1
|
Du Q, Li B, Ma M, Yao B, Fang X. Estimate Gaps of Montreal Protocol-Regulated Potent Greenhouse Gas HFC-152a Emissions in China Have Been Explained. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5750-5759. [PMID: 38506744 DOI: 10.1021/acs.est.3c09516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
1,1-Difluoroethane (HFC-152a) is a hydrofluorocarbon regulated by the Montreal Protocol, and its emissions in China are of concern as China will regulate HFC-152a in 2024. However, no observation-inferred top-down estimates were undertaken after 2017, and substantial gaps existed among previous estimates of China's HFC-152a emissions. Using the atmospheric observations and inverse modeling, this study reveals China's HFC-152a emissions of 9.4 ± 1.7 Gg/yr (gigagrams per year), 10.6 ± 1.8 Gg/yr, and 9.7 ± 1.5 Gg/yr in 2018, 2019, and 2020, respectively. In addition, we display an overall increasing trend during 2011-2020, which is in contrast to the decreasing and steady trend reported by the Emission Database for Global Atmospheric Research (EDGAR) and the Chinese government, respectively. Subsequently, we establish a comprehensive bottom-up emission inventory matching with top-down estimates and thus succeed in explaining the gaps among previous estimates. Furthermore, the contribution of China's emissions to global HFC-152a emission growth increased from 15% during 2001-2010 to >100% during 2011-2020. An emission projection based on our improved inventory shows that the Kigali Amendment (KA) would assist in avoiding 1535.6-4710.6 Gg (251.8-772.5 Tg CO2-eq) HFC-152a emissions during 2024-2100. Our findings indicate relatively accurate China's HFC-152a emissions and provide scientific support for addressing climate change and implementing the KA.
Collapse
Affiliation(s)
- Qianna Du
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Bowei Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengyue Ma
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Yao
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, P. R. China
- Meteorological Observation Centre of China Meteorological Administration (MOC/CMA), Beijing 100081, P. R. China
| | - Xuekun Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Cao X, Gu D, Li X, Leung KF, Sun H, Mai Y, Chan WM, Liang Z. Characteristics and source origin analysis of halogenated hydrocarbons in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160504. [PMID: 36464056 DOI: 10.1016/j.scitotenv.2022.160504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Despite being regulated globally for almost three decades, halocarbon continues to play a vital role in climate change and ozone layer because of its long lifetime in the ambient air. In recent years, unexpected halocarbon emissions have been found in Asia, raising concerns about ozone recovery. As a number of studies focused on halocarbon variations and source profiles, there is an increasing need to identify halocarbon source origins. In this study, an eight-month regular air sampling was conducted at a coastal site in Hong Kong from November 2020 to June 2021, and seventeen halocarbon species were selected for extensive investigation after advanced sample analysis in our laboratory. The temporal variations of halocarbon mixing ratio enhancements were analyzed, and the spatial variations of source origins were investigated by wind sectors and backward trajectory statistics. Our results indicate lower enhancements beyond the background values for major regulated CFCs and CCl4 than later controlled HCFCs and HFCs, suggesting the greater progress of Montreal Protocol implementation for the former species. The notable high enhancement values of non-regulated halocarbons from the north direction indicate their widespread usage in China. The source apportionment analysis estimates the contributions from six emission sectors on measured halocarbons, including solvent usage (43.57 ± 4.08 %), refrigerant residues (17.05 ± 5.71 %), cleaning agent/chemical production (13.18 ± 4.76 %), refrigerant replacements (13.06 ± 2.13 %), solvent residues (8.65 ± 3.28 %), and foaming agent (4.49 ± 1.08 %). Trajectories statistical analysis suggests that industrial solvent was mainly contributed by eastern China (i.e., Shandong and YRD), cleaning agent/chemical production was spread over southeast China (i.e., YRD and Fujian), and refrigeration replacements were dominant in Hong Kong surrounding regions. This work provides insight into the progress made in implementing the Montreal Protocol in Hong Kong and the surrounding region and the importance of continuous emission control.
Collapse
Affiliation(s)
- Xiangyunong Cao
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dasa Gu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Xin Li
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Fung Leung
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Sun
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuchen Mai
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wai Ming Chan
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenxing Liang
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Zhang X, Zhang ZF, Zhang X, Zhu FJ, Li YF, Cai M, Kallenborn R. Polycyclic Aromatic Hydrocarbons in the Marine Atmosphere from the Western Pacific to the Southern Ocean: Spatial Variability, Gas/Particle Partitioning, and Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6253-6261. [PMID: 35476391 DOI: 10.1021/acs.est.1c08429] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spatial variability of polycyclic aromatic hydrocarbons (PAHs) in the marine atmosphere contributes to the understanding of the global sources, fate, and impact of this contaminant. Few studies conducted to measure PAHs in the oceanic atmosphere have covered a large scale, especially in the Southern Ocean. In this study, high-volume air samples were taken along a cross-section from China to Antarctica and analyzed for gaseous and particulate PAHs. The data revealed the spatial distribution, gas-particle partitioning, and source contributions of PAHs in the Pacific, Indian, and Southern Oceans. The median concentration (gaseous + particulate) of ∑24PAHs was 3900 pg/m3 in the Pacific Ocean, 2000 pg/m3 in the Indian Ocean, and 1200 pg/m3 in the Southern Ocean. A clear latitudinal gradient was observed for airborne PAHs from the western Pacific to the Southern Ocean. Back trajectories (BTs) analysis showed that air masses predominantly originated from populated land had significantly higher concentrations of PAHs than those from the oceans or Antarctic continents/islands. The air mass origins and temperature have significant influences on the gas-particle partitioning of PAHs. Source analysis by positive matrix factorization (PMF) showed that the highest contribution to PAHs was from coal combustion emissions (52%), followed by engine combustion emissions (27%) and wood combustion emissions (21%). A higher contribution of PAHs from wood combustion was found in the eastern coastal region of Australia. In contrast, engine combustion emissions primarily influenced the sites in Southeast Asia.
Collapse
Affiliation(s)
- Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Minghong Cai
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| |
Collapse
|
4
|
Zhang H, Ji Y, Wu Z, Peng L, Bao J, Peng Z, Li H. Atmospheric volatile halogenated hydrocarbons in air pollution episodes in an urban area of Beijing: Characterization, health risk assessment and sources apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150283. [PMID: 34563911 DOI: 10.1016/j.scitotenv.2021.150283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Volatile halogenated hydrocarbons (VHCs) have attracted wide attention in the atmospheric chemistry field since they not only affect the ecological environment but also damage human health. In order to better understand the characteristics, sources and health risks of VHCs in typical urban areas in Beijing, and also verify the achievement in implementing the Montreal Protocol (MP) in Beijing, observational studies on 22 atmospheric VHCs species were conducted during six air pollution episodes from December 2016 to May 2017. The range in daily mixing ratios of the 6 MP-regulated VHCs was 1000-1168 pptv, and the 16 MP-unregulated VHCs was 452-2961 pptv. The 16 MP-unregulated VHCs accounted for a relatively high concentration proportion among the 22 VHCs with a mean of 70.25%. Compared with other regions, the mixing ratios of MP-regulated VHCs were in the middle concentrations. The mixing ratios of the MP-regulated VHCs remained the same concentrations during the air pollution episodes, while the concentrations of MP-unregulated VHCs were generally higher on polluted days than on clean days and increased with the aggravation of the pollution episodes. The mixing ratios of dichlorodifluoromethane and trichlorofluoromethane were higher than Northern Hemisphere (NH) background values, while the mixing ratios of the other 4 MP-regulated VHCs were moderate and similar to the NH background values. All the 9 VHCs with carcinogenic risk might pose potential carcinogenic risks to the exposed populations in the six pollution episodes, while none of the 12 VHCs might pose appreciable non-carcinogenic risks to the exposed populations. Considering the higher concentration levels and higher risk values of 1,2-dichloropropane, 1,2-dichloroethane, carbon tetrachloride and trichloromethane, Beijing needs to further strengthen the control of these VHCs. The analysis of air mass transportation and PMF model showed that regional transportation and leakage of CFCs banks were important sources of VHCs in Beijing, and the contribution of industrial process and solvent usage should not be neglected. The results revealed the effective implementation of the MP in Beijing and its surrounding areas, while further measures are suggested to control the emissions of important VHCs especially from regional transportation and leakage of CFCs banks to reduce the possible health risks to the exposed population.
Collapse
Affiliation(s)
- Hao Zhang
- School of Science, China University of Geosciences, Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liang Peng
- Nanjing Intelligent Environmental Sci-Tech Company Limited, Nanjing 211800, China
| | - Jiemeng Bao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Hubei Provincial Academy of Eco-environmental Sciences, Wuhan 430072, China
| | - Zhijian Peng
- School of Science, China University of Geosciences, Beijing 100083, China.
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Yang M, Yang F, Li H, Li T, Cao F, Nie X, Zhen J, Li P, Wang Y. CFCs measurements at high altitudes in northern China during 2017-2018: Concentrations and potential emission source regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142290. [PMID: 33254917 DOI: 10.1016/j.scitotenv.2020.142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Northern China was simulated as the main contributor to global chlorofluorocarbon (CFCs) that slowed down the recovery of stratospheric ozone layer in most recent studies. An atmospheric campaign was carried out from June 2017 to April 2018 to register the concentrations of typical chlorofluorocarbons (CFCs) (i.e., CFC-11, CFC-12, CFC-113, and CFC-114) at the top of Mount Tai, northern China. The mixing ratios of CFC-11 CFC-12, CFC-113, and CFC-114 were 257, 577, 80, and 18 pptv, respectively. These values are similar to the reported data 10 years ago at Mount Tai. CFC concentrations correlated well with those of benzene (an anthropogenic tracer) and were not affected by either humidity, temperature, or solar radiation. However, CFC concentrations were considerably influenced by regional transport: their backward trajectory and the PSCF (potential source contribution function) analysis suggested that higher concentrations (CFC-12, CFC-113 and CFC-114) were detected under the influence of air mass from the industrial regions in mid-eastern China and CFC-11 was through long-range transport from northwestern (i.e., from the higher atmosphere in western China) air masses. Overall, the findings of this study suggested that CFCs still have emissions in China, but no significant increase in recent years. Mid-eastern China might be responsible for the CFC emissions. The conclusions also highlight the need for the enforcement of effective control policies and the management of emissions, in order to avoid increasingly severe scenarios.
Collapse
Affiliation(s)
- Minmin Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Fengchun Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Hongli Li
- Environmental Monitoring Central Station of Shandong Province, Jinan, China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Fangfang Cao
- School of Environmental Science and Engineering, Shandong University, Qingdao, China; Environmental Monitoring Central Station of Shandong Province, Jinan, China
| | - Xiaoling Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Jiebo Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Panyan Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
6
|
Source Characteristics of Atmospheric CO2 and CH4 in a Northeastern Highland Area of South Korea. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to present the atmospheric CO2 and CH4 levels and analyze their source characteristics at an observation station in a northeastern highland area of Korea for the 2012–2014 period. We summarized the measured CO2 and CH4 concentrations for the 2012–2014 period. In addition, we characterized the major source of the rise of CO2 and CH4 in Ganseong (GS) by employing bivariate polar plots (BPP) and the concentration weighted trajectory (CWT) method together with currently available information on emission sources. For the three years, CO2 was generally high in the order of winter, spring, autumn and summer and CH4 high in the order of winter, autumn, spring and summer. The observed positive correlations between the hourly CO2 and CH4 in every season suggested the possibility of shared common emission sources, but there is a necessity for elucidation on this in the future. The BPP analysis indicated the local sources that are likely to be associated with the rise of greenhouse gases (GHGs) observed at GS (combustion in the village, plant respirations nearby GS, and mobile emissions on the nearby road for CO2 and leakages from the gas stations along the road and agricultural activities for CH4). Synthesizing the CWT results together with emission source information from national and global emission inventories, we identified likely major source areas and characterized major emission sources. For example, the identified major sources for the winter CO2 are coal combustion, coal washing and industrial activities in Inner Mongolia, northern and the northeastern China, fuel burning for the energy for the infrastructure of a northwestern city in South Korea, and the manufacturing industry and fuel combustion in the northern parts of North Korea. Hopefully, these kinds of results will aid environmental researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective mitigation strategies.
Collapse
|
7
|
Wang C, Bi J, Zhang XX, Fang Q, Qi Y. In-time source tracking of watershed loads of Taihu Lake Basin, China based on spatial relationship modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22085-22094. [PMID: 29802613 DOI: 10.1007/s11356-018-2304-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Influent river carrying cumulative watershed load plays a significant role in promoting nuisance algal bloom in river-fed lake. It is most relevant to discern in-stream water quality exceedance and evaluate the spatial relationship between risk location and potential pollution sources. However, no comprehensive studies of source tracking in watershed based on management grid have been conducted for refined water quality management, particularly for plain terrain with complex river network. In this study, field investigations were implemented during 2014 in Taige Canal watershed of Taihu Lake Basin. A Geographical Information System (GIS)-based spatial relationship model was established to characterize the spatial relationships of "point (point-source location and monitoring site)-line (river segment)-plane (catchment)." As a practical exemplification, in-time source tracking was triggered on April 15, 2015 at Huangnianqiao station, where TN and TP concentration violated the water quality standard (TN 4.0 mg/L, TP 0.15 mg/L). Of the target grid cells, 53 and 46 were identified as crucial areas having high pollution intensity for TN and TP pollution, respectively. The estimated non-point source load in each grid cell could be apportioned into different source types based on spatial pollution-related entity objects. We found that the non-point source load derived from rural sewage and livestock and poultry breeding accounted for more than 80% of total TN or TP load than another source type of crop farming. The approach in this study would be of great benefit to local authorities for identifying the serious polluted regions and efficiently making environmental policies to reduce watershed load.
Collapse
Affiliation(s)
- Ce Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Jun Bi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Qiang Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | - Yi Qi
- School of Architecture and Urban Planning, Nanjing University, Nanjing, 210093, People's Republic of China.
- Lancaster Environment Center, Lancaster University, Bailrigg, Lancaster, LA14YQ, United Kingdom.
| |
Collapse
|
8
|
Sarkar S, Fan WH, Jia S, Blake DR, Reid JS, Lestari P, Yu LE. A quantitative assessment of distributions and sources of tropospheric halocarbons measured in Singapore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:528-544. [PMID: 29156272 DOI: 10.1016/j.scitotenv.2017.11.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
This work reports the first ground-based atmospheric measurements of 26 halocarbons in Singapore, an urban-industrial city-state in Southeast (SE) Asia. A total of 166 whole air canister samples collected during two intensive 7 Southeast Asian Studies (7SEAS) campaigns (August-October 2011 and 2012) were analyzed for C1-C2 halocarbons using gas chromatography-electron capture/mass spectrometric detection. The halocarbon dataset was supplemented with measurements of selected non-methane hydrocarbons (NMHCs), C1-C5 alkyl nitrates, sulfur gases and carbon monoxide to better understand sources and atmospheric processes. The median observed atmospheric mixing ratios of CFCs, halons, CCl4 and CH3CCl3 were close to global tropospheric background levels, with enhancements in the 1-17% range. This provided the first measurement evidence from SE Asia of the effectiveness of Montreal Protocol and related national-scale regulations instituted in the 1990s to phase-out ozone depleting substances (ODS). First- and second-generation CFC replacements (HCFCs and HFCs) dominated the atmospheric halocarbon burden with HFC-134a, HCFC-22 and HCFC-141b exhibiting enhancements of 39-67%. By combining near-source measurements in Indonesia with receptor data in Singapore, regionally transported peat-forest burning smoke was found to impact levels of several NMHCs (ethane, ethyne, benzene, and propane) and short-lived halocarbons (CH3I, CH3Cl, and CH3Br) in a subset of the receptor samples. The strong signatures of these species near peat-forest fires were potentially affected by atmospheric dilution/mixing during transport and by mixing with substantial urban/regional backgrounds at the receptor. Quantitative source apportionment was carried out using positive matrix factorization (PMF), which identified industrial emissions related to refrigeration, foam blowing, and solvent use in chemical, pharmaceutical and electronics industries as the major source of halocarbons (34%) in Singapore. This was followed by marine and terrestrial biogenic activity (28%), residual levels of ODS from pre-Montreal Protocol operations (16%), seasonal incidences of peat-forest smoke (13%), and fumigation related to quarantine and pre-shipment (QPS) applications (7%).
Collapse
Affiliation(s)
- Sayantan Sarkar
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| | - Wei Hong Fan
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shiguo Jia
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Donald R Blake
- Department of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, CA 92697-2025, USA
| | - Jeffrey S Reid
- Naval Research Laboratory, Marine Meteorology Division, 7 Grace Hopper Avenue Stop 2, Monterey, CA 93943-5502, USA
| | - Puji Lestari
- Environmental Engineering Department, Institut Teknologi Bandung, JL. Ganesha No. 10, Bandung 40132, Indonesia
| | - Liya E Yu
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| |
Collapse
|
9
|
Li K, Song X, Zhu T, Wang C, Sun X, Ning P, Tang L. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:615-623. [PMID: 29032908 DOI: 10.1016/j.envpol.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 05/26/2023]
Abstract
The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H2O and H2SO4 have been studied by theoretical calculations. The addition of H2SO4 could increase the enthalpy change (ΔH<0) and decrease relative energy of products (relative energy<0), resulting in hydrolysis reaction changed from an endothermic reaction to an exothermic reaction. Further, H2SO4 decreases the energy barrier by 5.25 kcal/mol, and it enhances the catalytic hydrolysis through the hydrogen transfer effect. The (COS + H2SO4-H2O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H2O and H2SO4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H2SO4-H2O < COS + H2O + H2SO4-H2O < COS + H2O+(H2SO4)2. Kinetic simulations show that the addition of H2SO4 can increase the reaction rate constants. Consequently, adding an appropriate amount of sulfuric acid promotes the catalytic hydrolysis of COS both kinetically and thermodynamically.
Collapse
Affiliation(s)
- Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tingting Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Lihong Tang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
10
|
Guo H, Tang L, Li K, Ning P, Sun X, Liu G, Bao S, Zhu T, Jin X, Duan Z, Li Q. The hydrolysis mechanism and kinetic analysis for COS hydrolysis: A DFT study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2016. [DOI: 10.1134/s1990793116030209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Luo XS, Xue Y, Wang YL, Cang L, Xu B, Ding J. Source identification and apportionment of heavy metals in urban soil profiles. CHEMOSPHERE 2015; 127:152-157. [PMID: 25698100 DOI: 10.1016/j.chemosphere.2015.01.048] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/14/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs.
Collapse
Affiliation(s)
- Xiao-San Luo
- Department of Agricultural Resources and Environment, IceMe, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yan Xue
- Department of Agricultural Resources and Environment, IceMe, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan-Ling Wang
- Department of Agricultural Resources and Environment, IceMe, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bo Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jing Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|