1
|
Rogińska J, Philippon T, Hoareau M, P. A. Jorand F, Barrière F, Etienne M. Challenges and Applications of Nitrate-Reducing Microbial Biocathodes. Bioelectrochemistry 2023; 152:108436. [PMID: 37099858 DOI: 10.1016/j.bioelechem.2023.108436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Bioelectrochemical systems which employ microbes as electrode catalysts to convert chemical energy into electrical energy (or conversely), have emerged in recent years for water sanitation and energy recovery. Microbial biocathodes, and especially those reducing nitrate are gaining more and more attention. The nitrate-reducing biocathodes can efficiently treat nitrate-polluted wastewater. However, they require specific conditions and they have not yet been applied on a large scale. In this review, the current knowledge on nitrate-reducing biocathodes will be summarized. The fundamentals of microbial biocathodes will be discussed, as well as the progress towards applications for nitrate reduction in the context of water treatment. Nitrate-reducing biocathodes will be compared with other nitrate-removal techniques and the challenges and opportunities of this approach will be identified.
Collapse
|
2
|
Amanze C, Anaman R, Wu X, Alhassan SI, Yang K, Fosua BA, Yunhui T, Yu R, Wu X, Shen L, Dolgor E, Zeng W. Heterotrophic anodic denitrification coupled with cathodic metals recovery from on-site smelting wastewater with a bioelectrochemical system inoculated with mixed Castellaniella species. WATER RESEARCH 2023; 231:119655. [PMID: 36706471 DOI: 10.1016/j.watres.2023.119655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- College of Engineering, Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Erdenechimeg Dolgor
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, 14200, Mongolia
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
3
|
Chaudhary S, Yadav S, Singh R, Sadhotra C, Patil SA. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications. BIORESOURCE TECHNOLOGY 2022; 347:126663. [PMID: 35017088 DOI: 10.1016/j.biortech.2021.126663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.
Collapse
Affiliation(s)
- Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Chetan Sadhotra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
4
|
Kas A, Yilmazel YD. High current density via direct electron transfer by hyperthermophilic archaeon, Geoglobus acetivorans, in microbial electrolysis cells operated at 80 °C. Bioelectrochemistry 2022; 145:108072. [PMID: 35144167 DOI: 10.1016/j.bioelechem.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
Utilization of hyperthermophilic electro-active microorganisms in microbial electrolysis cells (MECs) that are used for hydrogen production from organic wastes offers significant advantages, such as increased reaction rate and enhanced degradation of insoluble materials. However, only a limited number of hyperthermophilic bioelectrochemical systems have been investigated so far. This study is the first to illustrate hydrogen production in hyperthermophilic MECs with a maximum rate of 0.57 ± 0.06 m3 H2/m3d, where an iron reducing archaeon, Geoglobus acetivorans, was used as inoculum. In fact, this is the first study to report that G. acetivorans, as the fourth hyperthermophilic electro-active archaeon. In single chamber MECs operated at 80 °C with a set potential of 0.7 V, a peak current density of 1.53 ± 0.24 A/m2 has been attained and this is the highest record of current produced by pure culture hyperthermophilic microorganisms. Turnover cyclic voltammetry curve illustrated a sigmoidal shape (midpoint of -0.40 V vs. Ag/AgCl), and together with linear relation of scan rate and peak anodic current, proves the biofilm attachment to the anode and its capability of direct electron transfer. Along with simple substrate (acetate), G. acetivorans effectively utilized dark fermentation effluent for hydrogen production in MECs.
Collapse
Affiliation(s)
- Aykut Kas
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Yasemin Dilsad Yilmazel
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
5
|
Anjum A, Ali Mazari S, Hashmi Z, Sattar Jatoi A, Abro R. A review of role of cathodes in the performance of microbial fuel cells. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Mukherjee P, Pichiah S, Packirisamy G, Jang M. Biocatalyst physiology and interplay: a protagonist of MFC operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43217-43233. [PMID: 34165738 DOI: 10.1007/s11356-021-15015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFC) have been foreseen as a sustainable renewable energy resource to meet future energy demand. In the past, several studies have been executed in both benchtop and pilot scale to produce electrical energy from wastewater. The key role players in this technology that leads to the operation are microbes, mainly bacteria. The dominant among them is termed as "exoelectrogens" that have the capability to produce and transport electron by utilizing waste source. The current review focuses on such electrogenic bacteria's involvement for enhanced power generation of MFC. The pathway of electron transfer in their cell along and its conduction to the extracellular environment of the MFC system are critically discussed. The interaction of the microbes in various MFC operational conditions, including the role of substrate and solid electron acceptors, i.e., anode, external resistance, temperature, and pH, was also discussed in depth along with biotechnological advancement and future research perspective.
Collapse
Affiliation(s)
- Priya Mukherjee
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Saravanan Pichiah
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-dong Nowon-Gu, Seoul, South Korea
| |
Collapse
|
7
|
Dessì P, Chatterjee P, Mills S, Kokko M, Lakaniemi AM, Collins G, Lens PNL. Power production and microbial community composition in thermophilic acetate-fed up-flow and flow-through microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 294:122115. [PMID: 31541978 DOI: 10.1016/j.biortech.2019.122115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The microbial communities developed from a mixed-species culture in up-flow and flow-through configurations of thermophilic (55 °C) microbial fuel cells (MFCs), and their power production from acetate, were investigated. The up-flow MFC was operated for 202 days, obtaining an average power density of 0.13 W/m3, and Tepidiphilus was the dominant transcriptionally-active microorganisms. The planktonic community developed in the up-flow MFC was used to inoculate a flow-through MFC resulting in the proliferation of Ureibacillus, whose relative abundance increased from 1 to 61% after 45 days. Despite the differences between the up-flow and flow-through MFCs, including the anode electrode, hydrodynamic conditions, and the predominant microorganism, similar (p = 0.05) volumetric power (0.11-0.13 W/m3), coulombic efficiency (16-18%) and acetate consumption rates (55-69 mg/L/d) were obtained from both. This suggests that though MFC design can shape the active component of the thermophilic microbial community, the consortia are resilient and can maintain similar performance in different MFC configurations.
Collapse
Affiliation(s)
- Paolo Dessì
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Pritha Chatterjee
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - Simon Mills
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Marika Kokko
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Aino-Maija Lakaniemi
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
8
|
Vamshi Krishna K, Venkata Mohan S. Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity. Front Microbiol 2019; 10:880. [PMID: 31133996 PMCID: PMC6513898 DOI: 10.3389/fmicb.2019.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, transport of electrons from bacteria to an electrode is the key to its functioning. However, the roles of several electron transport proteins, especially the membrane-bound dehydrogenases which link cellular metabolism to EET pathway are yet to be identified. NDH-2 is a non-proton pumping NADH dehydrogenase located in the inner membrane of several bacteria like Bacillus subtilis, Escherichia coli, etc. Unlike NADH dehydrogenase I, NDH-2 is not impeded by a high proton motive force thus helping in the increase of metabolic flux and carbon utilization. In the current study, NADH dehydrogenase II protein (NDH-2) was heterologously expressed from B. subtilis into E. coli BL21 (DE3) for enhancing electron flux through EET pathway and to understand its role in bioelectrogenesis. We found that E. coli expressing NDH-2 has increased the electron flux through EET and has shown a ninefold increase in current (4.7 μA) production when compared to wild strain with empty vector (0.52 μA). Furthermore, expression of NDH-2 also resulted in increased biofilm formation which can be corroborated with the decrease in charge transfer resistance of NDH-2 strain and increased NADH oxidation. It was also found that NDH-2 strain can reduce ferric citrate at a higher rate than wild type strain suggesting increased electron flux through electron transport chain due to NADH dehydrogenase II activity. Purified NDH-2 was found to be ∼42 kDa and has FAD as a cofactor. This work demonstrates that the primary dehydrogenases like NADH dehydrogenases can be overexpressed to increase the electron flux in EET pathway which can further enhance the microbial fuel cells performance.
Collapse
Affiliation(s)
- K Vamshi Krishna
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
9
|
Lusk BG. Thermophiles; or, the Modern Prometheus: The Importance of Extreme Microorganisms for Understanding and Applying Extracellular Electron Transfer. Front Microbiol 2019; 10:818. [PMID: 31080440 PMCID: PMC6497744 DOI: 10.3389/fmicb.2019.00818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Approximately four billion years ago, the first microorganisms to thrive on earth were anaerobic chemoautotrophic thermophiles, a specific group of extremophiles that survive and operate at temperatures ∼50 - 125°C and do not use molecular oxygen (O2) for respiration. Instead, these microorganisms performed respiration via dissimilatory metal reduction by transferring their electrons extracellularly to insoluble electron acceptors. Genetic evidence suggests that Gram-positive thermophilic bacteria capable of extracellular electron transfer (EET) are positioned close to the root of the Bacteria kingdom on the tree of life. On the contrary, EET in Gram-negative mesophilic bacteria is a relatively new phenomenon that is evolutionarily distinct from Gram-positive bacteria. This suggests that EET evolved separately in Gram-positive thermophiles and Gram-negative mesophiles, and that EET in these bacterial types is a result of a convergent evolutionary process leading to homoplasy. Thus, the study of dissimilatory metal reducing thermophiles provides a glimpse into some of Earth's earliest forms of respiration. This will provide new insights for understanding biogeochemistry and the development of early Earth in addition to providing unique avenues for exploration and discovery in astrobiology. Lastly, the physiological composition of Gram-positive thermophiles, coupled with the kinetic and thermodynamic consequences of surviving at elevated temperatures, makes them ideal candidates for developing new mathematical models and designing innovative next-generation biotechnologies. KEY CONCEPTS Anaerobe: organism that does not require oxygen for growth. Chemoautotroph: organism that obtains energy by oxidizing inorganic electron donors. Convergent Evolution: process in which organisms which are not closely related independently evolve similar traits due to adapting to similar ecological niches and/or environments. Dissimilatory Metal Reduction: reduction of a metal or metalloid that uses electrons from oxidized organic or inorganic electron donors. Exoelectrogen: microorganism that performs dissimilatory metal reduction via extracellular electron transfer. Extremophiles: organisms that thrive in physical or geochemical conditions that are considered detrimental to most life on Earth. Homoplasy: a character shared by a set of species that is not shared by a common ancestor Non-synonymous Substitutions (K a ): a substitution of a nucleotide that changes a codon sequence resulting in a change in the amino acid sequence of a protein. Synonymous Substitutions (K s ): a substitution of a nucleotide that may change a codon sequence, but results in no change in the amino acid sequence of a protein. Thermophiles: a specific group of extremophiles that survive and operate at temperatures ∼50-125°C.
Collapse
|
10
|
Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 2019; 17:307-319. [DOI: 10.1038/s41579-019-0173-x] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Jin X, Guo F, Liu Z, Liu Y, Liu H. Enhancing the Electricity Generation and Nitrate Removal of Microbial Fuel Cells With a Novel Denitrifying Exoelectrogenic Strain EB-1. Front Microbiol 2018; 9:2633. [PMID: 30473682 PMCID: PMC6237982 DOI: 10.3389/fmicb.2018.02633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/16/2018] [Indexed: 12/03/2022] Open
Abstract
Microbial fuel cells (MFCs) have been tentatively applied for wastewater treatment, but the presence of nitrogen, especially nitrate, induces performance instability by changing the composition of functional biofilms. A novel denitrifying exoelectrogenic strain EB-1, capable of simultaneous denitrification and electricity generation and affiliated with Mycobacterium sp., was isolated from the anodic biofilm of MFCs fed with nitrate containing medium. Polarization curves and cyclic voltammetry showed that strain EB-1 could generate electricity through a direct electron transfer mechanism with a maximum power density of 0.84 ± 0.05 W m−2. Additionally, anodic denitrification, as a concurrent metabolism, was demonstrated with an efficient removal rate of 0.66 ± 0.01 kg N m−3 d−1 at a COD/N ratio of 3.5 ± 0.3. Importantly, voltage output was not negatively influenced by nitrate, indicating that the concurrent process of nitrate removal and electricity generation was a limitation of the electron donor rather than an inhibition of the system. Furthermore, various organic materials were successfully utilized as anode donors for strain EB-1, and demonstrated the exciting performances in terms of simultaneous denitrification and electricity generation. Mycobacterium sp. EB-1 thus expands the diversity of exoelectrogens and contributes to the potential applications of MFC for simultaneous energy recovery and wastewater treatment.
Collapse
Affiliation(s)
- Xiaojun Jin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Guo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhimei Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| |
Collapse
|
12
|
Li L, Jiang B, Tang D, Zhang X, Yuan K, Zhang Q. Alkaline treatment of used carbon-brush anodes for restoring power generation of microbial fuel cells. RSC Adv 2018; 8:36754-36760. [PMID: 35558927 PMCID: PMC9088807 DOI: 10.1039/c8ra07216g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 11/27/2022] Open
Abstract
Long-term operation of microbial fuel cells (MFCs) results in an electrochemical activity decline by the degradation of the anodic biofilm. In this work, an alkaline soaking treatment is proposed as an efficient and simple method for anode regeneration. The alkaline treatment was employed in a used carbon-brush anode, and its performance was compared with those of two other traditional treatment methods, i.e. air drying and carbonization. Among all the treated MFC anodes, the one treated by alkaline soaking exhibited the highest recovery rate. A series of tests including a start-up process, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and MFC performance were performed. The results show that alkaline soaking can modify the carbon fiber by introducing carboxyl groups onto the carbon surface and completely remove the aged biofilm, demonstrating that the alkaline treatment of used anodes is a practically effective method for the performance recovery of MFCs. An alkaline soaking treatment is proposed as an efficient and simple method for anode regeneration.![]()
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Dawei Tang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Xiaoliang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Kunpeng Yuan
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Qian Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
13
|
Pillot G, Frouin E, Pasero E, Godfroy A, Combet-Blanc Y, Davidson S, Liebgott PP. Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. BIORESOURCE TECHNOLOGY 2018; 259:304-311. [PMID: 29573609 DOI: 10.1016/j.biortech.2018.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
While more and more investigations are done to study hyperthermophilic exoelectrogenic communities from environments, none have been performed yet on deep-sea hydrothermal vent. Samples of black smoker chimney from Rainbow site on the Atlantic mid-oceanic ridge have been harvested for enriching exoelectrogens in microbial electrolysis cells under hyperthermophilic (80 °C) condition. Two enrichments were performed in a BioElectrochemical System specially designed: one from direct inoculation of crushed chimney and the other one from inoculation of a pre-cultivation on iron (III) oxide. In both experiments, a current production was observed from 2.4 A/m2 to 5.8 A/m2 with a set anode potential of -0.110 V vs Ag/AgCl. Taxonomic affiliation of the exoelectrogen communities obtained on the electrode exhibited a specific enrichment of Archaea belonging to Thermococcales and Archeoglobales orders, even when both inocula were dominated by Bacteria.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Eléonore Frouin
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Emilie Pasero
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Sylvain Davidson
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France.
| |
Collapse
|
14
|
Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 2018; 36:1316-1327. [DOI: 10.1016/j.biotechadv.2018.04.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
15
|
Lusk BG, Peraza I, Albal G, Marcus AK, Popat SC, Torres CI. pH Dependency in Anode Biofilms of Thermincola ferriacetica Suggests a Proton-Dependent Electrochemical Response. J Am Chem Soc 2018; 140:5527-5534. [DOI: 10.1021/jacs.8b01734] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bradley G. Lusk
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- ScienceTheEarth, Mesa, Arizona 85201, United States
| | - Isaias Peraza
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Gaurav Albal
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Andrew K. Marcus
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Sudeep C. Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Cesar I. Torres
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Dessì P, Porca E, Haavisto J, Lakaniemi AM, Collins G, Lens PNL. Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells. RSC Adv 2018; 8:3069-3080. [PMID: 35541202 PMCID: PMC9077550 DOI: 10.1039/c7ra12316g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022] Open
Abstract
A mesophilic (37 °C) and a thermophilic (55 °C) two-chamber microbial fuel cell (MFC) were studied and compared for their power production from xylose and the microbial communities involved. The anode-attached, membrane-attached, and planktonic microbial communities, and their respective active subpopulations, were determined by next generation sequencing (Illumina MiSeq), based on the presence and expression of the 16S rRNA gene. Geobacteraceae accounted for 65% of the anode-attached active microbial community in the mesophilic MFC, and were associated to electricity generation likely through direct electron transfer, resulting in the highest power production of 1.1 W m-3. A lower maximum power was generated in the thermophilic MFC (0.2 W m-3), likely due to limited acetate oxidation and the competition for electrons by hydrogen oxidizing bacteria and hydrogenotrophic methanogenic archaea. Aerobic microorganisms, detected among the membrane-attached active community in both the mesophilic and thermophilic MFC, likely acted as a barrier for oxygen flowing from the cathodic chamber through the membrane, favoring the strictly anaerobic exoelectrogenic microorganisms, but competing with them for xylose and its degradation products. This study provides novel information on the active microbial communities populating the anodic chamber of mesophilic and thermophilic xylose-fed MFCs, which may help in developing strategies to favor exoelectrogenic microorganisms at the expenses of competing microorganisms.
Collapse
Affiliation(s)
- Paolo Dessì
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Estefania Porca
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Johanna Haavisto
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Aino-Maija Lakaniemi
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Piet N L Lens
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
- UNESCO-IHE, Institute for Water Education Westvest 7 2611AX Delft The Netherlands
| |
Collapse
|
17
|
Dai K, Wen JL, Zhang F, Ma XW, Cui XY, Zhang Q, Zhao TJ, Zeng RJ. Electricity production and microbial characterization of thermophilic microbial fuel cells. BIORESOURCE TECHNOLOGY 2017; 243:512-519. [PMID: 28697453 DOI: 10.1016/j.biortech.2017.06.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m2, and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future.
Collapse
Affiliation(s)
- Kun Dai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jun-Li Wen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China.
| | - Xi-Wen Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Xiang-Yu Cui
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Qi Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Ting-Jia Zhao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
18
|
Yilmazel YD, Zhu X, Kim KY, Holmes DE, Logan BE. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry 2017; 119:142-149. [PMID: 28992595 DOI: 10.1016/j.bioelechem.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Few microorganisms have been examined for current generation under thermophilic (40-65°C) or hyperthermophilic temperatures (≥80°C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68±0.11A/m2 was attained in F. placidus MECs at 85°C, and 0.57±0.10A/m2 in G. ahangari MECs at 80°C, with an applied voltage of 0.7V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of -0.39V (vs. Ag/AgCl) for F. placidus and -0.37V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.
Collapse
Affiliation(s)
- Yasemin D Yilmazel
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Kyoung-Yeol Kim
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dawn E Holmes
- Department of Biology, Western New England University, Springfield, MA, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME JOURNAL 2017; 12:48-58. [PMID: 28872631 DOI: 10.1038/ismej.2017.141] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/17/2017] [Accepted: 07/25/2017] [Indexed: 11/08/2022]
Abstract
The possibility that bacteria other than Geobacter species might contain genes for electrically conductive pili (e-pili) was investigated by heterologously expressing pilin genes of interest in Geobacter sulfurreducens. Strains of G. sulfurreducens producing high current densities, which are only possible with e-pili, were obtained with pilin genes from Flexistipes sinusarabici, Calditerrivibrio nitroreducens and Desulfurivibrio alkaliphilus. The conductance of pili from these strains was comparable to native G. sulfurreducens e-pili. The e-pili derived from C. nitroreducens, and D. alkaliphilus pilin genes are the first examples of relatively long (>100 amino acids) pilin monomers assembling into e-pili. The pilin gene from Candidatus Desulfofervidus auxilii did not yield e-pili, suggesting that the hypothesis that this sulfate reducer wires itself with e-pili to methane-oxidizing archaea to enable anaerobic methane oxidation should be reevaluated. A high density of aromatic amino acids and a lack of substantial aromatic-free gaps along the length of long pilins may be important characteristics leading to e-pili. This study demonstrates a simple method to screen pilin genes from difficult-to-culture microorganisms for their potential to yield e-pili; reveals new sources for biologically based electronic materials; and suggests that a wide phylogenetic diversity of microorganisms may use e-pili for extracellular electron exchange.
Collapse
|
20
|
Sekar N, Wu C, Adams MW, Ramasamy RP. Electricity generation by
Pyrococcus furiosus
in microbial fuel cells operated at 90°C. Biotechnol Bioeng 2017; 114:1419-1427. [DOI: 10.1002/bit.26271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Narendran Sekar
- Nano Electrochemistry Laboratory, College of EngineeringUniversity of GeorgiaAthensGeorgia30602
| | - Chang‐Hao Wu
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgia30602
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgia30602
| | - Ramaraja P. Ramasamy
- Nano Electrochemistry Laboratory, College of EngineeringUniversity of GeorgiaAthensGeorgia30602
| |
Collapse
|
21
|
Deng H, Xue H, Zhong W. A Novel Exoelectrogenic Bacterium Phylogenetically Related toClostridium sporogenesIsolated from Copper Contaminated Soil. ELECTROANAL 2017. [DOI: 10.1002/elan.201600673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huan Deng
- School of Environment; Nanjing Normal University; Nanjing PR China 210023
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control; School of Geography Science; Nanjing Normal University; Nanjing PR China 210023
| | - Hongjing Xue
- School of Environment; Nanjing Normal University; Nanjing PR China 210023
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control; School of Geography Science; Nanjing Normal University; Nanjing PR China 210023
| | - Wenhui Zhong
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control; School of Geography Science; Nanjing Normal University; Nanjing PR China 210023
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application; Nanjing PR China 210023
| |
Collapse
|
22
|
Lusk BG, Parameswaran P, Popat SC, Rittmann BE, Torres CI. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica. Bioelectrochemistry 2016; 112:47-52. [DOI: 10.1016/j.bioelechem.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 11/16/2022]
|
23
|
Jiang YB, Zhong WH, Han C, Deng H. Characterization of Electricity Generated by Soil in Microbial Fuel Cells and the Isolation of Soil Source Exoelectrogenic Bacteria. Front Microbiol 2016; 7:1776. [PMID: 27877168 PMCID: PMC5099896 DOI: 10.3389/fmicb.2016.01776] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/21/2016] [Indexed: 01/22/2023] Open
Abstract
Soil has been used to generate electrical power in microbial fuel cells (MFCs) and exhibited several potential applications. This study aimed to reveal the effect of soil properties on the generated electricity and the diversity of soil source exoelectrogenic bacteria. Seven soil samples were collected across China and packed into air-cathode MFCs to generate electricity over a 270 days period. The Fe(III)-reducing bacteria in soil were enriched and sequenced by Illumina pyrosequencing. Culturable strains of Fe(III)-reducing bacteria were isolated and identified phylogenetically. Their exoelectrogenic ability was evaluated by polarization measurement. The results showed that soils with higher organic carbon (OC) content but lower soil pH generated higher peak voltage and charge. The sequencing of Fe(III)-reducing bacteria showed that Clostridia were dominant in all soil samples. At the family level, Clostridiales Family XI incertae sedis were dominant in soils with lower OC content but higher pH (>8), while Clostridiaceae, Lachnospiraceae, and Planococcaceae were dominant in soils with higher OC content but lower pH. The isolated culturable strains were allied phylogenetically to 15 different species, of which 11 were Clostridium. The others were Robinsoniella peoriensis, Hydrogenoanaerobacterium saccharovorans, Eubacterium contortum, and Oscillibacter ruminantium. The maximum power density generated by the isolates in the MFCs ranged from 16.4 to 28.6 mW m-2. We concluded that soil OC content had the most important effect on power generation and that the Clostridiaceae were the dominant exoelectrogenic bacterial group in soil. This study might lead to the discovery of more soil source exoelectrogenic bacteria species.
Collapse
Affiliation(s)
- Yun-Bin Jiang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal UniversityNanjing, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and ApplicationNanjing, China
| | - Wen-Hui Zhong
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal UniversityNanjing, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and ApplicationNanjing, China
| | - Cheng Han
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal UniversityNanjing, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and ApplicationNanjing, China
| | - Huan Deng
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal UniversityNanjing, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and ApplicationNanjing, China; School of Environment, Nanjing Normal UniversityNanjing, China
| |
Collapse
|
24
|
|
25
|
Badalamenti JP, Summers ZM, Chan CH, Gralnick JA, Bond DR. Isolation and Genomic Characterization of 'Desulfuromonas soudanensis WTL', a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine. Front Microbiol 2016; 7:913. [PMID: 27445996 PMCID: PMC4914508 DOI: 10.3389/fmicb.2016.00913] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/27/2016] [Indexed: 11/25/2022] Open
Abstract
Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats.
Collapse
Affiliation(s)
| | - Zarath M Summers
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul MN, USA
| | - Chi Ho Chan
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul MN, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint PaulMN, USA; Department of Microbiology, University of Minnesota - Twin Cities, MinneapolisMN, USA
| | - Daniel R Bond
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint PaulMN, USA; Department of Microbiology, University of Minnesota - Twin Cities, MinneapolisMN, USA
| |
Collapse
|
26
|
Dopson M, Ni G, Sleutels THJA. Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 2015; 40:164-81. [PMID: 26474966 PMCID: PMC4802824 DOI: 10.1093/femsre/fuv044] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
Microbial electrochemical systems exploit the metabolism of microorganisms to generate electrical energy or a useful product. In the past couple of decades, the application of microbial electrochemical systems has increased from the use of wastewaters to produce electricity to a versatile technology that can use numerous sources for the extraction of electrons on the one hand, while on the other hand these electrons can be used to serve an ever increasing number of functions. Extremophilic microorganisms grow in environments that are hostile to most forms of life and their utilization in microbial electrochemical systems has opened new possibilities to oxidize substrates in the anode and produce novel products in the cathode. For example, extremophiles can be used to oxidize sulfur compounds in acidic pH to remediate wastewaters, generate electrical energy from marine sediment microbial fuel cells at low temperatures, desalinate wastewaters and act as biosensors of low amounts of organic carbon. In this review, we will discuss the recent advances that have been made in using microbial catalysts under extreme conditions and show possible new routes that extremophilic microorganisms open for microbial electrochemical systems.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Gaofeng Ni
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Tom H J A Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
27
|
Huang L, Wang Q, Jiang L, Zhou P, Quan X, Logan BE. Adaptively Evolving Bacterial Communities for Complete and Selective Reduction of Cr(VI), Cu(II), and Cd(II) in Biocathode Bioelectrochemical Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9914-9924. [PMID: 26175284 DOI: 10.1021/acs.est.5b00191] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bioelectrochemical systems (BESs) have been shown to be useful in removing individual metals from solutions, but effective treatment of electroplating and mining wastewaters requires simultaneous removal of several metals in a single system. To develop multiple-reactor BESs for metals removal, biocathodes were first individually acclimated to three different metals using microbial fuel cells with Cr(VI) or Cu(II) as these metals have relatively high redox potentials, and microbial electrolysis cells for reducing Cd(II) as this metal has a more negative redox potential. The BESs were then acclimated to low concentrations of a mixture of metals, followed by more elevated concentrations. This procedure resulted in complete and selective metal reduction at rates of 1.24 ± 0.01 mg/L-h for Cr(VI), 1.07 ± 0.01 mg/L-h for Cu(II), and 0.98 ± 0.01 mg/L-h for Cd(II). These reduction rates were larger than the no adaptive controls by factors of 2.5 for Cr(VI), 2.9 for Cu(II), and 3.6 for Cd(II). This adaptive procedure produced less diverse microbial communities and changes in the microbial communities at the phylum and genus levels. These results demonstrated that bacterial communities can adaptively evolve to utilize solutions containing mixtures of metals, providing a strategy for remediating wastewaters containing Cr(VI), Cu(II), and Cd(II).
Collapse
Affiliation(s)
| | | | | | | | | | - Bruce E Logan
- §Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
28
|
Fu Q, Fukushima N, Maeda H, Sato K, Kobayashi H. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C. Biosci Biotechnol Biochem 2015; 79:1200-6. [DOI: 10.1080/09168451.2015.1015952] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm−2, which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.
Collapse
Affiliation(s)
- Qian Fu
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoya Fukushima
- Engineering for Sustainable Carbon Cycle (INPEX Corporation) Social Cooperation Program, Frontier Research Center for Energy and Resources (FRCER), The University of Tokyo, Tokyo, Japan
| | | | - Kozo Sato
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Engineering for Sustainable Carbon Cycle (INPEX Corporation) Social Cooperation Program, Frontier Research Center for Energy and Resources (FRCER), The University of Tokyo, Tokyo, Japan
| | - Hajime Kobayashi
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Engineering for Sustainable Carbon Cycle (INPEX Corporation) Social Cooperation Program, Frontier Research Center for Energy and Resources (FRCER), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Kashima H, Regan JM. Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3195-3202. [PMID: 25622928 DOI: 10.1021/es504882f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alternative metabolic options of exoelectrogenic biofilms in bioelectrochemical systems (BESs) are important not only to explain the fundamental ecology and performance of these systems but also to develop reliable integrated nutrient removal strategies in BESs, which potentially involve substrates or intermediates that support/induce those alternative metabolisms. This research focused on dissimilatory nitrate reduction as an alternative metabolism to dissimilatory anode reduction. Using the exoelectrogenic nitrate reducer Geobacter metallireducens, the critical conditions controlling those alternative metabolisms were investigated in two-chamber, potentiostatically controlled BESs at various anode potentials and biofilm thicknesses and challenged over a range of nitrate concentrations. Results showed that anode-reducing biofilms facultatively reduced nitrate at all tested anode potentials (-150 to +900 mV vs Standard Hydrogen Electrode) with a rapid metabolic shift. The critical nitrate concentration that triggered a significant decrease in BES performance was a function of anode biofilm thickness but not anode potential. This indicates that these alternative metabolisms were controlled by the availability of nitrate, which is a function of nitrate concentration in bulk solution and its diffusion into an anode-reducing biofilm. Coulombic recovery decreased as a function of nitrate dose due to electron-acceptor substrate competition, and nitrate-induced suspended biomass growth decreased the effluent quality.
Collapse
Affiliation(s)
- Hiroyuki Kashima
- Department of Civil and Environmental Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
30
|
Gagliano M, Braguglia C, Petruccioli M, Rossetti S. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol Ecol 2015; 91:fiv018. [DOI: 10.1093/femsec/fiv018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
|
31
|
Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1225-1232. [PMID: 25544349 DOI: 10.1021/es5052233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of thermophilic microorganisms as biocatalysts for electromethanogenesis was investigated. Single-chamber reactors inoculated with thermophiles and operated at 55 °C showed high CH4 production rates (max. 1103 mmol m(–2) day(–1) at an applied voltage of 0.8 V) with current-capture efficiencies >90%, indicating that thermophiles have high potential as biocatalysts. To improve the electromethanogenic activity, the developed biocathode was transferred to a two-chamber reactor and operated at a poised potential of −0.5 V vs SHE. The CH4 production rates of the biocathode were enhanced approximately 6-fold in 160 h of poised-potential incubation, indicating that the acclimation of the biocathode resulted in performance improvement. Compositional alteration of the cathodic microbiota suggested that a Methanothermobacter-related methanogen and synergistetes- and thermotogae-related bacteria were selected during the acclimation. Cyclic voltammetry of the “acclimated” biocathode showed an augmented cathodic catalytic wave with a midpoint potential at ca. −0.35 V vs SHE. Moreover, the biocathode was able to catalyze electromethanogenesis at −0.35 V vs SHE. These results suggested that the ability of the biocathode to catalyze electromethanogenesis via direct electron transfer was enhanced by the acclimation. This study provides new technological and fundamental information on electromethanogenic bioelectrochemical systems (BESs) that may be extended to other BESs.
Collapse
|
32
|
Zhi W, Ge Z, He Z, Zhang H. Methods for understanding microbial community structures and functions in microbial fuel cells: a review. BIORESOURCE TECHNOLOGY 2014; 171:461-468. [PMID: 25223851 DOI: 10.1016/j.biortech.2014.08.096] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 06/03/2023]
Abstract
Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output.
Collapse
Affiliation(s)
- Wei Zhi
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zheng Ge
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Husen Zhang
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|