1
|
Shen F, Wang M, Ma J, Sun Y, Zheng Y, Mu Q, Li X, Wu Y, Zhu T. Height-Resolved Analysis of Indoor Airborne Microbiome: Comparison with Floor Dust-Borne Microbiome and the Significance of Shoe Sole Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17364-17375. [PMID: 39291786 DOI: 10.1021/acs.est.4c06218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Exposure to the indoor airborne microbiome is closely related to the air that individuals breathe. However, the floor dust-borne microbiome is commonly used as a proxy for indoor airborne microbiome, and the spatial distribution of indoor airborne microbiome is less well understood. This study aimed to characterize indoor airborne microorganisms at varying heights and compare them with those in floor dust. An assembly of three horizontally and three vertically positioned Petri dishes coated with mineral oil was applied for passive air sampling continuously at three heights without interruption. The airborne microbiomes at the three different heights showed slight stratification and differed significantly from those found in the floor dust. Based on the apportionment results from the fast expectation-maximization algorithm (FEAST), shoe sole dust contributed approximately 4% to indoor airborne bacteria and 14% to airborne fungi, a contribution that is comparable to that from the floor dust-borne microbiome. The results indicated that floor dust may not be a reliable proxy for indoor airborne microbiome. Moreover, the study highlights the need for height-resolved studies of indoor airborne microbiomes among humans in different activity modes and life states. Additionally, shoe sole-dust-associated microorganisms could potentially be a source to "re-wild" the indoor microbiota.
Collapse
Affiliation(s)
- Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Mengzhen Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Jiahui Ma
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quan Mu
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China
| | - Xinghua Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Tianle Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Zhang T, Lui KH, Ho SSH, Chen J, Chuang HC, Ho KF. Characterization of airborne endotoxin in personal exposure to fine particulate matter (PM 2.5) and bioreactivity for elderly residents in Hong Kong. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116530. [PMID: 38833976 DOI: 10.1016/j.ecoenv.2024.116530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
The heavy metals and bioreactivity properties of endotoxin in personal exposure to fine particulate matter (PM2.5) were characterized in the analysis. The average personal exposure concentrations to PM2.5 were ranged from 6.8 to 96.6 μg/m3. The mean personal PM2.5 concentrations in spring, summer, autumn, and winter were 32.1±15.8, 22.4±11.8, 35.3±11.9, and 50.2±19.9 μg/m3, respectively. There were 85 % of study targets exceeded the World Health Organization (WHO) PM2.5 threshold (24 hours). The mean endotoxin concentrations ranged from 1.086 ± 0.384-1.912 ± 0.419 EU/m3, with a geometric mean (GM) varied from 1.034 to 1.869. The concentration of iron (Fe) (0.008-1.16 μg/m3) was one of the most abundant transition metals in the samples that could affect endotoxin toxicity under Toll-Like Receptor 4 (TLR4) stimulation. In summer, the interleukin 6 (IL-6) levels showed statistically significant differences compared to other seasons. Spearman correlation analysis showed endotoxin concentrations were positively correlated with chromium (Cr) and nickel (Ni), implying possible roles as nutrients and further transport via adhering to the surface of fine inorganic particles. Mixed-effects model analysis demonstrated that Tumor necrosis factor-α (TNF-α) production was positively associated with endotoxin concentration and Cr as a combined exposure factor. The Cr contained the highest combined effect (0.205-0.262), suggesting that Cr can potentially exacerbate the effect of endotoxin on inflammation and oxidative stress. The findings will be useful for practical policies for mitigating air pollution to protect the public health of the citizens.
Collapse
Affiliation(s)
- Tianhang Zhang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Hei Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven Sai Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Jiayao Chen
- School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin, Ireland
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Vornanen-Winqvist C, Järvi K, Andersson MA, Duchaine C, Létourneau V, Kedves O, Kredics L, Mikkola R, Kurnitski J, Salonen H. Exposure to indoor air contaminants in school buildings with and without reported indoor air quality problems. ENVIRONMENT INTERNATIONAL 2020; 141:105781. [PMID: 32417615 DOI: 10.1016/j.envint.2020.105781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Reported indoor air quality (IAQ) complaints are common even in relatively new or renovated school buildings in Finland. However, detecting the causes for complaints with commonly used indoor air measurements is difficult. This study presents data on perceived and measured IAQ in six comprehensive school buildings in Finland. The aim of this study was to discover the possible differences of perceived and measured IAQ between schools with reported IAQ complaints and schools without reported IAQ complaints. The initial categorisation of schools with ('problematic schools') and without ('comparison schools') complaints was ensured via a validated indoor climate survey and a recently developed online questionnaire, which were completed by 186 teachers and 1268 students from the six schools. IAQ measurements of physical parameters, gaseous pollutants, particulate matter and bioaerosols were conducted in four problematic school buildings (26 classrooms) and two comparison school buildings (12 classrooms). Using air sampling as well as exhaust air filters and classroom settled dust to detect the presence of elevated concentrations of airborne cultivable microbes and pathogenic, toxigenic and mycoparasitic Trichoderma strains were the most indicative methods in distinguishing problematic schools from comparison schools. Other IAQ-related measurements did not detect clear differences between problematic and comparison schools, as the concentration levels were very low. The results indicate that the complaints reported by occupants could have been related to excess moisture or mould problems that had not been found or repaired. Ventilation pressure condition investigations and simultaneous exhaust and supply air filter dust culture should be addressed precisely in future studies.
Collapse
Affiliation(s)
| | - Kati Järvi
- Aalto University, Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland
| | - Maria A Andersson
- Aalto University, Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland
| | - Caroline Duchaine
- Université Laval, Département de Biochimie, de Microbiologie et de Bio-informatique, 2325, rue de l'Université, Québec G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725, chemin Sainte-Foy, Québec G1V 4G5, Canada
| | - Valérie Létourneau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725, chemin Sainte-Foy, Québec G1V 4G5, Canada
| | - Orsolya Kedves
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - László Kredics
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - Raimo Mikkola
- Aalto University, Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland
| | - Jarek Kurnitski
- Aalto University, Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland; Tallinn University of Technology, Department of Civil Engineering and Architecture, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Heidi Salonen
- Aalto University, Department of Civil Engineering, PO Box 12100, FI-00076 Aalto, Finland
| |
Collapse
|
4
|
Shahhosseini E, Naddafi K, Nabizadeh R, Shamsipour M, Namvar Z, Tayebi B, Shoormasti RS, Hassanvand MS, Yunesian M. Endotoxin and Der p1 allergen levels in indoor air and settled dust in day-care centers in Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:789-795. [PMID: 32030152 PMCID: PMC6985405 DOI: 10.1007/s40201-019-00395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Allergens like endotoxin and mite allergen Der p 1 are associated with early wheezing and asthma morbidity. Day-care centers can be an important source of exposure to allergens. The aim of this study was to evaluate children's exposure to endotoxin and mite allergen (Der p 1) associated with total suspended particulate matter (TSP) and settled dust in day-care centers in two phases in years of 2015 and 2016 in Tehran city, Iran. METHODS Endotoxin and mite allergen Der p 1 in TSP and settled dust were measured in 23 day-care centers in Tehran. After collecting dust samples and weighting them, and then their extraction, Endotoxin and Der p 1 allergen were determined using QCL-1000 Endpoint chromogenic LAL Assay and ELISA, respectively. RESULTS The mean concentrations of endotoxin and mite allergen Der p 1 in settled dust were 0.3 EU/mg and 0.2 ng/mg, respectively. The mean concentration of endotoxin and mite allergen Der p 1 in indoor air TSP were 0.8 EU/m3 and 0.4 ng/m3, respectively. A significant negative correlation was found between endotoxin both in settled dust and in TSP with measured relative humidity in winter. Also, moderate correlation was observed between Der p 1 in settled dust and relative humidity in winter; however, the correlation between allergen in TSP and relative humidity was not significant. CONCLUSION Day-care centers can be an important source of endotoxin and Der p 1 allergen, so, implementation of proper interventions in these places can reduce exposure to them.
Collapse
Affiliation(s)
- Elahe Shahhosseini
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Namvar
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoosh Tayebi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ruggieri S, Longo V, Perrino C, Canepari S, Drago G, L'Abbate L, Balzan M, Cuttitta G, Scaccianoce G, Minardi R, Viegi G, Cibella F. Indoor air quality in schools of a highly polluted south Mediterranean area. INDOOR AIR 2019; 29:276-290. [PMID: 30580463 DOI: 10.1111/ina.12529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
This study aimed at surveying lower secondary schools in southern Italy, in a highly polluted area. A community close to an industrial area and three villages in rural areas was investigated. Indoor temperature, relative humidity (RH), gaseous pollutants (CO2 and NO2 ), selected biological pollutants in indoor dust, and the indoor/outdoor mass concentration and elemental composition of PM2.5 were ascertained. Temperature and RH were within, or close to, the comfort range, while CO2 frequently exceeded the threshold of 1000 ppm, indicating inadequate air exchange rate. In all the classrooms, median NO2 levels were above the WHO threshold value. Dermatophagoides p. allergen concentration was below the sensitizing threshold, while high endotoxin levels were detected in the classrooms, suggesting schools may produce significant risks of endotoxin exposure. Concentration and solubility of PM2.5 elements were used to identify the sources of indoor particles. Indoor concentration of most elements was higher than outdoors. Resuspension was responsible for the indoor increase in soil components. For elements from industrial emission (Cd, Co, Ni, Pb, Sb, Tl, V), the indoor concentration depended on penetration from the outside. For these elements, differences in rural vs industrial concentrations were found, suggesting industrial sources may influence indoor air quality nearby schools.
Collapse
Affiliation(s)
- Silvia Ruggieri
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Valeria Longo
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Cinzia Perrino
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Rome, Italy
| | - Silvia Canepari
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Gaspare Drago
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Luca L'Abbate
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Martin Balzan
- Department of Respiratory Medicine, Mater Dei Hospital, Msida, Malta
| | - Giuseppina Cuttitta
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Gianluca Scaccianoce
- Department of Energy, Information Engineering and Mathematical Models, University of Palermo, Palermo, Italy
| | - Remo Minardi
- ASP Caltanissetta - Health District of Gela, Gela, Italy
| | - Giovanni Viegi
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Fabio Cibella
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
6
|
Brassard J, Maheux C, Langlois A, Bernatchez E, Marsolais D, Flamand N, Blanchet MR. Lipopolysaccharide impacts murine CD103 + DC differentiation, altering the lung DC population balance. Eur J Immunol 2019; 49:638-652. [PMID: 30707446 DOI: 10.1002/eji.201847910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Conventional DCs are a heterogeneous population that bridge the innate and adaptive immune systems. The lung DC population comprises CD103+ XCR1+ DC1s and CD11b+ DC2s; their various combined functions cover the whole spectrum of immune responses needed to maintain homeostasis. Here, we report that in vivo exposure to LPS leads to profound alterations in the proportions of CD103+ XCR1+ DCs in the lung. Using ex vivo LPS and TNF stimulations of murine lung and spleen-isolated DCs, we show that this is partly due to a direct downregulation of the GM-CSF-induced DC CD103 expression. Furthermore, we demonstrate that LPS-induced systemic inflammation alters the transcriptional signature of DC precursors toward a lower capacity to differentiate into XCR1+ DCs. Also, we report that TNF prevents the capacity of pre-DCs to express CD103 upon maturation. Overall, our results indicate that exposure to LPS directly impacts the capacity of pre-DCs to differentiate into XCR1+ DCs, in addition to lowering their capacity to express CD103. This leads to decreased proportions of CD103+ XCR1+ DCs in the lung, favoring CD11b+ DCs, which likely plays a role in the break in homeostasis following LPS exposure, and in determining the nature of the immune response to LPS.
Collapse
Affiliation(s)
- Julyanne Brassard
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Catherine Maheux
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Anick Langlois
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Emilie Bernatchez
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - David Marsolais
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Renee Blanchet
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Yue Y, Chen H, Setyan A, Elser M, Dietrich M, Li J, Zhang T, Zhang X, Zheng Y, Wang J, Yao M. Size-Resolved Endotoxin and Oxidative Potential of Ambient Particles in Beijing and Zürich. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6816-6824. [PMID: 29787263 DOI: 10.1021/acs.est.8b01167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PM2.5 pollution has become a global health concern, however its size-resolved health impact remains to be poorly elucidated. Here, ambient particulate matter (PM) were collected into 13 different size ranges (10 nm to 18 μm) and the mass, metal, endotoxin distributions, and related oxidative potential were investigated in two regions (Zürich, Switzerland and Beijing, China). Results showed that the two regions had remarkably different PM distribution patterns. Swiss urban samples had a mode around 40 nm with 23.3% of total PM mass, while Chinese samples featured two modes around 0.75 and 4.23 μm with 13.8-18.6% and 13.7-20.4% of total PM mass, respectively. Two peaks for endotoxin at 40-100 nm and 1-4 μm were observed in different regions. For PM-borne metals, Chinese samples had 67.6-100% of total Cd, As, and Pb in the size range of 0.1-1 μm, and Swiss samples had similar distributions of Cd and Pb but much lower total metals than Chinese samples. The PM oxidative potential varied greatly with sizes for different regions. Accordingly, the current practice, i.e., sole use of the mass concentration, could lead to inadequate health protection for one region, but unnecessary economic costs for another without achieving significant extra health benefits.
Collapse
Affiliation(s)
- Yang Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dubendorf 8600 , Switzerland
| | - Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Ari Setyan
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dubendorf 8600 , Switzerland
| | - Miriam Elser
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dubendorf 8600 , Switzerland
| | - Maria Dietrich
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
| | - Jing Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Ting Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xiangyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yunhao Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Jing Wang
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dubendorf 8600 , Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
8
|
Yoda Y, Tamura K, Shima M. Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city. INDOOR AIR 2017; 27:955-964. [PMID: 28161889 DOI: 10.1111/ina.12370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM2.5 ) and coarse (PM10-2.5 ) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM2.5 than in PM10-2.5 . In both PM2.5 and PM10-2.5 , indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R2 =0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM10-2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations.
Collapse
Affiliation(s)
- Y Yoda
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan
| | - K Tamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - M Shima
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan
- Hyogo Regional Center of Japan Environment and Children's Study, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
9
|
Recent advances in environmental controls outside the home setting. Curr Opin Allergy Clin Immunol 2016; 16:135-41. [PMID: 26859366 DOI: 10.1097/aci.0000000000000250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW It has been well studied that aeroallergen, mold, and airborne pollutant exposure in the inner-city home environment is associated with significant childhood asthma morbidity. Although the home environment has been extensively studied, the school environment is less well understood. RECENT FINDINGS In this article, we discuss the relationship between environmental exposures within the school and daycare environment and pediatric asthma morbidity and novel environmental interventions designed to help mitigate pediatric asthma morbidity. SUMMARY Studies assessing environmental exposures outside the home environment and interventions to mitigate these exposures have the potential to reduce pediatric asthma morbidity. Further study in this area should focus on the complex cost benefit analyses of environmental interventions outside the home setting, while controlling for the home environment.
Collapse
|
10
|
Salthammer T, Uhde E, Schripp T, Schieweck A, Morawska L, Mazaheri M, Clifford S, He C, Buonanno G, Querol X, Viana M, Kumar P. Children's well-being at schools: Impact of climatic conditions and air pollution. ENVIRONMENT INTERNATIONAL 2016; 94:196-210. [PMID: 27258661 DOI: 10.1016/j.envint.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 05/06/2023]
Abstract
Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes the problems are simply ignored. This review summarizes the current results and knowledge gained from the scientific literature on air quality in classrooms. Possible scenarios for the future are discussed and guideline values proposed which can serve to help authorities, government organizations and commissions improve the situation on a global level.
Collapse
Affiliation(s)
- Tunga Salthammer
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia.
| | - Erik Uhde
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany
| | - Tobias Schripp
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany
| | - Alexandra Schieweck
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Mandana Mazaheri
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sam Clifford
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Giorgio Buonanno
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy
| | - Xavier Querol
- Spanish Council for Scientific Research, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Mar Viana
- Spanish Council for Scientific Research, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering & Physical Sciences (FEPS), University of Surrey, Guildford, GU2 7XH Surrey, UK; Environmental Flow (EnFlo) Research Centre, FEPS, University of Surrey, Guildford, GU2 7XH Surrey, UK
| |
Collapse
|
11
|
Lai PS, Sheehan WJ, Gaffin JM, Petty CR, Coull BA, Gold DR, Phipatanakul W. School Endotoxin Exposure and Asthma Morbidity in Inner-city Children. Chest 2016; 148:1251-1258. [PMID: 26087201 DOI: 10.1378/chest.15-0098] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Endotoxin exposure is associated with airway inflammation. Children spend 6 to 8 h/d in school, yet the effect of school-specific endotoxin exposure on asthma morbidity is not well understood. METHODS In this longitudinal cohort study, 248 students with asthma, from 38 inner-city schools, underwent baseline phenotyping and follow-up. Clinical outcomes were evaluated throughout the academic school year and linked to classroom-specific dust and air endotoxin levels as well as home dust endotoxin levels. The primary outcome was maximum asthma symptom-days per 2-week period. RESULTS Classrooms had higher settled dust endotoxin levels compared with homes (14.3 endotoxin unit/mg vs 11.3 endotoxin unit/mg; P = .02). Airborne endotoxin levels exceeding recommended occupational exposure limits for adults were recorded in 22.0% of classrooms. Classroom air endotoxin levels were independently associated with increased maximum symptom-days in children with nonatopic asthma, but not in those with atopic asthma (interaction P = .03). Adjusting for home exposures, classroom endotoxin exposure was independently associated with a dose-dependent increase in asthma symptom-days for children with nonatopic asthma (adjusted incidence rate ratio, 1.16 [95% CI, 1.03-1.31]; P = .02). In these subjects, maximum symptom-days increased by 1.3 days for each 14-day period when comparing students in classrooms with the lowest endotoxin levels compared with average measured levels. CONCLUSIONS Inner-city children with asthma are exposed to high levels of airborne endotoxin at school, resulting in increased asthma symptoms in children with nonatopic asthma. Mitigation of school-related exposures may represent a strategy to decrease asthma morbidity in this population. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01756391; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Peggy S Lai
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - William J Sheehan
- Harvard Medical School, Boston, MA; Boston Children's Hospital, Brigham and Women's Hospital, Boston, MA
| | - Jonathan M Gaffin
- Harvard Medical School, Boston, MA; Boston Children's Hospital, Brigham and Women's Hospital, Boston, MA
| | - Carter R Petty
- Boston Children's Hospital, Brigham and Women's Hospital, Boston, MA
| | - Brent A Coull
- Department of Environmental Health, Harvard School of Public Health, Boston, MA; Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Diane R Gold
- Harvard Medical School, Boston, MA; Boston Children's Hospital, Brigham and Women's Hospital, Boston, MA; Channing Laboratory, Brigham and Women's Hospital, Boston, MA
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, MA; Boston Children's Hospital, Brigham and Women's Hospital, Boston, MA.
| |
Collapse
|
12
|
Hwang SH, Park DJ, Park WM, Park DU, Ahn JK, Yoon CS. Seasonal variation in airborne endotoxin levels in indoor environments with different micro-environmental factors in Seoul, South Korea. ENVIRONMENTAL RESEARCH 2016; 145:101-108. [PMID: 26656510 DOI: 10.1016/j.envres.2015.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
This study evaluated the variation over a year in airborne endotoxin levels in the indoor environment of five university laboratories in Seoul, South Korea, and examined the micro-environmental factors that influenced endotoxin levels. These included temperature, relative humidity, CO2, CO, illumination, and wind velocity. A total of 174 air samples were collected and analyzed using the kinetic limulus amebocyte lysate assay. Endotoxin levels ranged from <0.001 to 8.90EU/m(3), with an overall geometric mean of 0.240EU/m(3). Endotoxin levels showed significantly negative correlation with temperature (r=-0.529, p<0.001), CO2 (r=-0.213, p<0.001) and illumination (r=-0.538, p<0.001). Endotoxin levels tended to be higher in winter. Endotoxin levels in laboratories with rabbits were significantly higher than those of laboratories with mice. Multivariate regression analysis showed that the environmental factors affecting endotoxin levels were temperature (coefficient=-0.388, p<0.001) and illumination (coefficient=-0.370, p<0.001). Strategies aimed at reducing airborne endotoxin levels in the indoor environments may be most effective if they focus on illumination.
Collapse
Affiliation(s)
- Sung Ho Hwang
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | - Dong Jin Park
- Occupational Safety and Health Research, Ulsan, South Korea
| | - Wha Me Park
- Institute of Environmental and Industrial Medicine, Hanyang University, Seoul, South Korea
| | - Dong Uk Park
- Department of Environmental Health, Korea National Open University, Seoul, South Korea
| | - Jae Kyoung Ahn
- Research Institute of Standards for Environmental Testing, Seoul, South Korea
| | - Chung Sik Yoon
- Institute of Health and Environment, School of Public Health, Seoul National University, Gwanak ,1 Gwanak-ro, Seoul, South Korea.
| |
Collapse
|
13
|
Ezz WN, Mazaheri M, Robinson P, Johnson GR, Clifford S, He C, Morawska L, Marks GB. Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) in Brisbane, Queensland (Australia): study design and implementation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1687-702. [PMID: 25648226 PMCID: PMC4344688 DOI: 10.3390/ijerph120201687] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/13/2015] [Indexed: 01/17/2023]
Abstract
Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children's health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.
Collapse
Affiliation(s)
- Wafaa Nabil Ezz
- Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Mandana Mazaheri
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | - Paul Robinson
- Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Graham R Johnson
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | - Samuel Clifford
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | - Congrong He
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | - Guy B Marks
- Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Annesi-Maesano I, Baiz N, Banerjee S, Rudnai P, Rive S. Indoor air quality and sources in schools and related health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:491-550. [PMID: 24298914 DOI: 10.1080/10937404.2013.853609] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Good indoor air quality in schools is important to provide a safe, healthy, productive, and comfortable environment for students, teachers, and other school staff. However, existing studies demonstrated that various air pollutants are found in classrooms, sometimes at elevated concentrations. Data also indicated that poor air quality may impact children's health, in particular respiratory health, attendance, and academic performance. Nevertheless, it should be noted that there are other adverse health effects that are less documented. Few data exist for teachers and other adults that work in schools. Allergic individuals seem to be at a higher risk for adverse respiratory health consequences. Air quality improvement represents an important measure for prevention of adverse health consequences in children and adults in schools.
Collapse
Affiliation(s)
- Isabella Annesi-Maesano
- a Université Pierre et Marie Curie, Paris 6, UMR S 707: EPAR (Epidémiologie des maladies allergiques et respiratoires), Medical School Saint-Antoine Paris , France
| | | | | | | | | |
Collapse
|