tris(phenanthroline)ruthenium(II) and tripropylamine (TPA) solutions. The system was then validated by application to an oligonucleotide hybridization assay, using magnetic particles bearing 21-mer, deoxyribose analogues of the complement to microRNA-143 (miRNA-143). The system detects single nucleotide mismatches with high specificity, and has a limit of detection of 1.5 femtomoles. The system is capable of detecting miRNA-143 in cancer cell lysates, allowing for the discrimination between the MCF-7 (less aggressive) and MDA-MB-231 (more aggressive) cell lines. We propose that DMF-ECL represents a valuable new tool in the microfluidics toolbox for a wide variety of applications.
Collapse
Affiliation(s)
- Mohtashim H Shamsi
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1
| | - Kihwan Choi
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1
| | - Alphonsus H C Ng
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, Canada M5S 3G9
| | - M Dean Chamberlain
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S 3H6; Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON, Canada M5S 3E1; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, Canada M5S 3G9.
| |
Collapse
|
42
|
Song MB, Joung HA, Oh YK, Jung K, Ahn YD, Kim MG. Tear-off patterning: a simple method for patterning nitrocellulose membranes to improve the performance of point-of-care diagnostic biosensors. LAB ON A CHIP 2015; 15:3006-3012. [PMID: 26062104 DOI: 10.1039/c5lc00521c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article describes a new method, referred to as "tear-off patterning," for patterning nitrocellulose (NC) membranes in order to fabricate NC-based point-of-care (POC) diagnostic devices. Paper-based microfluidic sensors usually employ hydrophobic barrier coatings such as paraffin wax on either paper or membranes. Herein, complex patterns were fabricated by stamping the target area with dimethyl sulfoxide before tearing off the stamped area. Fluid flow and morphological analyses were performed in order to characterize the patterned membranes. Furthermore, the myoglobin and creatine kinase-MB levels in human serum were measured simultaneously using a dual-fluidic-channel-patterned NC membrane in order to confirm the usefulness of the patterning method for fabricating POC biosensors. The proposed method for patterning NC membranes offers clear advantages, such as the ability to fabricate complex designs and patterns without a hydrophobic barrier after protein immobilization in a laboratory and in a simple, low-cost manner. We believe that this method can be used to develop various POC diagnostic biosensors at the research and development stage and can help improve the performance and features of POC diagnostic devices.
Collapse
Affiliation(s)
- Mun-Bum Song
- INGIbio Co. Ltd., R&D Center, 206, APRI, 123 Chemdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Guan W, Zhang C, Liu F, Liu M. Chemiluminescence detection for microfluidic cloth-based analytical devices (μCADs). Biosens Bioelectron 2015; 72:114-20. [PMID: 25974173 DOI: 10.1016/j.bios.2015.04.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/11/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
In this work, we report the first demonstration of chemiluminescence (CL) detection for microfluidic cloth-based analytical devices (μCADs). Wax screen-printing is used to make cloth channels or chambers, and enzyme-catalyzed CL reactions are imaged using an inexpensive charge coupled device (CCD). We first evaluate the relationship between the wicking rate and the length/width of cloth channel. For our device, the channel length and width between the loading and detection chambers are optimized to be 10mm and 3mm. Thus, the detection procedure can be accomplished in about 15s on a cloth-based device (15 × 30 mm(2)) by using 25-μL sample spotted on it. Next, several parameters affecting cloth-based CL intensity are studied, including exposure time, pH, and concentrations of luminol and enzyme. Under optimal conditions, a linear relationship is obtained between CL intensity and hydrogen peroxide (H2O2) concentrations in the range of 0.5-5mM with a detection limit of 0.46 mM. Finally, the utility of cloth-based CL is demonstrated for determination of H2O2 residues in meat samples. On our device, the chicken meat soaked for 6h with 3% H2O2 can be detected. Moreover, the supernatant of grinded meat sample can be directly applied, without need for other treatments. We believe that μCADs with CL detection could provide a new platform of rapid and low-cost assays for use in areas such as food detection and environmental monitoring.
Collapse
Affiliation(s)
- Wenrong Guan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Feifei Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Min Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
44
|
Arrastia M, Avoundjian A, Ehrlich PS, Eropkin M, Levine L, Gomez FA. Development of a microfluidic-based assay on a novel nitrocellulose platform. Electrophoresis 2015; 36:884-8. [DOI: 10.1002/elps.201400421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/24/2014] [Accepted: 12/07/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Mary Arrastia
- Department of Chemistry and Biochemistry; California State University; Los Angeles CA USA
| | - Ani Avoundjian
- Department of Chemistry and Biochemistry; California State University; Los Angeles CA USA
| | | | - Micah Eropkin
- Department of Chemistry and Biochemistry; California State University; Los Angeles CA USA
| | | | - Frank A. Gomez
- Department of Chemistry and Biochemistry; California State University; Los Angeles CA USA
| |
Collapse
|
45
|
Yetisen AK. Point-of-Care Diagnostics. HOLOGRAPHIC SENSORS 2015. [PMCID: PMC7121962 DOI: 10.1007/978-3-319-13584-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rapid tests that are low-cost and portable are the first line of defence in healthcare systems. Dipstick and lateral-flow are the two universal assay formats as they are lightweight and compact, and provide qualitative results without external instrumentation. However, existing formats have limitations in the quantification of analyte concentrations. Hence, the demand for sample preparation, improved sensitivity and user-interface has challenged the commercial products. Recently, capabilities, sensors and readout devices were expanded to multiplexable assays platforms, which might transcend the capabilities of existing design format of diagnostic tests. This chapter outlines the evolution of diagnostic devices and current trends in the development of qualitative and quantitative sensing devices for applications in healthcare, veterinary medicine, environmental monitoring and food safety. The chapter also discusses design parameters for diagnostics, their functionalisation to increase the capabilities and the performance, emerging sensing platforms and readout technologies. The factors which limit the emerging rapid diagnostics to become commercial products are also discussed.
Collapse
|
46
|
Tang CK, Vaze A, Rusling JF. Paper-based electrochemical immunoassay for rapid, inexpensive cancer biomarker protein detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:8878-8881. [PMID: 25431626 PMCID: PMC4242424 DOI: 10.1039/c4ay01962h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Inexpensive, reusable electrochemical sensor chips were fabricated from gold CDs. All reagents were loaded onto a paper disk sequentially, then placed on the chip to detect cancer biomarker prostate specific antigen (PSA) in serum at pg mL-1 levels in ∼15 mins.
Collapse
Affiliation(s)
- C K Tang
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA
| | - A Vaze
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA
| | - J F Rusling
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA ; Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA ; Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032 ; School of Chemistry, National University of Ireland at Galway, Ireland
| |
Collapse
|
47
|
Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent Developments in Paper-Based Microfluidic Devices. Anal Chem 2014; 87:19-41. [PMID: 25375292 DOI: 10.1021/ac503968p] [Citation(s) in RCA: 709] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David M. Cate
- Department
of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jaclyn A. Adkins
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jaruwan Mettakoonpitak
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles S. Henry
- Department
of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
48
|
|
49
|
Wu L, Ma C, Ge L, Kong Q, Yan M, Ge S, Yu J. Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosens Bioelectron 2014; 63:450-457. [PMID: 25128625 DOI: 10.1016/j.bios.2014.07.077] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/11/2022]
Abstract
The detection of cancer cells is important and fundamental for cancer diagnosis and therapy, which has attracted considerable interest recently. Although traditional cyto-sensors have been widely explored due to their high sensitivity and selectivity, it is still a challenge to develop a low-cost, portable, disposable, fast, and easy-to-use cancer cell detection method for applying in the field of cancer diagnosis and therapy. Herein, to address these challenges, we developed a microfluidic paper-based electrochemiluminescence origami cyto-device (μ-PECLOC), in which aptamers modified 3D macroporous Au-paper electrodes were employed as the working electrodes and efficient platforms for the specific cancer cells capture. Owing to the effective disproportionation of hydrogen peroxide and specific recognition of mannose on cell surface, concanavalin-A conjugated porous AuPd alloy nanoparticles were introduced into this μ-PECLOC as the catalytically promoted nanolabels for peroxydisulfate ECL system. Under the optimal conditions, the proposed μ-PECLOC exhibited excellent analytical performance with good stability, reproducibility, and accuracy, towards the cyto-sensing of four types of cancer cells indicating the potential applications to facilitate effective and multiple early cancer diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Ludan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chao Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lei Ge
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qingkun Kong
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
50
|
Ferrer IM, Valadez H, Estala L, Gomez FA. Paper microfluidic-based enzyme catalyzed double microreactor. Electrophoresis 2014; 35:2417-9. [PMID: 24913741 DOI: 10.1002/elps.201400091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022]
Abstract
We describe a paper microfluidic-based enzyme catalyzed double microreactor assay using fluorescent detection. Here, solutions of lactate dehydrogenase (LDH) and diaphorase (DI) were directly spotted onto the microfluidic paper-based analytical device (μPAD). Samples containing lactic acid, resazurin, and nicotinamide adenine dinucleotide oxidized form (NAD(+) ), potassium chloride (KCl), and BSA, in MES buffer were separately spotted onto the μPAD and MES buffer flowed through the device. A cascade reaction occurs upon the sample spot overlapping with LDH to form pyruvate and nicotinamide adenine dinucleotide reduced form (NADH). Subsequently, NADH is used in the conversion of resazurin to fluorescent resorufin by DI. The μPAD avoids the need of surface functionalization or enzyme immobilization steps. These microreactor devices are low cost and easy to fabricate and effect reaction based solely on buffer capillary action.
Collapse
Affiliation(s)
- Ivonne M Ferrer
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, USA
| | | | | | | |
Collapse
|