1
|
Yang MR, Dai XR, Huang ZW, Huang CY, Xiao H. Research progress of the POP fugacity model: a bibliometrics-based analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86899-86912. [PMID: 36261637 DOI: 10.1007/s11356-022-23397-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
With the emergence of environmental issues regarding persistent organic pollutants (POPs), fugacity models have been widely used in the concentration prediction and exposure assessment of POPs. Based on 778 relevant research articles published between 1979 and 2020 in the Web of Science Core Collection (WOSCC), the current research progress of the fugacity model on predicting the fate and transportation of POPs in the environment was analyzed by CiteSpace software. The results showed that the research subject has low interdisciplinarity, mainly involving environmental science and environmental engineering. The USA was the most paper-published country, followed by Canada and China. The publications of the Chinese Academy of Sciences, Lancaster University, and Environment Canada were leading. Collaboration between institutions was inactive and low intensity. Keyword co-occurrence analysis showed that polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons were the most concerning compounds, while air, water, soil, and sediment were the most concerning environmental media. Through co-citation cluster analysis, in addition to the in-depth exploration of traditional POPs, research on emerging POPs such as cyclic volatile methyl siloxane and dechlorane plus were new research frontiers. The distribution and transfer of POPs in the soil-air environment have attracted the most attention, and the regional grid model based on fugacity has been gradually improved and developed. The co-citation high-burst detection showed that the research hotspots gradually shifted from pollutant persistence and long-range transport potential to pollutant distribution rules among the different environmental media and the long-distance transmission simulation.
Collapse
Affiliation(s)
- Meng-Rong Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo, 315800, China
| | - Xiao-Rong Dai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo, 315800, China.
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Zhong-Wen Huang
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Cen-Yan Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo, 315800, China
| |
Collapse
|
2
|
Wang T, He ZX, Yang J, Wu L, Qiu XW, Bao LJ, Zeng EY. Riverine transport dynamics of PBDEs and OPFRs within a typical e-waste recycling zone: Implications for sink-source interconversion. WATER RESEARCH 2022; 220:118677. [PMID: 35667171 DOI: 10.1016/j.watres.2022.118677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Despite ample evidence on spreading of e-waste derived hazardous materials, riverine transport of organic contaminants from e-waste recycling zones to surrounding areas has not been evaluated. To address this issue, passive and grab sampling methods were used to assess sediment-water diffusion and horizontal transport of polybrominated diphenyl ethers (PBDEs) and organophosphorus flame retardant (OPFRs) at upstream and downstream sites of two rivers in a typical e-waste recycling zone. Sediment acted as a source of BDE-17 with fluxes of 0.007-0.04 ng m-2 d-1 at all sampling sites. BDE-47 and BDE-99 reached equilibrium between overlying water and sediment porewater. Sediment interconverted from a sink at the upstream site to a source of OPFRs at the downstream site with a flux varying between -7.3 and 234 ng m-2 d-1. The amounts of OPFRs (11-45 g d-1) via horizontal riverine transport were greater than those of PBDEs (0.68-2 g d-1). The vertical sediment-water diffusion of PBDEs and OPFRs was not significant compared to horizontal riverine transport. The annual riverine outputs of PBDEs and OPFRs from the downstream sites were 250-330 g and 12,000-16,500 g, respectively, indicating the significance of riverine transport of organic contaminants from e-waste recycling zones to surrounding areas.
Collapse
Affiliation(s)
- Teng Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zi-Xuan He
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xia-Wen Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
3
|
Lu Y, Zhang Y, Zhong C, Martin JW, Alessi DS, Goss GG, Ren Y, He Y. Suspended solids-associated toxicity of hydraulic fracturing flowback and produced water on early life stages of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117614. [PMID: 34171731 DOI: 10.1016/j.envpol.2021.117614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Hydraulic fracturing flowback and produced water (HF-FPW), which contains polyaromatic hydrocarbons (PAHs) and numerous other potential contaminants, is a complex wastewater produced during the recovery of tight hydrocarbon resources. Previous studies on HF-FPW have demonstrated various toxicological responses of aquatic organisms as consequences of combined exposure to high salinity, dissolved organic compounds and particle/suspended solids-bound pollutants. Noteworthy is the lack of studies illustrating the potentially toxic effects of the FPW suspended solids (FPW-SS). In this study, we investigated the acute and sublethal toxicity of suspended solids filtered from six authentic FPW sample collected from two fracturing wells, using a sediment contact assay based on early-life stages of zebrafish (Danio rerio). PAHs profiles and acute toxicity tests provided initial information on the toxic potency of the six samples. Upon exposure to sediment mixture at two selected doses (1.6 and 3.1 mg/mL), results showed adverse effects in larval zebrafish, as revealed by increased Ethoxyresorufin-O-deethylase (EROD) activity. Transcriptional alterations were also observed in xenobiotic biotransformation (ahr, pxr, cyp1a, cyp1b1, cyp1c1, cyp1c2, cyp3a65, udpgt1a1, udpgt5g1), antioxidant response (sod1, sod2, gpx1a, gpx1b) and hormone receptor signaling (esr1, esr2a, cyp19a1a, vtg1) genes. The results demonstrated that even separated from the complex aqueous FPW mixture, FPW-SS can induce toxicological responses in aquatic organisms' early life stages. Since FPW-SS could sediment to the bottom of natural wetland acting as a continuous source of contaminants, the current findings imply the likelihood of long-term environmental risks of polluted sediments on aquatic ecosystems due to FPW spills.
Collapse
Affiliation(s)
- Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Cheng Zhong
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China.
| |
Collapse
|
4
|
Zhu T, Jiang Y, Cheng H, Singh RP, Yan B. Development of pp-LFER and QSPR models for predicting the diffusion coefficients of hydrophobic organic compounds in LDPE. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110179. [PMID: 31927194 DOI: 10.1016/j.ecoenv.2020.110179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Diffusion coefficient (D) is important to evaluate the performance of passive samplers and to monitor the concentration of chemicals effectively. Herein, we developed a polyparameter linear free energy relationship (pp-LFER) model and a quantitative structure-property relationship (QSPR) model for the prediction of diffusion coefficients of hydrophobic organic contaminants (HOCs) in low density polyethylene (LDPE). A dataset of 120 various chemicals was used to develop both models. The pp-LFER model was developed with two descriptors (V and E) and the statistical parameters of the model showed satisfactory results. As a further exploration of the diffusion behavior of the compounds, a QSPR model with five descriptors (ETA_Alpha, ASP-6, IC1, TDB6r and ATSC2v) was constructed with adjusted determination coefficient (R2) of 0.949 and cross-validation coefficient (QLoo2) of 0.941. The regression results indicated that both models had satisfactory goodness-of-fit and robustness. This study proves that pp-LFER and QSPR approaches are available for the prediction of log D values for the hydrophobic organic compounds within the applicability domain.
Collapse
Affiliation(s)
- Tengyi Zhu
- Jiangsu Provincial Laboratory of Water Environmental Protection Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Yue Jiang
- Jiangsu Provincial Laboratory of Water Environmental Protection Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Haomiao Cheng
- Jiangsu Provincial Laboratory of Water Environmental Protection Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | | | - Bipeng Yan
- Jiangsu Provincial Laboratory of Water Environmental Protection Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
5
|
Lei P, Zhu J, Pan K, Zhang H. Sorption kinetics of parent and substituted PAHs for low-density polyethylene (LDPE): Determining their partition coefficients between LDPE and water (K LDPE) for passive sampling. J Environ Sci (China) 2020; 87:349-360. [PMID: 31791508 DOI: 10.1016/j.jes.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 05/22/2023]
Abstract
Low-density polyethylene (LDPE) has been widely used as a sorbent for passive sampling of hydrophobic organic contaminants (HOCs) in aquatic environments. However, it has seen only limited application in passive sampling for measurement of freely dissolved concentrations of parent and substituted PAHs (SPAHs), which are known to be toxic, mutagenic and carcinogenic. Here, the 16 priority PAHs and some typical PAHs were selected as target compounds and were simultaneously determined by gas chromatography-mass spectrometer (GC-MS). Some batch experiments were conducted in the laboratory to explore the adsorption kinetics of the target compounds in LDPE membranes. The results showed that both PAHs and SPAHs could reach equilibrium status within 19-38 days in sorption kinetic experiments. The coefficients of partitioning between LDPE film (50 μm thickness) and water (KLDPE) for the 16 priority PAHs were in good agreement with previously reported values, and the values of KLDPE for the 9 SPAHs are reported in this study for the first time. Significant linear relationships were observed, i.e., log KLDPE = 0.705 × log KOW + 1.534 for PAHs (R2 = 0.8361, p < 0.001) and log KLDPE = 0.458 × log KOW + 3.092 for SPAHs (R2 = 0.5609, p = 0.0077). The selected LDPE film was also proven to meet the condition of "zero sink" for the selected target compounds. These results could provide basic support for the configuration and in situ application of passive samplers.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jinjie Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Mustajärvi L, Nybom I, Eriksson-Wiklund AK, Eek E, Cornelissen G, Sobek A. How Important is Bioturbation for Sediment-to-Water Flux of Polycyclic Aromatic Hydrocarbons in the Baltic Sea? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1803-1810. [PMID: 31050018 DOI: 10.1002/etc.4459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In the present study a recently developed benthic flow-through chamber was used to assess the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) at 4 sites on the Swedish Baltic Sea coast. The flow-through chamber allows for assessment of the potential effect of bioturbation on the sediment-to-water flux of hydrophobic organic contaminants. The sediments at the 4 investigated sites have both varying contamination degree and densities of bioturbating organisms. The flux of individual PAHs measured with the flow-through chamber ranged between 21 and 510, 11 and 370, 3 and 9700, and 62 and 2300 ng m-2 d-1 for the 4 sites. To assess the potential effect of bioturbation on the sediment-to-water flux, 3 flow-through and closed chambers were deployed in parallel at each site. The activity of benthic organisms is attenuated or halted because of depletion of oxygen in closed benthic chambers. Therefore, the discrepancy in flux measured with the 2 different chamber designs was used as an indication of a possible effect of bioturbation. A potential effect of bioturbation on the sediment-to-water flux by a factor of 3 to 55 was observed at sites with a high density of bioturbating organisms (e.g., Marenzelleria spp., Monoporeia affinis, and Macoma balthica of approximately 860-1200 individuals m-2 ) but not at the site with much lower organism density (<200 individuals m-2 ). One site had a high organism density and a low potential effect of bioturbation, which we hypothesize to be caused by the dominance of oligochaetes/polychaetes at this site because worms (Marenzelleria spp.) reach deeper into the sediment than native crustaceans and mollusks. Environ Toxicol Chem 2019;38:1803-1810. © 2019 SETAC.
Collapse
Affiliation(s)
- Lukas Mustajärvi
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Inna Nybom
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Espen Eek
- Norwegian Geotechnical Institute, Oslo, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life sciences, Ås, Norway
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Wei M, Yang X, Watson P, Yang F, Liu H. A cyclodextrin polymer membrane-based passive sampler for measuring triclocarban, triclosan and methyl triclosan in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:109-115. [PMID: 30114582 DOI: 10.1016/j.scitotenv.2018.08.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 05/23/2023]
Abstract
In recent years, extensive attention has been paid to the passive sampling technology of diffusive gradients in thin films (DGT) due to its growing application in the measurement of a widening variety of compounds. Within any DGT device, the binding phase is a key component, and seeking novel binding phases is an issue worth studying. Cyclodextrin polymer, as a green and eco-friendly material, may be a good choice for measuring organic chemicals. In this study, a novel DGT sampler with cyclodextrin polymer membrane (CDPM) as the binding phase was developed for measuring the concentrations of triclosan, triclocarban and methyl triclosan. Firstly, the type and content of cyclodextrin used in CDPM was optimized, and a series of tests showed that CDPM had good hydrophilicity, thermal stability, fast uptake rate and sufficient uptake capacity, thus CDPM was determined to be suitable for use as the binding phase of DGT sampler. Moreover, the sampling rates of this DGT sampler were not influenced by ionic strength and dissolved organic matter, making it feasible for in situ monitoring of compounds in the field. Hence, we deployed the developed DGT sampler in the Qinhuai and Jiuxiang Rivers to measure the concentrations of three compounds. We also collected water samples and processed them with the solid phase extraction (SPE) method. Results indicated that there was no significant difference between the DGT-measured and the SPE-measured concentrations for each compound, which confirmed the reliability of this DGT sampler for monitoring the concentrations of compounds in natural waters.
Collapse
Affiliation(s)
- Mengbi Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Peter Watson
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs 06268, CT, United States
| | - Feifei Yang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs 06268, CT, United States
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
8
|
Tcaciuc AP, Borrelli R, Zaninetta LM, Gschwend PM. Passive sampling of DDT, DDE and DDD in sediments: accounting for degradation processes with reaction-diffusion modeling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:220-231. [PMID: 29264604 DOI: 10.1039/c7em00501f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs (13C-labeled PCBs, 13C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d-1 at 0-10 cm and 1.4 d-1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT transformation rates in sediments.
Collapse
|
9
|
Pei LEI, Hong ZHANG, Chao WANG, Ke PAN. Migration and diffusion for pollutants across the sediment-water interface in lakes: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.18307/2018.0602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Mustajärvi L, Eek E, Cornelissen G, Eriksson-Wiklund AK, Undeman E, Sobek A. In situ benthic flow-through chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:854-862. [PMID: 28881309 DOI: 10.1016/j.envpol.2017.08.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 05/25/2023]
Abstract
Contaminated sediment can release hydrophobic organic contaminants (HOCs) and thereby act as a secondary source of primarily legacy hazardous substances to the water column. There is therefore a need for assessments of the release of HOCs from contaminated sediment for prioritization of management actions. In situ assessment of HOC sediment-to-water flux is currently done with (closed) benthic flux chambers, which have a sampling time exceeding one month. During this time, the water inside the chamber is depleted of oxygen and the effect of bioturbation on the sediment-to-water release of HOCs is largely ignored. Here we present a novel benthic flux chamber, which measures sediment-to-water flux of legacy HOCs within days, and includes the effect of bioturbation since ambient oxygen levels inside the chamber are maintained by continuous pumping of water through the chamber. This chamber design allows for sediment-to-water flux measurements under more natural conditions. The chamber design was tested in a contaminated Baltic Sea bay. Measured fluxes were 62-2300 ng m-2 d-1 for individual polycyclic aromatic hydrocarbons (PAHs), and 5.5-150 ng m-2 d-1 for polychlorinated biphenyls (PCBs). These fluxes were 3-23 times (PAHs) and 12-74 times (PCBs) higher than fluxes measured with closed benthic chambers deployed in parallel at the same location. We hypothesize that the observed difference in HOC flux between the two chamber designs are partly an effect of bioturbation. This hypothesized effect of bioturbation was in accordance with literature data from experimental studies.
Collapse
Affiliation(s)
- Lukas Mustajärvi
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden.
| | - Espen Eek
- Norwegian Geotechnical Institute (NGI), N-0806 Oslo, Norway.
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), N-0806 Oslo, Norway; Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway.
| | - Ann-Kristin Eriksson-Wiklund
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden.
| | - Emma Undeman
- Baltic Sea Centre, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
11
|
Lin D, Cho YM, Oen A, Eek E, Tommerdahl JP, Luthy RG. Toolset for assessment of natural recovery from legacy contaminated sediment: Case study of Pallanza Bay, Lake Maggiore, Italy. WATER RESEARCH 2017; 121:109-119. [PMID: 28525783 DOI: 10.1016/j.watres.2017.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to develop a toolset that can be used by site managers to assess and monitor natural attenuation processes in sediments contaminated with legacy hydrophobic organic contaminants. The toolset is composed of sediment traps to measure quality and deposition rate of incoming sediment under different hydrodynamic conditions, sediment cores to show trends in sediment bed concentrations over time, and passive samplers attached to a porewater probe frame to assess the mobility of buried contaminants and possible contaminant flux from sediment. These three tools were used together for the first time to assess the mobility of dichlorodiphenyltrichloroethane (DDT) contaminants in sediment in Pallanza Bay, Lake Maggiore, Italy. Depositing sediment and sediment cores were consistent in showing that DDT-contaminated sediment is undergoing burial by cleaner sediment. Elevated DDT concentrations from historical contamination seemed to be effectively buried and immobilized by ongoing deposition by cleaner sediment, because the positive flux from the elevated DDT concentration in the sediment porewater should not advance towards the sediment surface. The monitoring toolset introduced in this study enabled us to more effectively assess ongoing natural attenuation processes and provide more risk relevant data than traditional methods used in monitored natural recovery projects, such as bulk sediment concentrations from sediment cores. Our field assessment results suggest that incoming sediment from the Toce River have reduced DDT concentrations in the sediment compared to historic levels, and will continue to do so in locations where higher DDT concentrations are found within the bioactive layer.
Collapse
Affiliation(s)
- Diana Lin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, 94305, CA, United States
| | - Yeo-Myoung Cho
- Department of Civil and Environmental Engineering, Stanford University, Stanford, 94305, CA, United States
| | - Amy Oen
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806, Oslo, Norway
| | - Espen Eek
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806, Oslo, Norway
| | - Jake P Tommerdahl
- Department of Civil and Environmental Engineering, Stanford University, Stanford, 94305, CA, United States
| | - Richard G Luthy
- Department of Civil and Environmental Engineering, Stanford University, Stanford, 94305, CA, United States.
| |
Collapse
|
12
|
Huang Y, Zhang R, Li K, Cheng Z, Zhong G, Zhang G, Li J. Experimental Study on the Role of Sedimentation and Degradation Processes on Atmospheric Deposition of Persistent Organic Pollutants in a Subtropical Water Column. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4424-4433. [PMID: 28355053 DOI: 10.1021/acs.est.7b00568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The goal of this study is to experimentally assess the role of vertical sinking and degradation processes of persistent organic pollutants (POPs) in a subtropical water column. This was done by measuring the concentrations of selected typical organochlorine pesticides, including hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), trans-chlordane (TC), and cis-chlordane (CC), in atmosphere (gas phase), water (dissolved and particulate phases), and sedimentation samples simultaneously from October 2011 to April 2013 in a subtropical lake. The fugacity ratios suggested net deposition for α-HCH, γ-HCH, p,p'-DDT, p,p'-DDD, p,p'-DDE, o,p'-DDT, TC, and CC, indicating that the subtropical lake was acting as a "sink" for these chemicals. The enantiomer fractions of α-HCH, o,p'-DDT, TC, and CC in the dissolved phase samples were much more deviated from the racemic values than were those in the air samples, suggesting that these chemicals have suffered microbial degradation in the subtropical lake. In fact, 99% to 100% of atmospheric input of α-HCH and γ-HCH to the subtropical lake was estimated to be depleted via microbial degradation, while the role of hydrolysis and vertical sinking was very small. For more hydrophobic p,p'-DDT, o,p'-DDT, TC, and CC, the role of vertical sinking was 2 to 3 orders of magnitude larger than that for α-HCH and γ-HCH. Microbial degradation was also very important for removing p,p'-DDT, o,p'-DDT, TC, and CC from the water column.
Collapse
Affiliation(s)
- Yumei Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- School of Environmental Science and Engineering, Guangzhou University , Guangzhou 510006, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University , Nanning 530004, China
| | - Kechang Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Zhineng Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| |
Collapse
|
13
|
Belles A, Alary C, Criquet J, Ivanovsky A, Billon G. Assessing the transport of PAH in the surficial sediment layer by passive sampler approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:72-81. [PMID: 27866736 DOI: 10.1016/j.scitotenv.2016.10.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
A new method based on passive samplers has been developed to assess the diffusive flux of fluorene, fluoranthene and pyrene in the sediment bed and across the sediment-water interface. The dissolved compound concentration gradient in the sediment in the vertical direction was measured at the outlet of a storm water pond by using polyethylene strips as passive samplers. Simultaneously, the dissipation of a set of tracer compounds preloaded in the passive samplers was measured to estimate the effective diffusion coefficients of the pollutants in the sediment. Both measurements were used to evaluate the diffusive flux of the compounds according to Fick's first law. The diffusive fluxes of the 3 studied compounds have been estimated with a centimetre-scale resolution in the upper 44cm of the sediment. According to the higher compound diffusion coefficient and the steeper concentration gradient in the surficial sediment layer, the results show that the net flux of compounds near the sediment interface (1cm depth) is on average 500 times higher than in the deep sediment, with average fluxes at 1cm depth on the order of 5, 0.1 and 0.1ng/m2/y for fluorene, fluoranthene and pyrene, respectively.
Collapse
Affiliation(s)
- Angel Belles
- Mines Douai, LGCGE-GCE, F-59508 Douai, France; Univ. Lille, F-59500 Lille, France.
| | - Claire Alary
- Mines Douai, LGCGE-GCE, F-59508 Douai, France; Univ. Lille, F-59500 Lille, France
| | - Justine Criquet
- LASIR UMR CNRS 8516, Univ. Lille 1 Sciences and Technologies, Villeneuve d'Ascq, France
| | - Anastasia Ivanovsky
- LASIR UMR CNRS 8516, Univ. Lille 1 Sciences and Technologies, Villeneuve d'Ascq, France
| | - Gabriel Billon
- LASIR UMR CNRS 8516, Univ. Lille 1 Sciences and Technologies, Villeneuve d'Ascq, France
| |
Collapse
|
14
|
Liu H, Wei M, Yang X, Yin C, He X. Development of TLSER model and QSAR model for predicting partition coefficients of hydrophobic organic chemicals between low density polyethylene film and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1371-1378. [PMID: 27524722 DOI: 10.1016/j.scitotenv.2016.08.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Partition coefficients are vital parameters for measuring accurately the chemicals concentrations by passive sampling devices. Given the wide use of low density polyethylene (LDPE) film in passive sampling, we developed a theoretical linear solvation energy relationship (TLSER) model and a quantitative structure-activity relationship (QSAR) model for the prediction of the partition coefficient of chemicals between LDPE and water (Kpew). For chemicals with the octanol-water partition coefficient (log Kow) <8, a TLSER model with Vx (McGowan volume) and qA- (the most negative charge on O, N, S, X atoms) as descriptors was developed, but the model had relatively low determination coefficient (R2) and cross-validated coefficient (Q2). In order to further explore the theoretical mechanisms involved in the partition process, a QSAR model with four descriptors (MLOGP (Moriguchi octanol-water partition coeff.), P_VSA_s_3 (P_VSA-like on I-state, bin 3), Hy (hydrophilic factor) and NssO (number of atoms of type ssO)) was established, and statistical analysis indicated that the model had satisfactory goodness-of-fit, robustness and predictive ability. For chemicals with log KOW>8, a TLSER model with Vx and a QSAR model with MLOGP as descriptor were developed. This is the first paper to explore the models for highly hydrophobic chemicals. The applicability domain of the models, characterized by the Euclidean distance-based method and Williams plot, covered a large number of structurally diverse chemicals, which included nearly all the common hydrophobic organic compounds. Additionally, through mechanism interpretation, we explored the structural features those governing the partition behavior of chemicals between LDPE and water.
Collapse
Affiliation(s)
- Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Mengbi Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xianhai Yang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Jiang-wang-miao Street, Nanjing 210042, China.
| | - Cen Yin
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xiao He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|
15
|
Feng Y, Wu CC, Bao LJ, Shi L, Song L, Zeng EY. Examination of factors dominating the sediment-water diffusion flux of DDT-related compounds measured by passive sampling in an urbanized estuarine bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:866-872. [PMID: 27595180 DOI: 10.1016/j.envpol.2016.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/08/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m-2 d-1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m-2 d-1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments.
Collapse
Affiliation(s)
- Yan Feng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Chen-Chou Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lian-Jun Bao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Lei Shi
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lin Song
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
16
|
Apell JN, Gschwend PM. In situ passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ex situ measurements, and use of data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:95-101. [PMID: 27552042 DOI: 10.1016/j.envpol.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 05/21/2023]
Abstract
Superfund sites with sediments contaminated by hydrophobic organic compounds (HOCs) can be difficult to characterize because of the complex nature of sorption to sediments. Porewater concentrations, which are often used to model transport of HOCs from the sediment bed into overlying water, benthic organisms, and the larger food web, are traditionally estimated using sediment concentrations and sorption coefficients estimated using equilibrium partitioning (EqP) theory. However, researchers have begun using polymeric samplers to determine porewater concentrations since this method does not require knowledge of the sediment's sorption properties. In this work, polyethylene passive samplers were deployed into sediments in the field (in situ passive sampling) and mixed with sediments in the laboratory (ex situ active sampling) that were contaminated with polychlorinated biphenyls (PCBs). The results show that porewater concentrations based on in situ and ex situ sampling generally agreed within a factor of two, but in situ concentrations were consistently lower than ex situ porewater concentrations. Imprecision arising from in situ passive sampling procedures does not explain this bias suggesting that field processes like bioirrigation may cause the differences observed between in situ and ex situ polymeric samplers.
Collapse
Affiliation(s)
- Jennifer N Apell
- R.M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Philip M Gschwend
- R.M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Chandler ID, Guymer I, Pearson JM, van Egmond R. Vertical variation of mixing within porous sediment beds below turbulent flows. WATER RESOURCES RESEARCH 2016; 52:3493-3509. [PMID: 27635104 PMCID: PMC4999055 DOI: 10.1002/2015wr018274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/11/2016] [Indexed: 05/19/2023]
Abstract
River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment-water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber-optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment-water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in-sediment mixing coefficient are explored. The variation of in-sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined.
Collapse
Affiliation(s)
| | - I. Guymer
- School of EngineeringUniversity of WarwickCoventryUK
| | - J. M. Pearson
- School of EngineeringUniversity of WarwickCoventryUK
| | - R. van Egmond
- Unilever Safety and Environmental Assurance CentreColworth Science ParkSharnbrookUK
| |
Collapse
|
18
|
Fang SM, Zhang X, Bao LJ, Zeng EY. Modeling the fate of p,p'-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels' inputs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:598-604. [PMID: 27016888 DOI: 10.1016/j.envpol.2016.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
Antifouling paint applied to fishing vessels is the primary source of dichloro-diphenyl-trichloroethane (DDT) to the coastal marine environments of China. With the aim to provide science-based support of potential regulations on DDT use in antifouling paint, we utilized a fugacity-based model to evaluate the fate and impact of p,p'-DDT, the dominant component of DDT mixture, in Daya Bay and Hailing Bay, two typical estuarine bays in South China. The emissions of p,p'-DDT from fishing vessels to the aquatic environments of Hailing Bay and Daya Bay were estimated as 9.3 and 7.7 kg yr(-1), respectively. Uncertainty analysis indicated that the temporal variability of p,p'-DDT was well described by the model if fishing vessels were considered as the only direct source, i.e., fishing vessels should be the dominant source of p,p'-DDT in coastal bay areas of China. Estimated hazard quotients indicated that sediment in Hailing Bay posed high risk to the aquatic system, and it would take at least 21 years to reduce the hazards to a safe level. Moreover, p,p'-DDT tends to migrate from water to sediment in the entire Hailing Bay and Daya Bay. On the other hand, our previous research indicated that p,p'-DDT was more likely to migrate from sediment to water in the maricultured zones located in shallow waters of these two bays, where fishing vessels frequently remain. These findings suggest that relocating mariculture zones to deeper waters would reduce the likelihood of farmed fish contamination by p,p'-DDT.
Collapse
Affiliation(s)
- Shu-Ming Fang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Lian-Jun Bao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Fang SM, Bao LJ, Zeng EY. Source apportionment of DDTs in maricultured fish: a modeling study in South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7162-7168. [PMID: 26081772 DOI: 10.1007/s11356-015-4756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Fish is one of the most important nutrition sources for humanity. Contaminant exposure risk in fish farming will eventually deliver to the crowd through diet. China is the largest fish producing as well as exporting country, where mariculture plays an important role in fish production, especially in South China. Previous investigations indicated that a variety of compartments in farming areas of South China Sea were polluted by persistent organic pollutants, including DDT (dichlorodiphenyltrichloroethane) and its derivatives, some of which is designated as DDTs. In the present study, Hailing Bay and Daya Bay of Guangdong Province, China, were selected as the study sites and DDTs as the target compounds. A fish enrichment model was developed to assess the relative contributions of various pathways to the mass loadings of DDTs in the fish. Average concentrations (and concentration ranges) of DDTs in various environmental compartments of Hailing Bay and Daya Bay were included in modeling and analysis. Modeling results indicated that fish food and seawater contributed approximately the same proportions for the DDTs in maricultured fish. Antifouling paint was supposed to be the primary source of water DDTs in mariculture zone of Hailing Bay and Daya Bay, which contributed 69 % of the total DDTs to the mariculture water. We suggest that in order to protect people from consuming highly contaminated maricuture zone fish, the most effective and feasible methods are using environment-friendly antifouling paint and applying less polluted fish food in the fish reproduction process.
Collapse
Affiliation(s)
- Shu-Ming Fang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian-Jun Bao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Eddy Y Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Lai Y, Xia X, Dong J, Lin W, Mou X, Zhao P, Jiang X, Li Z, Tong Y, Zhao Y. Equilibrium State of PAHs in Bottom Sediment-Water-Suspended Sediment System of a Large River Considering Freely Dissolved Concentrations. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:823-832. [PMID: 26024262 DOI: 10.2134/jeq2014.09.0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In natural waters, the equilibrium state of hydrophobic organic compounds among bottom sediment (BS), suspended sediment (SPS), and water is fundamental to infer their transfer flux and aqueous bioavailability. However, this type of information remains scarce and fragmented. This study systematically evaluated the equilibrium state of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River. Total and freely dissolved concentrations of the 16 priority PAHs in pore water and overlying water (including surface and near-bottom) of the Yangtze middle reaches were investigated, as were the concentrations of attached PAHs in SPS and BS. Results showed that concentrations of total/freely dissolved PAHs, dissolved organic carbon (DOC), and SPS in surface water were not statistically different from those in near-bottom water, and the DOC-water distribution coefficients of PAHs in pore water were not statistically different from overlying water. However, significant disequilibrium was found at the sediment-water interface; concentrations of total/freely dissolved PAHs in pore water were 1 to 2 orders of magnitude higher than those in overlying water. This study offers a complete analysis of the potential disequilibrium of PAHs in BS-water-SPS system of large rivers and suggests that distribution of hydrophobic organic compounds between BS and overlying water is essential in controlling their equilibrium state in the BS-water-SPS system of natural waters.
Collapse
|
21
|
Liu HH, Bao LJ, Zeng EY. Recent advances in the field measurement of the diffusion flux of hydrophobic organic chemicals at the sediment-water interface. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|