1
|
Wu H, Zhang H, Yan R, Li S, Guo X, Qiu L, Yao Y. Limosilactobacillus Regulating Microbial Communities to Overcome the Hydrolysis Bottleneck with Efficient One-Step Co-Production of H 2 and CH 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406119. [PMID: 39264245 DOI: 10.1002/advs.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The efficient co-production of H2 and CH4 via anaerobic digestion (AD) requires separate stages, as it cannot yet be achieved in one step. Lactic acid bacteria (LAB) (Limosilactobacillus) release H2 and acetate by enhancing hydrolysis, potentially increasing CH4 production with simultaneous H2 accumulation. This study investigated the enhanced effect of one-step co-production of H2 and CH4 in AD by LAB and elucidated its enhancement mechanisms. The results showed that 236.3 times increase in H2 production and 7.1 times increase in CH4 production are achieved, resulting in profits of 469.39 USD. Model substrates lignocellulosic straw, sodium acetate, and H2 confirmes LAB work on the hydrolysis stage and subsequent sustainable volatile fatty acid production during the first 6 days of AD. In this stage, the enrichment of Limosilactobacillus carrying bglB and xynB, the glycolysis pathway, and the high activity of protease, acetate kinase, and [FeFe] hydrogenase, jointly achieved rapid acetate and H2 accumulation, driving hydrogenotrophic methanogenesis dominated. From day 7 to 24, with enriched Methanosarcina, and increased methenyltetrahydromethanopterin hydrogenase activity, continuously produced acetate led to the mainly acetoclastic methanogenesis shift from hydrogenotrophic methanogenesis. The power generation capacity of LAB-enhanced AD is 333.33 times that of China's 24,000 m3 biogas plant.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ruixiao Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Suqi Li
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
2
|
Wang YL, Ikuma K, Brown AMV, Deonarine A. Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124117. [PMID: 38714231 DOI: 10.1016/j.envpol.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024]
Abstract
Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amrika Deonarine
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
3
|
Yunda E, Gutensohn M, Ramstedt M, Björn E. Methylmercury formation in biofilms of Geobacter sulfurreducens. Front Microbiol 2023; 14:1079000. [PMID: 36712188 PMCID: PMC9880215 DOI: 10.3389/fmicb.2023.1079000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction Mercury (Hg) is a major environmental pollutant that accumulates in biota predominantly in the form of methylmercury (MeHg). Surface-associated microbial communities (biofilms) represent an important source of MeHg in natural aquatic systems. In this work, we report MeHg formation in biofilms of the iron-reducing bacterium Geobacter sulfurreducens. Methods Biofilms were prepared in media with varied nutrient load for 3, 5, or 7 days, and their structural properties were characterized using confocal laser scanning microscopy, cryo-scanning electron microscopy and Fourier-transform infrared spectroscopy. Results Biofilms cultivated for 3 days with vitamins in the medium had the highest surface coverage, and they also contained abundant extracellular matrix. Using 3 and 7-days-old biofilms, we demonstrate that G. sulfurreducens biofilms prepared in media with various nutrient load produce MeHg, of which a significant portion is released to the surrounding medium. The Hg methylation rate constant determined in 6-h assays in a low-nutrient assay medium with 3-days-old biofilms was 3.9 ± 2.0 ∙ 10-14 L ∙ cell-1 ∙ h-1, which is three to five times lower than the rates found in assays with planktonic cultures of G. sulfurreducens in this and previous studies. The fraction of MeHg of total Hg within the biofilms was, however, remarkably high (close to 50%), and medium/biofilm partitioning of inorganic Hg (Hg(II)) indicated low accumulation of Hg(II) in biofilms. Discussion These findings suggest a high Hg(II) methylation capacity of G. sulfurreducens biofilms and that Hg(II) transfer to the biofilm is the rate-limiting step for MeHg formation in this systems.
Collapse
|
4
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
5
|
Isokpehi RD, McInnis DS, Destefano AM, Johnson GS, Walker AD, Hall YA, Mapp BW, Johnson MO, Simmons SS. Bioinformatics Investigations of Universal Stress Proteins from Mercury-Methylating Desulfovibrionaceae. Microorganisms 2021; 9:microorganisms9081780. [PMID: 34442859 PMCID: PMC8401546 DOI: 10.3390/microorganisms9081780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
The presence of methylmercury in aquatic environments and marine food sources is of global concern. The chemical reaction for the addition of a methyl group to inorganic mercury occurs in diverse bacterial taxonomic groups including the Gram-negative, sulfate-reducing Desulfovibrionaceae family that inhabit extreme aquatic environments. The availability of whole-genome sequence datasets for members of the Desulfovibrionaceae presents opportunities to understand the microbial mechanisms that contribute to methylmercury production in extreme aquatic environments. We have applied bioinformatics resources and developed visual analytics resources to categorize a collection of 719 putative universal stress protein (USP) sequences predicted from 93 genomes of Desulfovibrionaceae. We have focused our bioinformatics investigations on protein sequence analytics by developing interactive visualizations to categorize Desulfovibrionaceae universal stress proteins by protein domain composition and functionally important amino acids. We identified 651 Desulfovibrionaceae universal stress protein sequences, of which 488 sequences had only one USP domain and 163 had two USP domains. The 488 single USP domain sequences were further categorized into 340 sequences with ATP-binding motif and 148 sequences without ATP-binding motif. The 163 double USP domain sequences were categorized into (1) both USP domains with ATP-binding motif (3 sequences); (2) both USP domains without ATP-binding motif (138 sequences); and (3) one USP domain with ATP-binding motif (21 sequences). We developed visual analytics resources to facilitate the investigation of these categories of datasets in the presence or absence of the mercury-methylating gene pair (hgcAB). Future research could utilize these functional categories to investigate the participation of universal stress proteins in the bacterial cellular uptake of inorganic mercury and methylmercury production, especially in anaerobic aquatic environments.
Collapse
Affiliation(s)
- Raphael D. Isokpehi
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
- Correspondence:
| | - Dominique S. McInnis
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Antoinette M. Destefano
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Gabrielle S. Johnson
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Akimio D. Walker
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Yessenia A. Hall
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Baraka W. Mapp
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Matilda O. Johnson
- College of Nursing and Health Sciences, Bethune-Cookman University, Daytona Beach, FL 32114, USA;
| | - Shaneka S. Simmons
- Department of Science and Mathematics, Jarvis Christian College, Hawkins, TX 75765, USA;
| |
Collapse
|
6
|
Lee A, Mondon J, Merenda A, Dumée LF, Callahan DL. Surface adsorption of metallic species onto microplastics with long-term exposure to the natural marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146613. [PMID: 34030302 DOI: 10.1016/j.scitotenv.2021.146613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 05/26/2023]
Abstract
Microplastics are ubiquitous in most biomes and environments, representing one of the most pressing global environmental challenges. This study investigated the ability of pre-production microplastic pellets to accumulate metals from the marine environment. An accidental ocean discharge of poly(propylene) pellets occurred via a wastewater treatment centre at the coastal city of Warrnambool, Victoria - Australia. These pellets were collected routinely from Shelly Beach, adjacent to the ocean discharge site over a period of 16-months following the spill. This collection formed a unique time-series that accurately represented the degree to which metal ions in the coastal marine environment accumulate on plastic debris. Elemental analysis indicated an increase in concentration over time of rare earth elements and a selection of other metals supporting the hypothesis that microplastics selectively adsorb metals from the environment. A subset of the poly(propylene) pellets contained a surfactant coating which significantly increased the adsorption capacity. The surface properties in relation to adsorption were further explored with surface imaging and these results are also discussed. This study shows how microplastics act as nucleation points and carriers of trace metal ions in marine environments.
Collapse
Affiliation(s)
- Andrew Lee
- Deakin University, Geelong, Australia; School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, (Burwood Campus), 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Julie Mondon
- Deakin University, Geelong, Australia; School of Life and Environmental Sciences, Centre for Integrative Ecology, (Warrnambool Campus), Princes Hwy, Sherwood Park, PO Box 423, Warrnambool, VIC 3280, Australia
| | - Andrea Merenda
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria, Australia, 3216
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria, Australia, 3216; Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Damien L Callahan
- Deakin University, Geelong, Australia; School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, (Burwood Campus), 221 Burwood Highway, Burwood, VIC 3125, Australia.
| |
Collapse
|
7
|
Vilas-Boas JA, Cardoso SJ, Senra MVX, Rico A, Dias RJP. Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110669. [PMID: 32450358 DOI: 10.1016/j.ecoenv.2020.110669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Ciliates are key components of aquatic ecosystems, significantly contributing to the decomposition of organic matter and energy transfer to higher trophic levels. They are considered good biological indicators of chemical pollution and relatively sensitive to heavy metal contamination. In this study, we performed a meta-analysis of the available toxicity data of heavy metals and ciliates to assess: (1) the sensitivity of freshwater ciliates to different heavy metals, (2) the relative sensitivity of ciliates in comparison to the standard test species used in ecotoxicological risk assessment, and (3) the difference in sensitivity across ciliate taxa. Our study shows that the tolerance of ciliates to heavy metals varies notably, which is partly influenced by differences in methodological conditions across studies. Ciliates are, in general, sensitive to Mercury > Cadmium > Copper > Zinc > Lead > Chromium. Also, this study shows that most ciliates are more tolerant to heavy metal pollution than the standard test species used in ecotoxicological risk assessments, i.e., Raphidocelis subcapitata, Daphnia magna, and Onchornyncus mykiss. Threshold concentrations derived from toxicity data for these species is expected to confer sufficient protection for the vast majority of ciliate species. Our data analysis also shows that the most commonly tested ciliate species, Paramecium caudatum and Tetrahymena thermophila, are not necessarily the most sensitive ones to heavy metal pollution. Finally, this study stresses the importance of developing standard toxicity test protocols for ciliates, which could lead to a better comprehension of the toxicological impact of heavy metals and other contaminants to ciliate species.
Collapse
Affiliation(s)
- Jéssica Andrade Vilas-Boas
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| | - Simone Jaqueline Cardoso
- Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Marcus Vinicius Xavier Senra
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Instituto de Recursos Naturais, Pós-graduação em Meio Ambiente e Recursos Hídricos, Universidade Federal de Itajubá, 36036-900, Itajubá, Minas Gerais, Brazil
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
8
|
Zhang Z, Si R, Lv J, Ji Y, Chen W, Guan W, Cui Y, Zhang T. Effects of Extracellular Polymeric Substances on the Formation and Methylation of Mercury Sulfide Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8061-8071. [PMID: 32511902 DOI: 10.1021/acs.est.0c01456] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growing evidence has suggested that microbial biofilms are potential environmental "hotspots" for the production and accumulation of a bioaccumulative neurotoxin, methylmercury. Here, we demonstrate that extracellular polymeric substances (EPS), the main components of biofilm matrices, significantly interfere with mercury sulfide precipitation and lead to the formation of nanoparticulate metacinnabar available for microbial methylation, a natural process predominantly responsible for the environmental occurrence of methylmercury. EPS derived from mercury methylating bacteria, particularly Desulfovibrio desulfuricans ND132, substantially increase the methylation potential of nanoparticulate mercury. This is likely due to the abundant aromatic biomolecules in EPS that strongly interact with mercury sulfide via inner-sphere complexation and consequently enhance the short-range structural disorder while mitigating the aggregation of nanoparticulate mercury. The EPS-elevated bioavailability of nanoparticulate mercury to D. desulfuricans ND132 is not induced by dissolution of these nanoparticles in aqueous phase, and may be dictated by cell-nanoparticle interfacial reactions. Our discovery is the first step of mechanistically understanding methylmercury production in biofilms. These new mechanistic insights will help incorporate microbial EPS and particulate-phase mercury into mercury methylation models, and may facilitate the assessment of biogeochemical cycling of other nutrient or toxic elements driven by EPS-producing microorganisms that are prevalent in nature.
Collapse
Affiliation(s)
- Zhanhua Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yunyun Ji
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Wenshan Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Wenyu Guan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yuxiao Cui
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Abramov SM, Tejada J, Grimm L, Schädler F, Bulaev A, Tomaszewski EJ, Byrne JM, Straub D, Thorwarth H, Amils R, Kleindienst S, Kappler A. Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137294. [PMID: 32097837 DOI: 10.1016/j.scitotenv.2020.137294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Oxidation of sulfide ores in the Iberian Pyrite Belt region leads to the presence of extremely high concentration of dissolved heavy metals (HMs) in the acidic water of the Rio Tinto. Fe(II) is microbially oxidized resulting in the formation of suspended particulate matter (SPM) consisting of microbial cells and Fe(III) minerals with co-precipitated HMs. Although substantial amount of HM-bearing SPM is likely deposited to river sediment, a portion can still be transported through estuary to the coastal ocean. Therefore, the mechanisms of SPM formation and transport along the Rio Tinto are important for coastal-estuarine zone. In order to reveal these mechanisms, we performed diurnal sampling of Rio Tinto water, mineralogical and elemental analysis of sediment from the middle course and the estuary of the river. We identified two divergent but interrelated pathways of HM transfer. The first longitudinal pathway is the transport of SPM-associated metals such as As (6.58 μg/L), Pb (3.51 μg/L) and Cr (1.30 μg/L) to the coastal ocean. The second sedimentation pathway contributes to the continuous burial of HMs in the sediment throughout the river. In the middle course, sediment undergoes mineralogical transformations during early diagenesis and traps HMs (e.g. 1.6 mg/g of As, 1.23 mg/g of Pb and 0.1 mg/g of Cr). In the estuary, HMs are accumulated in a distinct anoxic layer of sediment (e.g. 1.5 mg/g of As, 2.09 mg/g of Pb and 0.04 mg/g of Cr). Our results indicate that microbially precipitated Fe(III) minerals (identified as ferrihydrite and schwertmannite) play a key role in maintaining these divergent HM pathways and as a consequence are crucial for HM mobility in the Rio Tinto.
Collapse
Affiliation(s)
- Sergey M Abramov
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany; Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany.
| | - Julian Tejada
- University of Applied Forest Sciences Rottenburg, Schadenweilerhof, D-72108 Rottenburg am Neckar, Germany
| | - Lars Grimm
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany
| | - Franziska Schädler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany; Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany
| | - Aleksandr Bulaev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld 2, 119071 Moscow, Russia
| | - Elizabeth J Tomaszewski
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany; Plant and Soil Sciences 250A Harker ISE Lab, University of Delaware Newark, DE 19716, USA
| | - James M Byrne
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany; Quantitative Biology Center (QBiC), University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen, Germany
| | - Harald Thorwarth
- University of Applied Forest Sciences Rottenburg, Schadenweilerhof, D-72108 Rottenburg am Neckar, Germany
| | - Ricardo Amils
- Department of Virology and Microbiology, Centre for Molecular Biology "Severo Ochoa", Autonomous University of Madrid, Calle Nicolás Cabrera 1, Cantoblanco (Campus UAM), 28049 Madrid, Spain
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Hölderlinstrasse 12, D-72074 Tuebingen, Germany
| |
Collapse
|
10
|
Mercury-methylating bacteria are associated with copepods: A proof-of-principle survey in the Baltic Sea. PLoS One 2020; 15:e0230310. [PMID: 32176728 PMCID: PMC7075563 DOI: 10.1371/journal.pone.0230310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin that biomagnifies in marine food webs. Inorganic mercury (Hg) methylation is conducted by heterotrophic bacteria inhabiting sediment or settling detritus, but endogenous methylation by the gut microbiome of animals in the lower food webs is another possible source. We examined the occurrence of the bacterial gene (hgcA), required for Hg methylation, in the guts of dominant zooplankters in the Northern Baltic Sea. A qPCR assay targeting the hgcA sequence in three main clades (Deltaproteobacteria, Firmicutes and Archaea) was used in the field-collected specimens of copepods (Acartia bifilosa, Eurytemora affinis, Pseudocalanus acuspes and Limnocalanus macrurus) and cladocerans (Bosmina coregoni maritima and Cercopagis pengoi). All copepods were found to carry hgcA genes in their gut microbiome, whereas no amplification was recorded in the cladocerans. In the copepods, hgcA genes belonging to only Deltaproteobacteria and Firmicutes were detected. These findings suggest a possibility that endogenous Hg methylation occurs in zooplankton and may contribute to seasonal, spatial and vertical MeHg variability in the water column and food webs. Additional molecular and metagenomics studies are needed to identify bacteria carrying hgcA genes and improve their quantification in microbiota.
Collapse
|
11
|
Hall LA, Woo I, Marvin-DiPasquale M, Tsao DC, Krabbenhoft DP, Takekawa JY, De La Cruz SEW. Disentangling the effects of habitat biogeochemistry, food web structure, and diet composition on mercury bioaccumulation in a wetland bird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113280. [PMID: 31718826 DOI: 10.1016/j.envpol.2019.113280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) is a globally pervasive contaminant with known toxicity to humans and wildlife. Several sources of variation can lead to spatial differences in MeHg bioaccumulation within a species including: biogeochemical processes that influence MeHg production and availability within an organism's home range; trophic positions of consumers and MeHg biomagnification efficiency in food webs; and individual prey preferences that influence diet composition. To better understand spatial variation in MeHg bioaccumulation within a species, we evaluated the effects of habitat biogeochemistry, food web structure, and diet composition in the wetland-obligate California black rail (Laterallus jamaicensis coturniculus) at three wetlands along the Petaluma River in northern San Francisco Bay, California, USA. The concentration of MeHg in sediments differed significantly among wetlands. We identified three sediment and porewater measurements that contributed significantly to a discriminant function explaining differences in habitat biogeochemistry among wetlands: the porewater concentration of ferrous iron, the percent organic matter, and the sediment MeHg concentration. Food web structure and biomagnification efficiency were similar among wetlands, with trophic magnification factors for MeHg ranging from 1.84 to 2.59. In addition, regurgitation samples indicated that black rails were dietary generalists with similar diets among wetlands (percent similarity indices > 70%). Given the similarities in diet composition, food web structure, and MeHg biomagnification efficiency among wetlands, we concluded that variation in habitat biogeochemistry and associated sediment MeHg production was the primary driver of differences in MeHg concentrations among black rails from different wetlands.
Collapse
Affiliation(s)
- Laurie A Hall
- U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, PO Box 158, Moffett Field, CA 94035, USA.
| | - Isa Woo
- U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, PO Box 158, Moffett Field, CA 94035, USA
| | - Mark Marvin-DiPasquale
- U.S. Geological Survey, Biogeochemistry Laboratory, 345 Middlefield Road, Menlo Park, CA 94025, USA
| | - Danika C Tsao
- U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, PO Box 158, Moffett Field, CA 94035, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - John Y Takekawa
- U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, PO Box 158, Moffett Field, CA 94035, USA
| | - Susan E W De La Cruz
- U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, PO Box 158, Moffett Field, CA 94035, USA
| |
Collapse
|
12
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Goñi-Urriza M, Klopp C, Ranchou-Peyruse M, Ranchou-Peyruse A, Monperrus M, Khalfaoui-Hassani B, Guyoneaud R. Genome insights of mercury methylation among Desulfovibrio and Pseudodesulfovibrio strains. Res Microbiol 2019; 171:3-12. [PMID: 31655199 DOI: 10.1016/j.resmic.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023]
Abstract
Mercury methylation converts inorganic mercury into the toxic methylmercury, and the consequences of this transformation are worrisome for human health and the environment. This process is performed by anaerobic microorganisms, such as several strains related to Pseudodesulfovibrio and Desulfovibrio genera. In order to provide new insights into the molecular mechanisms of mercury methylation, we performed a comparative genomic analysis on mercury methylators and non-methylators from (Pseudo)Desulfovibrio strains. Our results showed that (Pseudo)Desulfovibrio species are phylogenetically and metabolically distant and consequently, these genera should be divided into various genera. Strains able to perform methylation are affiliated with one branch of the phylogenetic tree, but, except for hgcA and hgcB genes, no other specific genetic markers were found among methylating strains. hgcA and hgcB genes can be found adjacent or separated, but proximity between those genes does not promote higher mercury methylation. In addition, close examination of the non-methylator Pseudodesulfovibrio piezophilus C1TLV30 strain, showed a syntenic structure that suggests a recombination event and may have led to hgcB depletion. The genomic analyses identify also arsR gene coding for a putative regulator upstream hgcA. Both genes are cotranscribed suggesting a role of ArsR in hgcA expression and probably a role in mercury methylation.
Collapse
Affiliation(s)
- Marisol Goñi-Urriza
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, France.
| | - Magali Ranchou-Peyruse
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Anthony Ranchou-Peyruse
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Mathilde Monperrus
- CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Anglet, France.
| | - Bahia Khalfaoui-Hassani
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| | - Rémy Guyoneaud
- Environmental Microbiology, CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, IPREM, UMR5254, Pau, France.
| |
Collapse
|
14
|
Alviz-Gazitua P, Fuentes-Alburquenque S, Rojas LA, Turner RJ, Guiliani N, Seeger M. The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase. Front Microbiol 2019; 10:1499. [PMID: 31338076 PMCID: PMC6629876 DOI: 10.3389/fmicb.2019.01499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/14/2019] [Indexed: 11/21/2022] Open
Abstract
Cadmium is a highly toxic heavy metal for biological systems. Cupriavidus metallidurans CH34 is a model strain to study heavy metal resistance and bioremediation as it is able to deal with high heavy metal concentrations. Biofilm formation by bacteria is mediated by the second messenger bis-(3′–5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). The aim of this study was to characterize the response of C. metallidurans CH34 planktonic and biofilm cells to cadmium including their c-di-GMP regulatory pathway. Inhibition of the initiation of biofilm formation and EPS production by C. metallidurans CH34 correlates with increased concentration of cadmium. Planktonic and biofilm cells showed similar tolerance to cadmium. During exposure to cadmium an acute decrease of c-di-GMP levels in planktonic and biofilm cells was observed. Transcription analysis by RT-qPCR showed that cadmium exposure to planktonic and biofilm cells induced the expression of the urf2 gene and the mercuric reductase encoding merA gene, which belong to the Tn501/Tn21 mer operon. After exposure to cadmium, the cadA gene involved in cadmium resistance was equally upregulated in both lifestyles. Bioinformatic analysis and complementation assays indicated that the protein encoded by the urf2 gene is a functional phosphodiesterase (PDE) involved in the c-di-GMP metabolism. We propose to rename the urf2 gene as mrp gene for metal regulated PDE. An increase of the second messenger c-di-GMP content by the heterologous expression of the constitutively active diguanylate cyclase PleD correlated with an increase in biofilm formation and cadmium susceptibility. These results indicate that the response to cadmium in C. metallidurans CH34 inhibits the initiation of biofilm lifestyle and involves a decrease in c-di-GMP levels and a novel metal regulated PDE.
Collapse
Affiliation(s)
- Pablo Alviz-Gazitua
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile.,Ph.D. Program of Microbiology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Sebastián Fuentes-Alburquenque
- Microbial Ecology of Extreme Systems Laboratory, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - Luis A Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile.,Department of Chemistry, Universidad Catoìlica del Norte, Antofagasta, Chile
| | - Raymond J Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
15
|
Xu X, Bryan AL, Mills GL, Korotasz AM. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:261-270. [PMID: 30852203 DOI: 10.1016/j.scitotenv.2019.02.301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Water, sediment, and biota from two streams on the Savannah River Site were sampled to study mercury (Hg) biogeochemistry. Total and methyl- Hg (MHg) concentrations were measured for all samples, speciation models were used to explore Hg speciation in the water, and Diffusive gradients in thin films (DGT) were applied to indicate the vertical profiles of labile Hg (DGT-Hg). Trophic position (δ15N) was estimated for biota and used to establish MHg biomagnification model. The speciation model indicated Hg methylation in the water occurred on settling particles and the most bioavailable Hg species to bacteria were complexes of inorganic Hg and labile organic ligands. Correspondingly, dissolved organic carbon concentrations were positively related to MHg concentrations in the water. In the sediment, the sharp increase of DGT-Hg around the sediment water interface underscores the importance of this interface, which determines the differences in the accumulation and generation of labile Hg among different waterbodies. The positive correlation between sediment MHg and sulfate concentrations suggested possible methylation reaction by dissimilatory sulfate reducing bacteria in the sediment. The food web magnification factors of MHg were 9.6 (95% CI: 4.0-23.4) and 4.4 (95% CI: 2.5-7.7) for the two streams established with trophic data of biofilm, invertebrates, and fish. Meanwhile, DGT-Hg concentrations in the water were positively correlated to biofilm Hg concentrations, which can be combined with the MHg biomagnification model to generate a modified biomagnification model that estimate MHg bioaccumulation with only labile Hg concentrations in the water. With this approach, Hg accumulation in abiotic and biotic environmental compartments was connected and the different bioaccumulation patterns of Hg in different waterbodies were explained with both geochemical and biological factors.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA.
| | - Albert L Bryan
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA
| | - Gary L Mills
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA
| | - Alexis M Korotasz
- Savannah River Ecology Laboratory, University of Georgia. PO Drawer E, Aiken, SC 29802, USA
| |
Collapse
|
16
|
Beckers F, Awad YM, Beiyuan J, Abrigata J, Mothes S, Tsang DCW, Ok YS, Rinklebe J. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. ENVIRONMENT INTERNATIONAL 2019; 127:276-290. [PMID: 30951944 DOI: 10.1016/j.envint.2019.03.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) is a highly toxic element, which is frequently enriched in flooded soils due to its anthropogenic release. The mobilization of Hg and its species is of ultimate importance since it controls the transfer into the groundwater and plants and finally ends in the food chain, which has large implications on human health. Therefore, the remediation of those contaminated sites is an urgent need to protect humans and the environment. Often, the stabilization of Hg using amendments is a reliable option and biochar is considered a candidate to fulfill this purpose. We tested two different pine cone biochars pyrolyzed at 200 °C or 500 °C, respectively, with a view to decrease the mobilization of total Hg (Hgt), methylmercury (MeHg), and ethylmercury (EtHg) and/or the formation of MeHg and EtHg in a contaminated floodplain soil (Hgt: 41 mg/kg). We used a highly sophisticated automated biogeochemical microcosm setup to systematically alter the redox conditions from ~-150 to 300 mV. We continuously monitored the redox potential (EH) along with pH and determined dissolved organic carbon (DOC), SUVA254, chloride (Cl-), sulfate (SO42-), iron (Fe), and manganese (Mn) to be able to explain the mobilization of Hg and its species. However, the impact of biochar addition on Hg mobilization was limited. We did not observe a significant decrease of Hgt, MeHg, and EtHg concentrations after treating the soil with the different biochars, presumably because potential binding sites for Hg were occupied by other ions and/or blocked by biofilm. Solubilization of Hg bound to DOC upon flooding of the soils might have occurred which could be an indirect impact of EH on Hg mobilization. Nevertheless, Hgt, MeHg, and EtHg in the slurry fluctuated between 0.9 and 52.0 μg/l, 11.1 to 406.0 ng/l, and 2.3 to 20.8 ng/l, respectively, under dynamic redox conditions. Total Hg concentrations were inversely related to the EH; however, ethylation of Hg was favored at an EH around 0 mV while methylation was enhanced between -50 and 100 mV. Phospholipid fatty acid profiles suggest that sulfate-reducing bacteria may have been the principal methylators in our experiment. In future, various biochars should be tested to evaluate their potential in decreasing the mobilization of Hg and to impede the formation of MeHg and EtHg under dynamic redox conditions in frequently flooded soils.
Collapse
Affiliation(s)
- Felix Beckers
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Yasser Mahmoud Awad
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Jingzi Beiyuan
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jens Abrigata
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sibylle Mothes
- UFZ Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy & Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Emmerton CA, Cooke CA, Wentworth GR, Graydon JA, Ryjkov A, Dastoor A. Total Mercury and Methylmercury in Lake Water of Canada's Oil Sands Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10946-10955. [PMID: 30229653 DOI: 10.1021/acs.est.8b01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Increased delivery of mercury to ecosystems is a common consequence of industrialization, including in the Athabasca Oil Sands Region (AOSR) of Canada. Atmospheric mercury deposition has been studied previously in the AOSR; however, less is known about the impact of regional industry on toxic methylmercury (MeHg) concentrations in lake ecosystems. We measured total mercury (THg) and MeHg concentrations for five years from 50 lakes throughout the AOSR. Mean lake water concentrations of THg (0.4-5.3 ng L-1) and MeHg (0.01-0.34 ng L-1) were similar to those of other boreal lakes and <5% of all samples exceeded Provincial water quality guidelines. Lakes with the highest THg concentrations were found >100 km northwest of oil sands mines and received runoff from geological formations high in metals concentrations. MeHg concentrations were highest in those lakes, and in smaller productive lakes closer to oil sands mines. Simulated annual average direct deposition of THg to sampled lakes using an atmospheric chemical transport model showed <2% of all mercury deposited to sampled lakes was emitted from oil sands activities. Consequently, spatial patterns of mercury in AOSR lakes were likely most influenced by watershed and lake conditions, though mercury concentrations in these lakes may be perturbed with future development and climatic change.
Collapse
Affiliation(s)
- Craig A Emmerton
- Environmental Monitoring and Science Division , Alberta Environment and Parks , Edmonton , Alberta T5J 5C6, Canada
| | - Colin A Cooke
- Environmental Monitoring and Science Division , Alberta Environment and Parks , Edmonton , Alberta T5J 5C6, Canada
| | - Gregory R Wentworth
- Environmental Monitoring and Science Division , Alberta Environment and Parks , Edmonton , Alberta T5J 5C6, Canada
| | | | - Andrei Ryjkov
- Air Quality Research Division , Environment and Climate Change Canada , Dorval , Quebec H9P 1J3, Canada
| | - Ashu Dastoor
- Air Quality Research Division , Environment and Climate Change Canada , Dorval , Quebec H9P 1J3, Canada
| |
Collapse
|
18
|
Liu CB, Qu GB, Cao MX, Liang Y, Hu LG, Shi JB, Cai Y, Jiang GB. Distinct toxicological characteristics and mechanisms of Hg 2+ and MeHg in Tetrahymena under low concentration exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:152-159. [PMID: 29096088 DOI: 10.1016/j.aquatox.2017.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Inorganic divalent mercury complexes (Hg2+) and monomethylmercury complexes (MeHg) are the main mercury species in aquatic systems and their toxicity to aquatic organisms is of great concern. Tetrahymena is a type of unicellular eukaryotic protozoa located at the bottom of food chain that plays a fundamental role in the biomagnification of mercury. In this work, the dynamic accumulation properties, toxicological characteristics and mechanisms of Hg2+ and MeHg in five Tetrahymena species were evaluated in detail. The results showed that both Hg2+ and MeHg were ingested and exhibited inhibitory effects on the proliferation or survival of Tetrahymena species. However, the ingestion rate of MeHg was significantly higher than that of Hg2+. The mechanisms responsible for the toxicity of MeHg and Hg2+ were different, although both chemicals altered mitochondrial membrane potential (MMP). MeHg disrupted the integrity of membranes while Hg2+ had detrimental effects on Tetrahymena as a result of the increased generation of reactive oxygen species (ROS). In addition, the five Tetrahymena species showed different capacities in accumulating Hg2+ and MeHg, with T. corlissi exhibiting the highest accumulations. The study also found significant growth-promoting effect on T. corlissi under low concentration exposure (0.003 and 0.01μg Hg/mL (15 and 50nM)), suggesting different effect and mechanism that should be more closely examined when assessing the bioaccumulation and toxicity of mercury in aquatic ecosystems.
Collapse
Affiliation(s)
- Cheng-Bin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Bo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Xi Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Res Microbiol 2015; 166:764-73. [PMID: 25869223 DOI: 10.1016/j.resmic.2015.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
Since biofilms are an important issue in the fields of medicine and health, several recent microbiological studies have focused on their formation and their contribution to toxic compound resistance mechanisms. In this review, we describe how metals impact biofilm formation and resistance, and how biofilms can help cells resist toxic metals. First, the organic matrix acts as a barrier isolating the cells from many environmental stresses. Secondly, the metabolism of the cells changes, and a slowly-growing or non-growing sub-population of cells known as persisters emerges. Thirdly, in the case of multispecies biofilms, metabolic interactions are developed, allowing cells to be more persistent or to have greater capacity to survive than a single species biofilm. Finally, we discuss how the high density of the cells may promote horizontal gene transfer processes, resulting in the acquisition of new features. All these crucial mechanisms enable microorganisms to survive and colonize toxic environments, and probably accelerate ongoing evolutionary processes.
Collapse
|