1
|
Li L, Tian J, Huang K, Xue X, Chen J, Guan F, Zhang T, Sun Y, He C, Zeng X, Su S. Metal-Binding Protein TaGlo1 Improves Fungal Resistance to Arsenite (As III) and Methylarsenite (MAs III) in Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7469-7479. [PMID: 38557082 DOI: 10.1021/acs.est.3c11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Trivalent arsenicals such as arsenite (AsIII) and methylarsenite (MAsIII) are thought to be ubiquitous in flooded paddy soils and have higher toxicity than pentavalent forms. Fungi are widely prevalent in the rice rhizosphere, and the latter is considered a hotspot for As uptake. However, few studies have focused on alleviating As toxicity in paddy soils using fungi. In this study, we investigated the mechanism by which the protein TaGlo1, derived from the As-resistant fungal strain Trichoderma asperellum SM-12F1, mitigates AsIII and MAsIII toxicity in paddy soils. Taglo1 gene expression in Escherichia coli BL21 conferred strong resistance to AsIII and MAsIII, while purified TaGlo1 showed a high affinity for AsIII and MAsIII. Three cysteine residues (Cys13, Cys18, and Cys71) play crucial roles in binding with AsIII, while only two (Cys13 and Cys18) play crucial roles for MAsIII binding. TaGlo1 had a stronger binding strength for MAsIII than AsIII. Importantly, up to 90.2% of the homologous TaGlo1 proteins originate from fungi by GenBank searching. In the rhizospheres of 14 Chinese paddy soils, Taglo1 was widely distributed and its gene abundance increased with porewater As. This study highlights the potential of fungi to mitigate As toxicity and availability in the soil-rice continuum and suggests future microbial strategies for bioremediation.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P. R. China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Ke Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ximei Xue
- Institute of Urban Environment, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Tuo Zhang
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, P. R. China
| | - Yifei Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P. R. China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P. R. China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P. R. China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Cao J, Chande C, Köhler JM. Microtoxicology by microfluidic instrumentation: a review. LAB ON A CHIP 2022; 22:2600-2623. [PMID: 35678285 DOI: 10.1039/d2lc00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microtoxicology is concerned with the toxic effects of small amounts of substances. This review paper discusses the application of small amounts of noxious substances for toxicological investigation in small volumes. The vigorous development of miniaturized methods in microfluidics over the last two decades involves chip-based devices, micro droplet-based procedures, and the use of micro-segmented flow for microtoxicological studies. The studies have shown that the microfluidic approach is particularly valuable for highly parallelized and combinatorial dose-response screenings. Accurate dosing and mixing of effector substances in large numbers of microcompartments supplies detailed data of dose-response functions by highly concentration-resolved assays and allows evaluation of stochastic responses in case of small separated cell ensembles and single cell experiments. The investigations demonstrate that very different biological targets can be studied using miniaturized approaches, among them bacteria, eukaryotic microorganisms, cell cultures from tissues of multicellular organisms, stem cells, and early embryonic states. Cultivation and effector exposure tests can be performed in small volumes over weeks and months, confirming that the microfluicial strategy is also applicable for slow-growing organisms. Here, the state of the art of miniaturized toxicology, particularly for studying antibiotic susceptibility, drug toxicity testing in the miniaturized system like organ-on-chip, environmental toxicology, and the characterization of combinatorial effects by two and multi-dimensional screenings, is discussed. Additionally, this review points out the practical limitations of the microtoxicology platform and discusses perspectives on future opportunities and challenges.
Collapse
Affiliation(s)
- Jialan Cao
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - J Michael Köhler
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| |
Collapse
|
3
|
Chen J, Zhang J, Rosen BP. Organoarsenical tolerance in Sphingobacterium wenxiniae, a bacterium isolated from activated sludge. Environ Microbiol 2022; 24:762-771. [PMID: 33998126 PMCID: PMC8890440 DOI: 10.1111/1462-2920.15599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
Organoarsenicals enter the environment from biogenic and anthropogenic sources. Trivalent inorganic arsenite (As(III)) is microbially methylated to more toxic methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)) that oxidize in air to MAs(V) and DMAs(V). Sources include the herbicide monosodium methylarsenate (MSMA or MAs(V)), which is microbially reduced to MAs(III), and the aromatic arsenical roxarsone (3-nitro-4-hydroxybenzenearsonic acid or Rox), an antimicrobial growth promoter for poultry and swine. Here we show that Sphingobacterium wenxiniae LQY-18T , isolated from activated sludge, is resistant to trivalent MAs(III) and Rox(III). Sphingobacterium wenxiniae detoxifies MAs(III) and Rox(III) by oxidation to MAs(V) and Rox(V). Sphingobacterium wenxiniae has a novel chromosomal gene, termed arsU1. Expressed in Escherichia coli arsU1 confers resistance to MAs(III) and Rox(III) but not As(III) or pentavalent organoarsenicals. Purified ArsU1 catalyses oxidation of trivalent methylarsenite and roxarsone. ArsU1 has six conserved cysteine residues. The DNA sequence for the three C-terminal cysteines was deleted, and the other three were mutated to serines. Only C45S and C122S lost activity, suggesting that Cys45 and Cys122 play a role in ArsU1 function. ArsU1 requires neither FMN nor FAD for activity. These results demonstrate that ArsU1 is a novel MAs(III) oxidase that contributes to S. wenxiniae tolerance to organoarsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199
- Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jun Zhang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199
| |
Collapse
|
4
|
Glutathione is involved in the reduction of methylarsenate to generate antibiotic methylarsenite in Enterobacter sp. CZ-1. Appl Environ Microbiol 2022; 88:e0246721. [PMID: 35080903 DOI: 10.1128/aem.02467-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylarsenate (MAs(V)) is a product of microbial arsenic (As) biomethylation and has also been widely used as an herbicide. Some microbes are able to reduce nontoxic MAs(V) to highly toxic methylarsenite (MAs(III)) possibly as an antibiotic. The mechanism of MAs(V) reduction in microbes has not been elucidated. Here, we found that the bacterium Enterobacter sp. CZ-1 isolated from an As-contaminated paddy soil has a strong ability to reduce MAs(V) to MAs(III). Using a MAs(III)-responsive biosensor to detect MAs(V) reduction in E. coli Trans5α transformants of a genomic library of Enterobacter sp. CZ-1, we identified gshA, encoding a glutamate-cysteine ligase, as a key gene involved in MAs(V) reduction. Heterologous expression of gshA increased the biosynthesis of glutathione (GSH) and MAs(V) reduction in E. coli Trans5α. Deletion of gshA in Enterobacter sp. CZ-1 abolished its ability to synthesize GSH and decreased its MAs(V) reduction ability markedly, which could be restored by supplementation of exogenous GSH. In the presence of MAs(V), Enterobacter sp. CZ-1 was able to inhibit the growth of Bacillus subtilis 168; this ability was lost in the gshA-deleted mutant. In addition, deletion of gshA greatly decreased the reduction of arsenate to arsenite. These results indicate that GSH plays an important role in MAs(V) reduction to generate MAs(III) as an antibiotic. IMPORTANCE Arsenic is a ubiquitous environmental toxin. Some microbes detoxify inorganic arsenic through biomethylation, generating relatively nontoxic pentavalent methylated arsenicals, such as methylarsenate. Methylarsenate has also been widely used as an herbicide. Surprisingly, some microbes reduce methylarsenate to highly toxic methylarsenite possibly to use the latter as an antibiotic. How microbes reduce methylarsenate to methylarsenite is unknown. Here, we show that gshA encoding a glutamate-cysteine ligase in the glutathione biosynthesis pathway is involved in methylarsenate reduction in Enterobacter sp. CZ-1. Our study provides new insights into the crucial role of glutathione in the transformation of a common arsenic compound to a natural antibiotic.
Collapse
|
5
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
6
|
Diba F, Khan MZH, Uddin SZ, Istiaq A, Shuvo MSR, Ul Alam ASMR, Hossain MA, Sultana M. Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency. Sci Rep 2021; 11:21312. [PMID: 34716390 PMCID: PMC8556249 DOI: 10.1038/s41598-021-00745-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Arsenotrophic bacteria play an essential role in lowering arsenic contamination by converting toxic arsenite [As (III)] to less toxic and less bio-accumulative arsenate [As (V)]. The current study focused on the qualitative and electrocatalytic detection of the arsenite oxidation potential of an arsenite-oxidizing bacteria A. xylosoxidans BHW-15 (retrieved from As-contaminated tube well water), which could significantly contribute to arsenic detoxification, accumulation, and immobilization while also providing a scientific foundation for future electrochemical sensor development. The minimum inhibitory concentration (MIC) value for the bacteria was 15 mM As (III). Scanning Electron Microscopy (SEM) investigation validated its intracellular As uptake capacity and demonstrated a substantial association with the MIC value. During the stationary phase, the strain’s As (III) transformation efficiency was 0.0224 mM/h. Molecular analysis by real-time qPCR showed arsenite oxidase (aioA) gene expression increased 1.6-fold in the presence of As (III) compared to the untreated cells. The immobilized whole-cell also showed As (III) conversion up to 18 days. To analyze the electrochemical oxidation in water, we developed a modified GCE/P-Arg/ErGO-AuNPs electrode, which successfully sensed and quantified conversion of As (III) into As (V) by accepting electrons; implying a functional As oxidase enzyme activity in the cells. To the best of our knowledge, this is the first report on the electrochemical observation of the As-transformation mechanism with Achromobactersp. Furthermore, the current work highlighted that our isolate might be employed as a promising candidate for arsenic bioremediation, and information acquired from this study may be helpful to open a new window for the development of a cost-effective, eco-friendly biosensor for arsenic species detection in the future.
Collapse
Affiliation(s)
- Farzana Diba
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Institute of Tissue Banking and Biomaterial Research (ITBBR), Atomic Energy Research Establishment (AERE), Savar, Dhaka, 1349, Bangladesh
| | - Md Zaved Hossain Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Salman Zahir Uddin
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
7
|
Chen J, Zhang J, Wu YF, Zhao FJ, Rosen BP. ArsV and ArsW provide synergistic resistance to the antibiotic methylarsenite. Environ Microbiol 2021; 23:7550-7562. [PMID: 34676971 DOI: 10.1111/1462-2920.15817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Toxic organoarsenicals enter the environment from biogenic and anthropogenic activities such as microbial methylation of inorganic arsenic and pentavalent herbicides such as monosodium methylarsenate (MSMA or MAs(V)). Trivalent MAs(III) is considerably more toxic than arsenite or arsenate. Microbes have evolved mechanisms to detoxify organoarsenicals. We previously identified ArsV, a flavin-linked monooxygenase and demonstrated that it confers resistance to methylarsenite by oxidation to methylarsenate. The arsV gene is usually in an arsenic resistance (ars) operon controlled by an ArsR repressor and adjacent to a methylarsenite efflux gene, either arsK or a gene for a putative transporter. Here we show that Paracoccus sp. SY oxidizes methylarsenite. It has an ars operon with three genes, arsR, arsV and a transport gene termed arsW. Heterologous expression of arsV in Escherichia coli conferred resistance to MAs(III), while arsW did not. Co-expression of arsV and arsW increased resistance compared with either alone. The cells oxidized methylarsenite and accumulated less methylarsenate. Everted membrane vesicles from E. coli cells expressing arsW-accumulated methylarsenate. We propose that ArsV is a monooxygenase that oxidizes methylarsenite to methylarsenate, which is extruded by ArsW, one of only a few known pentavalent organoarsenical efflux permeases, a novel pathway of organoarsenical resistance.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.,Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
8
|
Chen J, Rosen BP. The Pseudomonas putida NfnB nitroreductase confers resistance to roxarsone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141339. [PMID: 32810805 PMCID: PMC7606800 DOI: 10.1016/j.scitotenv.2020.141339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox) has been used for decades as an antimicrobial growth promoter for poultry and swine. Roxarsone is excreted in chicken manure unchanged and can be microbially transformed into a variety of arsenic-containing compounds such as 3-amino-4-hydroxyphenylarsonic acid (HAPA(V)) that contaminate the environment and present a potential health hazard. To cope with arsenic toxicity, nearly every prokaryote has an ars (arsenic resistance) operon, some of which confer resistance to roxarsone. Pseudomonas putida KT2440 is a robust environmental isolate capable of metabolizing many aromatic compounds and is used as a model organism for biodegradation of aromatic compounds. Here we report that P. putida KT2440 (ΔΔars) in which the two ars operons had been deleted retains resistance to highly toxic trivalent Rox(III), the likely active form of roxarsone. In this study, a genomic library constructed from P. putida KT2440 (ΔΔars) was used to screen for resistance to Rox(III) in Escherichia coli. One gene, termed, PpnfnB, was identified that encodes a putative 6,7-dihydropteridine reductase. Cells expressing PpnfnB reduce the nitro group of Rox(III), and purified NfnB catalyzes FMN-NADPH-dependent nitroreduction of Rox(III) to less toxic HAPA(III). This identifies a key step in the breakdown of synthetic aromatic arsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States; Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
9
|
Kim H, Jeon Y, Lee W, Jang G, Yoon Y. Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3093. [PMID: 32486164 PMCID: PMC7309064 DOI: 10.3390/s20113093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
It has recently been discovered that organic and inorganic arsenics could be detrimental to human health. Although organic arsenic is less toxic than inorganic arsenic, it could form inorganic arsenic through chemical and biological processes in environmental systems. In this regard, the availability of tools for detecting organic arsenic species would be beneficial. Because As-sensing biosensors employing arsenic responsive genetic systems are regulated by ArsR which detects arsenics, the target selectivity of biosensors could be obtained by modulating the selectivity of ArsR. In this study, we demonstrated a shift in the specificity of E. coli cell-based biosensors from the detection of inorganic arsenic to that of organic arsenic, specifically phenylarsine oxide (PAO), through the genetic engineering of ArsR. By modulating the number and location of cysteines forming coordinate covalent bonds with arsenic species, an E. coli cell-based biosensor that was specific to PAO was obtained. Despite its restriction to PAO at the moment, it offers invaluable evidence of the potential to generate new biosensors for sensing organic arsenic species through the genetic engineering of ArsR.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| | - Yangwon Jeon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| | - Woonwoo Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| |
Collapse
|
10
|
Yang P, Ke C, Zhao C, Kuang Q, Liu B, Xue X, Rensing C, Yang S. ArsM-mediated arsenite volatilization is limited by efflux catalyzed by As efflux transporters. CHEMOSPHERE 2020; 239:124822. [PMID: 31726527 DOI: 10.1016/j.chemosphere.2019.124822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) methylation is regarded as an efficient strategy for As contamination remediation by As volatilization. However, most microorganisms display low As volatilization efficiency, which is possibly linked to As efflux transporters competing for cytoplasmic As(III) as a substrate. Here, we developed two types of As biosensors in Escherichia coli to compare the As efflux rate of three efflux transporters and to further investigate the correlation between As efflux rates and As volatilization. The engineered As-sensitive E. coli AW3110 expressing arsBRP, acr3RP or arsBEC displayed a higher As resistance compared to the control. The fluorescence intensity was in a linear correlation in the range of 0-2.0 μmol/L of As(III). The intracellular As(III) concentration was negatively related to As efflux activity of As efflux transporter, which was consistent with the As resistance assays. Moreover, arsM derived from R. palustris CGA009 was subsequently introduced to construct an E. coli AW3110 co-expressing arsB/acr3 and arsM, which exhibited higher As(III) resistance, lower fluorescence intensity and intracellular As concentration compared to the engineered E. coli AW3110 expressing only arsB/acr3. The As volatilization efficiency was negatively related to As efflux activity of efflux transporters, the recombinants without arsB/acr3 displayed the highest rate of As volatilization. This study provided new insights into parameters affecting As volatilization with As efflux being the main limiting factor for As methylation and subsequent volatilization in many microorganisms.
Collapse
Affiliation(s)
- Pengmin Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Changdong Ke
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China.
| | - Qingyue Kuang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China
| | - Bixiu Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ximei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
11
|
Plekhanova YV, Reshetilov AN. Microbial Biosensors for the Determination of Pesticides. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819120098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Chen J, Zhang J, Rosen BP. Role of ArsEFG in Roxarsone and Nitarsone Detoxification and Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6182-6191. [PMID: 31059239 DOI: 10.1021/acs.est.9b01187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organoarsenical biotransformations are important components of the global cycling of arsenic. Roxarsone (3-nitro-4-hydroxybenzenearsenate or Rox(V)) and nitarsone (4-nitrobenzene arsenate or Nit(V)) are synthetic aromatic organoarsenicals used in the poultry industry as additives to prevent coccidiosis and improve feed efficiency. Here, we describe a novel pathway of resistance to roxarsone and nitarsone involving biotransformation of their trivalent forms (Rox(III)) and (Nit(III)) to the trivalent organoarsenicals HAPA(III) and pAsA(III), coupled to active extrusion of the aromatic aminobenezylarsenicals from the cells. The arsE, arsF, and arsG were cloned from the arsenic island in the chromosome of Shewanella putrefaciens 200. When expressed in Escherichia coli together, but not alone, arsEFG conferred resistance to Rox(III) and Nit(III) and decreased the accumulation of both. The cells transformed Rox(III) or Nit(III) to HAPA(III) or pAsA(III) by reducing the nitro group to an amine. Everted membrane vesicles from cells expressing arsG accumulated HAPA(III) or pAsA(III). Our data indicate that ArsE and ArsF together reduce Rox(III) or Nit(III) to HAPA(III) or pAsA(III), which are extruded from the cells by the efflux permease ArsG. Identification of the coupled pathway of ArsE, ArsF, and ArsG catalysis is a molecular description of a novel pathway for resistance to roxarsone and nitarsone.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami , Florida 33199 , United States
| | - Jun Zhang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami , Florida 33199 , United States
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
13
|
|
14
|
Chen J, Yoshinaga M, Rosen BP. The antibiotic action of methylarsenite is an emergent property of microbial communities. Mol Microbiol 2019; 111:487-494. [PMID: 30520200 PMCID: PMC6370046 DOI: 10.1111/mmi.14169] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 11/30/2022]
Abstract
Arsenic is the most ubiquitous environmental toxin. Here, we demonstrate that bacteria have evolved the ability to use arsenic to gain a competitive advantage over other bacteria at least twice. Microbes generate toxic methylarsenite (MAs(III)) by methylation of arsenite (As(III)) or reduction of methylarsenate (MAs(V)). MAs(III) is oxidized aerobically to MAs(V), making methylation a detoxification process. MAs(V) is continually re-reduced to MAs(III) by other community members, giving them a competitive advantage over sensitive bacteria. Because generation of a sustained pool of MAs(III) requires microbial communities, these complex interactions are an emergent property. We show that reduction of MAs(V) by Burkholderia sp. MR1 produces toxic MAs(III) that inhibits growth of Escherichia coli in mixed culture. There are three microbial mechanisms for resistance to MAs(III). ArsH oxidizes MAs(III) to MAs(V). ArsI degrades MAs(III) to As(III). ArsP confers resistance by efflux. Cells of E. coli expressing arsI, arsH or arsP grow in mixed culture with Burkholderia sp. MR1 in the presence of MAs(V). Thus MAs(III) has antibiotic properties: a toxic organic compound produced by one microbe to kill off competitors. Our results demonstrate that life has adapted to use environmental arsenic as a weapon in the continuing battle for dominance.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida 33199,
United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida 33199,
United States
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida 33199,
United States
| |
Collapse
|
15
|
Sarwar M, Leichner J, Naja GM, Li CZ. Smart-phone, paper-based fluorescent sensor for ultra-low inorganic phosphate detection in environmental samples. MICROSYSTEMS & NANOENGINEERING 2019; 5:56. [PMID: 31645999 PMCID: PMC6803704 DOI: 10.1038/s41378-019-0096-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 05/12/2023]
Abstract
A major goal of environmental agencies today is to conduct point-of-collection monitoring of excess inorganic phosphate (Pi) in environmental water samples for tracking aquatic "dead zones" caused by algae blooms. However, there are no existing commercial devices which have been miniaturized and are suitable for the point-of-need-testing ("PONT") that is required to fully map a large region, such as the Florida Everglades. To solve this challenge, a reflection-mode fluorescence-sensing apparatus was developed, leveraging an environmentally sensitive fluorophore (MDCC) bound to a bacterial phosphate-binding protein to generate a fluorescent optical signal proportional to the concentration of (Pi) present. The combined end-to-end integrated sensor system had a response time of only 4 s, with minimal effects of common interfering agents and a linear range spanning from 1.1 to 64 ppb. To support ease-of-use during PONT, the platform incorporated disposable wax-printed paper strip sample pads and a smartphone camera detection system. Since the EPA threshold is currently 30 ppb to prevent eutrophication, this system serves as a rapid test of whether a region is compliant.
Collapse
Affiliation(s)
- Mehenur Sarwar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 USA
| | - Jared Leichner
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 USA
| | - Ghinwa M. Naja
- Everglades Foundation, 18001 Old Culter Road, Palmetto Bay, FL 33157 USA
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 USA
| |
Collapse
|
16
|
Berberich J, Li T, Sahle-Demessie E. Biosensors for Monitoring Water Pollutants: A Case Study With Arsenic in Groundwater. SEP SCI TECHNOL 2019. [DOI: 10.1016/b978-0-12-815730-5.00011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C. Distribution of Arsenic Resistance Genes in Prokaryotes. Front Microbiol 2018; 9:2473. [PMID: 30405552 PMCID: PMC6205960 DOI: 10.3389/fmicb.2018.02473] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Arsenic is a metalloid that occurs naturally in aquatic and terrestrial environments. The high toxicity of arsenic derivatives converts this element in a serious problem of public health worldwide. There is a global arsenic geocycle in which microbes play a relevant role. Ancient exposure to arsenic derivatives, both inorganic and organic, has represented a selective pressure for microbes to evolve or acquire diverse arsenic resistance genetic systems. In addition, arsenic compounds appear to have been used as a toxin in chemical warfare for a long time selecting for an extended range of arsenic resistance determinants. Arsenic resistance strategies rely mainly on membrane transport pathways that extrude the toxic compounds from the cell cytoplasm. The ars operons, first discovered in bacterial R-factors almost 50 years ago, are the most common microbial arsenic resistance systems. Numerous ars operons, with a variety of genes and different combinations of them, populate the prokaryotic genomes, including their accessory plasmids, transposons, and genomic islands. Besides these canonical, widespread ars gene clusters, which confer resistance to the inorganic forms of arsenic, additional genes have been discovered recently, which broadens the spectrum of arsenic tolerance by detoxifying organic arsenic derivatives often used as toxins. This review summarizes the presence, distribution, organization, and redundance of arsenic resistance genes in prokaryotes.
Collapse
Affiliation(s)
- Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhao
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Quaiser Saquib
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Carlos Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Morelia, Mexico
| |
Collapse
|
18
|
Pothier MP, Hinz AJ, Poulain AJ. Insights Into Arsenite and Arsenate Uptake Pathways Using a Whole Cell Biosensor. Front Microbiol 2018; 9:2310. [PMID: 30333804 PMCID: PMC6176005 DOI: 10.3389/fmicb.2018.02310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Despite its high toxicity and widespread occurrence in many parts of the world, arsenic (As) concentrations in decentralized water supplies such as domestic wells remain often unquantified. One limitation to effective monitoring is the high cost and lack of portability of current arsenic speciation techniques. Here, we present an arsenic biosensor assay capable of quantifying and determining the bioavailable fraction of arsenic species at environmentally relevant concentrations. First, we found that inorganic phosphate, a buffering agent and nutrient commonly found in most bioassay exposure media, was in fact limiting As(V) uptake, possibly explaining the variability in As(V) detection reported so far. Second, we show that the nature of the carbon source used in the bioassay differentially affects the response of the biosensor to As(III). Finally, our data support the existence of non-specific reduction pathways (non-ars encoded) that are responsible for the reduction of As(V) to As(III), allowing its detection by the biosensor. To validate our laboratory approach using field samples, we performed As(III) and As(V) standard additions on natural water samples collected from 17 lakes surrounding Giant Mine in Yellowknife (NWT), Canada. We found that legacy arsenic contamination in these lake water samples was accurately quantified by the biosensor. Interestingly, bioavailability of freshly added standards showed signs of matrix interference, indicative of dynamic interactions between As(III), As(V) and environmental constituents that have yet to be identified. Our results point toward dissolved organic carbon as possibly controlling these interactions, thus altering As bioavailability.
Collapse
Affiliation(s)
| | - Aaron J Hinz
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
19
|
Roy R, Samanta S, Patra S, Mahato NK, Saha RP. In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family. Metallomics 2018; 10:1476-1500. [PMID: 30191942 DOI: 10.1039/c8mt00082d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ArsR-SmtB family of proteins displays the greatest diversity among the bacterial metal-binding transcriptional regulators with regard to the variety of metal ions that they can sense. In the presence of increased levels of toxic heavy metals, these proteins dissociate from their cognate DNA upon the direct binding of metal ions to the appropriate sites, designated motifs on the proteins, either at the interface of the dimers or at the intra-subunit locations. In addition to the metal-mediated regulation, some proteins were also found to control transcription via redox reactions. In the present work, we have identified several new sequence motifs and expanded the knowledge base of metal binding sites in the ArsR-SmtB family of transcriptional repressors, and characterized them in terms of the ligands to the metal, distribution among different phyla of bacteria and archaea, amino acid propensities, protein length distributions and evolutionary interrelationships. We built structural models of the motifs to show the importance of specific residues in an individual motif. The wide abundance of these motifs in sequences of bacteria and archaea indicates the importance of these regulators in combating metal-toxicity within and outside of the hosts. We also show that by using residue composition, one can distinguish the ArsR-SmtB proteins from other metalloregulatory families. In addition, we show the importance of horizontal gene transfer in microorganisms, residing in similar habitats, on the evolution of the structural motifs in the family. Knowledge of the diverse metalloregulatory systems in microorganisms could enable us to manipulate specific genes that may result in a toxic metal-free environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Nav Kumar Mahato
- Department of Mathematics, School of Science, Adamas University, Kolkata 700 126, India
| | - Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| |
Collapse
|
20
|
Li J, Pawitwar SS, Rosen BP. The organoarsenical biocycle and the primordial antibiotic methylarsenite. Metallomics 2017; 8:1047-1055. [PMID: 27730229 DOI: 10.1039/c6mt00168h] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 S.W. 8 Street, Miami, FL 33199 USA
| | - Shashank S Pawitwar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 S.W. 8 Street, Miami, FL 33199 USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 S.W. 8 Street, Miami, FL 33199 USA
| |
Collapse
|
21
|
Chen J, Nadar VS, Rosen BP. A novel MAs(III)-selective ArsR transcriptional repressor. Mol Microbiol 2017; 106:469-478. [PMID: 28861914 DOI: 10.1111/mmi.13826] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 11/29/2022]
Abstract
Microbial expression of genes for resistance to heavy metals and metalloids is usually transcriptionally regulated by the toxic ions themselves. Arsenic is a ubiquitous, naturally occurring toxic metalloid widely distributed in soil and groundwater. Microbes biotransform both arsenate (As(V)) and arsenite (As(III)) into more toxic methylated metabolites methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)). Environmental arsenic is sensed by members of the ArsR/SmtB family. The arsR gene is autoregulated and is typically part of an operon that contains other ars genes involved in arsenic detoxification. To date every identified ArsR is regulated by inorganic As(III). Here we described a novel ArsR from Shewanella putrefaciens selective for MAs(III). SpArsR orthologs control expression of two MAs(III) resistance genes, arsP that encodes the ArsP MAs(III) efflux permease, and arsH encoding the ArsH MAs(III) oxidase. SpArsR has two conserved cysteine residues, Cys101 and Cys102. Mutation of either resulted in loss of MAs(III) binding, indicating that they form an MAs(III) binding site. SpArsR can be converted into an As(III)-responsive repressor by introduction of an additional cysteine that allows for three-coordinate As(III) binding. Our results indicate that SpArsR evolved selectivity for MAs(III) over As(III) in order to control expression of genes for MAs(III) detoxification.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
22
|
Li J, Packianathan C, Rossman TG, Rosen BP. Nonsynonymous Polymorphisms in the Human AS3MT Arsenic Methylation Gene: Implications for Arsenic Toxicity. Chem Res Toxicol 2017; 30:1481-1491. [PMID: 28537708 PMCID: PMC5516783 DOI: 10.1021/acs.chemrestox.7b00113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Arsenic
methylation, the primary biotransformation in the human
body, is catalyzed by the enzyme As(III) S-adenosylmethionine (SAM)
methyltransferases (hAS3MT). This process is thought to be protective
from acute high-level arsenic exposure. However, with long-term low-level
exposure, hAS3MT produces intracellular methylarsenite (MAs(III))
and dimethylarsenite (DMAs(III)), which are considerably more toxic
than inorganic As(III) and may contribute to arsenic-related diseases.
Several single nucleotide polymorphisms (SNPs) in putative regulatory
elements of the hAS3MT gene have been shown to be protective. In contrast,
three previously identified exonic SNPs (R173W, M287T, and T306I)
may be deleterious. The goal of this study was to examine the effect
of single amino acid substitutions in hAS3MT on the activity of the
enzyme that might explain their contributions to adverse health effects
of environmental arsenic. We identified five additional intragenic
variants in hAS3MT (H51R, C61W, I136T, W203C, and R251H). We purified
the eight polymorphic hAS3MT proteins and characterized their enzymatic
properties. Each enzyme had low methylation activity through decreased
affinity for substrate, lower overall rates of catalysis, or lower
stability. We propose that amino acid substitutions in hAS3MT with
decreased catalytic activity lead to detrimental responses to environmental
arsenic and may increase the risk of arsenic-related diseases.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University , Miami, Florida 33199, United States
| | - Charles Packianathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University , Miami, Florida 33199, United States
| | - Toby G Rossman
- The Nelson Institute of Environmental Medicine , NYU-Langone School of Medicine, Tuxedo, New York 10987, United States
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University , Miami, Florida 33199, United States
| |
Collapse
|
23
|
Yan Y, Xue XM, Guo YQ, Zhu YG, Ye J. Co-expression of Cyanobacterial Genes for Arsenic Methylation and Demethylation in Escherichia coli Offers Insights into Arsenic Resistance. Front Microbiol 2017; 8:60. [PMID: 28174568 PMCID: PMC5258700 DOI: 10.3389/fmicb.2017.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022] Open
Abstract
Arsenite [As(III)] and methylarsenite [MAs(III)] are the most toxic inorganic and methylated arsenicals, respectively. As(III) and MAs(III) can be interconverted in the unicellular cyanobacterium Nostoc sp. PCC 7120 (Nostoc), which has both the arsM gene (NsarsM), which is responsible for arsenic methylation, and the arsI gene (NsarsI), which is responsible for MAs(III) demethylation. It is not clear how the cells prevent a futile cycle of methylation and demethylation. To investigate the relationship between arsenic methylation and demethylation, we constructed strains of Escherichia coli AW3110 (ΔarsRBC) expressing NsarsM or/and NsarsI. Expression of NsarsI conferred MAs(III) resistance through MAs(III) demethylation. Compared to NsArsI, NsArsM conferred higher resistance to As(III) and lower resistance to MAs(III) by methylating both As(III) and MAs(III). The major species found in solution was dimethylarsenate [DMAs(V)]. Co-expression of NsarsM and NsarsI conferred As(III) resistance at levels similar to that with NsarsM alone, although the main species found in solution after As(III) biotransformation was methylarsenate [MAs(V)] rather than DMAs(V). Co-expression of NsarsM and NsarsI conferred a higher level of resistance to MAs(III) than found with expression of NsarsM alone but lower than expression of only NsarsI. Cells co-expressing both genes converted MAs(III) to a mixture of As(III) and DMAs(V). In Nostoc NsarsM is constitutively expressed, while NsarsI is inducible by either As(III) or MAs(III). Thus, our results suggest that at low concentrations of arsenic, NsArsM activity predominates, while NsArsI activity predominates at high concentrations. We propose that coexistence of arsM and arsI genes in Nostoc could be advantageous for several reasons. First, it confers a broader spectrum of resistance to both As(III) and MAs(III). Second, at low concentrations of arsenic, the MAs(III) produced by NsArsM will possibly have antibiotic-like properties and give the organism a competitive advantage. Finally, these results shed light on the role of cyanobacteria in the arsenic biogeochemical cycle.
Collapse
Affiliation(s)
- Yu Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xi-Mei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
| | - Yu-Qing Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences – Chinese Academy of SciencesBeijing, China
| | - Jun Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
| |
Collapse
|
24
|
Fu QL, Blaney L, Zhou DM. Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:210-218. [PMID: 27814537 DOI: 10.1016/j.envpol.2016.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Roxarsone (ROX), the primary aromatic arsenical additive (AAA) used in animal feeding operations, is of increasing concern to environmental and human health due to land application of ROX-laden animal manure. Few studies have investigated the phytotoxicity, uptake mechanisms, and speciation of AAA in crop plants. In this study, wheat seedlings were employed to address these issues under hydroponic conditions. Compared to inorganic arsenic, ROX was less toxic to wheat root elongation. Wheat roots were more sensitive to ROX stress than shoots. For the first time, metabolized inorganic arsenic was detected in plants, although ROX was the predominant detected arsenic species in wheat seedlings. ROX uptake and toxicity to roots were inhibited by humic acid at concentrations higher than 50 mg/L due to interaction with ROX. Phosphate enhanced ROX uptake, but no trends were observed for ROX uptake in the presence of glycerol at concentrations lower than 250 mM. In addition, ROX uptake was significantly decreased by silicate (Si(IV), 0.5-10 mM) and the metabolic inhibitor, 2,4-dinitrophenol (0.5-2 mM), indicating that ROX transport into wheat roots was actively mediated by Si(IV)-sensitive transporters. These findings provide important insights into the fate and speciation of AAA in soil-water-plant systems relevant to human health.
Collapse
Affiliation(s)
- Qing-Long Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
25
|
Arruda LM, Monteiro LMO, Silva-Rocha R. The Chromobacterium violaceum ArsR Arsenite Repressor Exerts Tighter Control on Its Cognate Promoter Than the Escherichia coli System. Front Microbiol 2016; 7:1851. [PMID: 27917165 PMCID: PMC5116461 DOI: 10.3389/fmicb.2016.01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/03/2016] [Indexed: 11/13/2022] Open
Abstract
Environmental bacteria are endowed with several regulatory systems that have potential applications in biotechnology. In this report, we characterize the arsenic biosensing features of the ars response system from Chromobacterium violaceum in the heterologous host Escherichia coli. We show that the native Pars/arsR system of C. violaceum outperforms the chromosomal ars copy of E. coli when exposed to micromolar concentrations of arsenite. To understand the molecular basis of this phenomenon, we analyzed the interaction between ArsR regulators and their promoter target sites as well as induction of the system at saturating concentrations of the regulators. In vivo titration experiments indicate that ArsR from C. violaceum has stronger binding affinity for its target promoter than the regulator from E. coli does. Additionally, arsenite induction experiments at saturating regulator concentration demonstrates that although the Pars/arsR system from E. coli displays a gradual response to increasing concentration of the inducer, the system from C. violaceum has a steeper response with a stronger promoter induction after a given arsenite threshold. Taken together, these data demonstrate the characterization of a novel arsenic response element from an environmental bacterium with potentially enhanced performance that could be further explored for the construction of an arsenic biosensor.
Collapse
Affiliation(s)
- Letícia M Arruda
- Systems and Synthetic Biology Lab, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Lummy M O Monteiro
- Systems and Synthetic Biology Lab, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Lab, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Chen J, Rosen BP. Organoarsenical Biotransformations by Shewanella putrefaciens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7956-63. [PMID: 27366920 PMCID: PMC4984541 DOI: 10.1021/acs.est.6b00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microbes play a critical role in the global arsenic biogeocycle. Most studies have focused on redox cycling of inorganic arsenic in bacteria and archaea. The parallel cycles of organoarsenical biotransformations are less well characterized. Here we describe organoarsenical biotransformations in the environmental microbe Shewanella putrefaciens. Under aerobic growth conditions, S. putrefaciens reduced the herbicide MSMA (methylarsenate or MAs(V)) to methylarsenite (MAs(III)). Even though it does not contain an arsI gene, which encodes the ArsI C-As lyase, S. putrefaciens demethylated MAs(III) to As(III). It cleaved the C-As bond in aromatic arsenicals such as the trivalent forms of the antimicrobial agents roxarsone (Rox(III)), nitarsone (Nit(III)) and phenylarsenite (PhAs(III)), which have been used as growth promoters for poultry and swine. S. putrefaciens thiolated methylated arsenicals, converting MAs(V) into the more toxic metabolite monomethyl monothioarsenate (MMMTAs(V)), and transformed dimethylarsenate (DMAs(V)) into dimethylmonothioarsenate (DMMTAs(V)). It also reduced the nitro groups of Nit(V), forming p-aminophenyl arsenate (p-arsanilic acid or p-AsA(V)), and Rox(III), forming 3-amino-4-hydroxybenzylarsonate (3A4HBzAs(V)). Elucidation of organoarsenical biotransformations by S. putrefaciens provides a holistic appreciation of how these environmental pollutants are degraded.
Collapse
Affiliation(s)
| | - Barry P. Rosen
- Corresponding Author. Phone: (+1) 305-348-0657; fax: (+1) 305-348-0651;
| |
Collapse
|
27
|
Li J, Mandal G, Rosen BP. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium. Anaerobe 2016; 39:117-23. [PMID: 27040269 PMCID: PMC4984537 DOI: 10.1016/j.anaerobe.2016.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States
| | - Goutam Mandal
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States.
| |
Collapse
|
28
|
Chen G, Ke Z, Liang T, Liu L, Wang G. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation. PLoS One 2016; 11:e0154017. [PMID: 27100323 PMCID: PMC4839622 DOI: 10.1371/journal.pone.0154017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/07/2016] [Indexed: 12/02/2022] Open
Abstract
Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 –a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment.
Collapse
Affiliation(s)
- Guowei Chen
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhengchen Ke
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tengfang Liang
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Liu
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
- * E-mail: (GW); (LL)
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
- * E-mail: (GW); (LL)
| |
Collapse
|
29
|
Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2016; 2:16009. [PMID: 28725470 PMCID: PMC5516863 DOI: 10.1038/npjsba.2016.9] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023] Open
Abstract
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Collapse
Affiliation(s)
- Victor Chubukov
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Héctor García Martín
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
30
|
Abstract
Arsenic is the most pervasive environmental substance and is classified by the International Agency for Research on Cancer as a Group 1 human carcinogen. Nearly every organism has resistance pathways for inorganic arsenic, and in bacteria, their genes are found in arsenic resistance (ars) operons. Recently, a parallel pathway for organic arsenicals has been identified. The ars genes responsible for the organoarsenical detoxification includes arsM, which encodes an As(III) S-adenosylmethionine methyltransferase, arsI, which encodes a C–As bond lyase, and arsH, which encodes a methylarsenite oxidase. The identification and properties of arsM, arsI and arsH are described in this review.
Collapse
|
31
|
Yan Y, Ye J, Xue XM, Zhu YG. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14350-14358. [PMID: 26544154 DOI: 10.1021/acs.est.5b03357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.
Collapse
Affiliation(s)
- Yu Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jun Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
| | - Xi-Mei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, People's Republic of China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| |
Collapse
|
32
|
Dong H, Madegowda M, Nefzi A, Houghten RA, Giulianotti MA, Rosen BP. Identification of Small Molecule Inhibitors of Human As(III) S-Adenosylmethionine Methyltransferase (AS3MT). Chem Res Toxicol 2015; 28:2419-25. [PMID: 26577531 PMCID: PMC4688878 DOI: 10.1021/acs.chemrestox.5b00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arsenic is the most ubiquitous environmental toxin and carcinogen. Long-term exposure to arsenic is associated with human diseases including cancer, cardiovascular disease, and diabetes. Human As(III) S-adenosylmethionine (SAM) methyltransferases (hAS3MT) methylates As(III) to trivalent mono- and dimethyl species that are more toxic and potentially more carcinogenic than inorganic arsenic. Modulators of hAS3MT activity may be useful for the prevention or treatment of arsenic-related diseases. Using a newly developed high-throughput assay for hAS3MT activity, we identified 10 novel noncompetitive small molecule inhibitors. In silico docking analysis with the crystal structure of an AS3MT orthologue suggests that the inhibitors bind in a cleft between domains that is distant from either the As(III) or SAM binding sites. This suggests the presence of a possible allosteric and regulatory site in the enzyme. These inhibitors may be useful tools for future research in arsenic metabolism and are the starting-point for the development of drugs against hAS3MT.
Collapse
Affiliation(s)
- Hui Dong
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University , Miami, Florida 33199, United States
| | - Mahendra Madegowda
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University , Miami, Florida 33199, United States
| | - Adel Nefzi
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Marc A Giulianotti
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University , Miami, Florida 33199, United States
| |
Collapse
|
33
|
Chen J, Madegowda M, Bhattacharjee H, Rosen BP. ArsP: a methylarsenite efflux permease. Mol Microbiol 2015; 98:625-35. [PMID: 26234817 DOI: 10.1111/mmi.13145] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 01/22/2023]
Abstract
Trivalent organoarsenic compounds are far more toxic than either pentavalent organoarsenicals or inorganic arsenite. Many microbes methylate inorganic arsenite (As(III)) to more toxic and carcinogenic methylarsenite (MAs(III)). Additionally, monosodium methylarsenate (MSMA or MAs(V)) has been used widely as an herbicide and is reduced by microbial communities to MAs(III). Roxarsone (3-nitro-4-hydroxybenzenearsonic acid) is a pentavalent aromatic arsenical that is used as antimicrobial growth promoter for poultry and swine, and its active form is the trivalent species Rox(III). A bacterial permease, ArsP, from Campylobacter jejuni, was recently shown to confer resistance to roxarsone. In this study, C. jejuni arsP was expressed in Escherichia coli and shown to confer resistance to MAs(III) and Rox(III) but not to inorganic As(III) or pentavalent organoarsenicals. Cells of E. coli expressing arsP did not accumulate trivalent organoarsenicals. Everted membrane vesicles from those cells accumulated MAs(III) > Rox(III) with energy supplied by NADH oxidation, reflecting efflux from cells. The vesicles did not transport As(III), MAs(V) or pentavalent roxarsone. Mutation or modification of the two conserved cysteine residues resulted in loss of transport activity, suggesting that they play a role in ArsP function. Thus, ArsP is the first identified efflux system specific for trivalent organoarsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Mahendra Madegowda
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
34
|
Sun D, Yamahara H, Nakane R, Matsui H, Tabata H. Hydroxyl radical and thermal annealing on amorphous InGaZnO4 films for DNA immobilizations. Colloids Surf B Biointerfaces 2015; 130:119-25. [PMID: 25935561 DOI: 10.1016/j.colsurfb.2015.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/20/2015] [Accepted: 04/09/2015] [Indexed: 11/17/2022]
Abstract
The effect of hydroxyl radicals (OH) and thermal annealing on an amorphous InGaZnO4 (aIGZO) film surface was investigated for manipulation of DNA immobilization. X-ray photoemission and fluorescence measurements were conducted to reveal the status of surface OH coverage and DNA immobilization, respectively. Systematic examinations concerning OH termination on the film surface suggested that the surface coverage of OH leveling DNA immobilization was related to the local surface potential. Furthermore, OH affinity on the aIGZO film surface was sensitive to thermal annealing. A remarkable change in surface OH coverage was observed for the film surface annealed at high temperature. This behavior was framed by a structural change from amorphous to crystalline state, which regulated DNA immobilization. These results indicate that the OH affinity on aIGZO films is dependent on structural properties such as defects. This study suggests that an amorphous structure is critical for obtaining a high OH surface coverage governing DNA immobilization, and is hence more suitable for biosensing.
Collapse
Affiliation(s)
- Dali Sun
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hiroyasu Yamahara
- Institute of Engineering Innovations, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosho Nakane
- Institute of Innovation in International Engineering Education, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Electrical Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Electrical Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Electrical Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Simultaneous detection of multiple bioactive pollutants using a multiparametric biochip for water quality monitoring. Biosens Bioelectron 2015; 72:71-9. [PMID: 25957833 DOI: 10.1016/j.bios.2015.04.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023]
Abstract
Water is a renewable resource but yet finite. Its sustainable usage and the maintenance of a good quality are essential for an intact environment, human life and a stable economy. Emerging technologies aim for a continuous monitoring of water quality, overcoming periodic analytical sampling, and providing information on the current state of inshore waters in real time. So does the here presented cell-based sensor system which uses RLC-18 cells (rat liver cells) as the detection layer for the detection of water pollutants. The electrical read-out of the system, cellular metabolism, oxygen consumption and morphological integrity detects small changes in the water quality and indicates a possible physiological damage caused. A generalized functional linear model was implemented in order to regress the chemicals present in the sample on the electrical read-out. The chosen environmental pollutants to test the system were chlorpyrifos, an organophosphate pesticide, and tetrabromobisphenol A, a flame retardant. Each chemical gives a very characteristic response, but the toxicity is mitigated if both chemicals are present at once. This will focus our attention on the statistical approach which is able to discriminate between these pollutants.
Collapse
|
36
|
Dong H, Xu W, Pillai JK, Packianathan C, Rosen BP. High-throughput screening-compatible assays of As(III) S-adenosylmethionine methyltransferase activity. Anal Biochem 2015; 480:67-73. [PMID: 25866076 DOI: 10.1016/j.ab.2015.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 11/18/2022]
Abstract
Arsenic is a naturally existing toxin and carcinogen. As(III) S-adenosylmethionine methyltransferases (AS3MT in mammals and ArsM in microbes) methylate As(III) three times in consecutive steps and play a central role in arsenic metabolism from bacteria to humans. Current assays for arsenic methylation are slow, laborious, and expensive. Here we report the development of two in vitro assays for AS3MT activity that are rapid, sensitive, convenient, and relatively inexpensive and can be adapted for high-throughput assays. The first assay measures As(III) binding by the quenching of the protein fluorescence of a single-tryptophan derivative of an AS3MT ortholog. The second assay utilizes time-resolved fluorescence resonance energy transfer to directly measure the conversion of the AS3MT substrate, S-adenosylmethionine, to S-adenosylhomocysteine catalyzed by AS3MT. These two assays are complementary, one measuring substrate binding and the other catalysis, making them useful tools for functional studies and future development of drugs to prevent arsenic-related diseases.
Collapse
Affiliation(s)
- Hui Dong
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jitesh K Pillai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Charles Packianathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
37
|
Chen J, Bhattacharjee H, Rosen BP. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol 2015; 96:1042-52. [PMID: 25732202 DOI: 10.1111/mmi.12988] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 11/29/2022]
Abstract
Environmental organoarsenicals are produced by microorganisms and are introduced anthropogenically as herbicides and antimicrobial growth promoters for poultry and swine. Nearly every prokaryote has an ars (arsenic resistance) operon, and some have an arsH gene encoding an atypical flavodoxin. The role of ArsH in arsenic resistance has been unclear. Here we demonstrate that ArsH is an organoarsenical oxidase that detoxifies trivalent methylated and aromatic arsenicals by oxidation to pentavalent species. Escherichia coli, which does not have an arsH gene, is very sensitive to the trivalent forms of the herbicide monosodium methylarsenate [MSMA or MAs(V)] and antimicrobial growth promoter roxarsone [Rox(V)], as well as to phenylarsenite [PhAs(III), also called phenylarsine oxide or PAO]. Pseudomonas putida has two chromosomally encoded arsH genes and is highly resistant to the trivalent forms of these organoarsenicals. A derivative of P. putida with both arsH genes deleted is sensitive to MAs(III), PhAs(III) or Rox(III). P. putida arsH expressed in E. coli conferred resistance to each trivalent organoarsenical. Cells expressing PpArsH oxidized the trivalent organoarsenicals. PpArsH was purified, and the enzyme in vitro similarly oxidized the trivalent organoarsenicals. These results suggest that ArsH catalyzes a novel biotransformation that confers resistance to environmental methylated and aromatic arsenicals.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
38
|
Abstract
AbstractMicrobial cell biosensors, where cells are in direct connection with a transducer enabling quantitative and qualitative detection of an analyte, are very promising analytical tools applied mainly for assays in the environmental field, food industry or biomedicine. Microbial cell biosensors are an excellent alternative to conventional analytical methods due to their specificity, rapid detection and low cost of analysis. Nowadays, nanomaterials are often used in the construction of biosensors to improve their sensitivity and stability. In this review, the combination of microbial and other individual cells with different nanomaterials (carbon nanotubes, graphene, gold nanoparticles, etc.) for the construction of biosensors is described and their applications are provided as well.
Collapse
|
39
|
Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 2015; 7:39-55. [DOI: 10.1039/c4mt00222a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of arsenic binding to proteins advances the development of bioanalytical techniques and therapeutic drugs.
Collapse
Affiliation(s)
- Beibei Chen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - Shengwen Shen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - William R. Cullen
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
- Department of Chemistry
| |
Collapse
|
40
|
Biosensors for inorganic and organic arsenicals. BIOSENSORS-BASEL 2014; 4:494-512. [PMID: 25587436 PMCID: PMC4287715 DOI: 10.3390/bios4040494] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
Abstract
Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.
Collapse
|
41
|
Kaur H, Kumar R, Babu JN, Mittal S. Advances in arsenic biosensor development--a comprehensive review. Biosens Bioelectron 2014; 63:533-545. [PMID: 25150780 DOI: 10.1016/j.bios.2014.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023]
Abstract
Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review.
Collapse
Affiliation(s)
- Hardeep Kaur
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Rabindra Kumar
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - J Nagendra Babu
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Sunil Mittal
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| |
Collapse
|
42
|
A C⋅As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc Natl Acad Sci U S A 2014; 111:7701-6. [PMID: 24821808 DOI: 10.1073/pnas.1403057111] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arsenic is the most widespread environmental toxin. Substantial amounts of pentavalent organoarsenicals have been used as herbicides, such as monosodium methylarsonic acid (MSMA), and as growth enhancers for animal husbandry, such as roxarsone (4-hydroxy-3-nitrophenylarsonic acid) [Rox(V)]. These undergo environmental degradation to more toxic inorganic arsenite [As(III)]. We previously demonstrated a two-step pathway of degradation of MSMA to As(III) by microbial communities involving sequential reduction to methylarsonous acid [MAs(III)] by one bacterial species and demethylation from MAs(III) to As(III) by another. In this study, the gene responsible for MAs(III) demethylation was identified from an environmental MAs(III)-demethylating isolate, Bacillus sp. MD1. This gene, termed arsenic inducible gene (arsI), is in an arsenic resistance (ars) operon and encodes a nonheme iron-dependent dioxygenase with C ⋅ As lyase activity. Heterologous expression of ArsI conferred MAs(III)-demethylating activity and MAs(III) resistance to an arsenic-hypersensitive strain of Escherichia coli, demonstrating that MAs(III) demethylation is a detoxification process. Purified ArsI catalyzes Fe(2+)-dependent MAs(III) demethylation. In addition, ArsI cleaves the C ⋅ As bond in trivalent roxarsone and other aromatic arsenicals. ArsI homologs are widely distributed in prokaryotes, and we propose that ArsI-catalyzed organoarsenical degradation has a significant impact on the arsenic biogeocycle. To our knowledge, this is the first report of a molecular mechanism for organoarsenic degradation by a C ⋅ As lyase.
Collapse
|
43
|
Huang WR, Chen YL, Lee CY, Chiu HT. Fabrication of gold/polypyrrole core/shell nanowires on a flexible substrate for molecular imprinted electrochemical sensors. RSC Adv 2014. [DOI: 10.1039/c4ra11774c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold/polypyrrole core/shell nanowires electrochemically grown on flexible substrates are used as molecular imprinted polymer biosensors for dopamine detection.
Collapse
Affiliation(s)
- Wei-Ren Huang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Yu-Liang Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Chi-Young Lee
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu, Republic of China
| | - Hsin-Tien Chiu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| |
Collapse
|