1
|
Yamakawa A, Luke W, Kelley P, Ren X, Iaukea-Lum M. Unraveling atmospheric mercury dynamics at Mauna Loa through the isotopic analysis of total gaseous mercury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116993. [PMID: 39260217 DOI: 10.1016/j.ecoenv.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Our investigation seeks to uncover the intricate nature of mercury dynamics in the free troposphere through analysis of the isotopic composition of total gaseous elemental mercury (TGM) at the high altitude Mauna Loa Observatory (MLO, 3397 m) in Hawaii, USA. By focusing on this unique site, we aim to provide essential insights into the behavior and cycling of mercury, contributing valuable data to a deeper understanding of its global distribution and environmental impacts. Forty-eight hours of TGM sampling from January to September 2022 revealed significant variations in δ202Hg (-1.86 % to -0.32 %; mean = -1.17 ± 0.65 %, 2 SD, n = 34) and small variations in Δ199Hg (-0.27 % to 0.04 %; mean = -0.13 ± 0.14 %, 2 SD, n = 34) and Δ200Hg (-0.20 % to 0.06 %; mean = -0.05 ± 0.13 %, 2 SD, n = 34). During the sampling period, GEM was negatively correlated with gaseous oxidized mercury (GOM). However, the GOM/GEM ratio was not -1, suggesting that GEM oxidation and subsequent scavenging occurred previously. The δ202Hg isotopic compositions of TGM at MLO were different from those of reported values of high-altitude mountains; the δ202Hg of TGM at MLO was lower than the isotopic ratios that were obtained from other mountain regions. The unique atmospheric conditions at Mauna Loa, with (upslope winds during the day and downslope winds at night, likely result in the) possibly mixing of GEMs from terrestrial (and possibly oceanic GEM emission) sources with and tropospheric sources, influencing and affect the isotopic composition. During the late summer to early fall (September 14-28), negative correlations were found between relative humidity and GOM and between particle number concentrations and Δ199Hg, indicating the gas-to-particle partitioning of the atmospheric mercury during this period. This study will improve our understanding on mercury dynamics of marine origin and high altitudes and shed light on its complex interactions with environmental factors.
Collapse
Affiliation(s)
- Akane Yamakawa
- National Institute for Environmental Studies, 16-2 Tsukuba, Ibaraki 305-8506, Japan.
| | - Winston Luke
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Paul Kelley
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Xinrong Ren
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Michealene Iaukea-Lum
- Mauna Loa Observatory, CIRES/NOAA Global Monitoring Division, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
2
|
Malasani CR, Swain B, Patel A, Pulipatti Y, Anchan NL, Sharma A, Vountas M, Liu P, Gunthe SS. Modeling of mercury deposition in India: evaluating emission inventories and anthropogenic impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39350741 DOI: 10.1039/d4em00324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Mercury (Hg), a ubiquitous atmospheric trace metal posing serious health risks, originates from natural and anthropogenic sources. India, the world's second-largest Hg emitter and a signatory to the Minamata Convention, is committed to reducing these emissions. However, critical gaps exist in our understanding of the spatial and temporal distribution of Hg across the vast Indian subcontinent due to limited observational data. This study addresses this gap by employing the GEOS-Chem model with various emission inventories (UNEP2010, WHET, EDGAR, STREETS, and UNEP2015) to simulate Hg variability across the Asian domain, with a specific focus on India from 2013 to 2017. Model performance was evaluated using ground-based GMOS observations and available literature data. Emission inventory performance varied across different observational stations. Hence, we employed ensemble results from all inventories. The maximum relative bias for Total Gaseous Mercury (TGM) and Gaseous Elemental Mercury (GEM; Hg0) concentrations is about ±20%, indicating simulations with sufficient accuracy. Total Hg wet deposition fluxes are highest over the Western Ghats and the Himalayan foothills due to higher rainfall. During the monsoon, the Hg wet deposition flux is about 65.4% of the annual wet deposition flux. Moreover, westerly winds cause higher wet deposition in summer over Northern and Eastern India. Total Hg dry deposition flux accounts for 72-74% of total deposition over India. Hg0 dry deposition fluxes are higher over Eastern India, which correlates strongly with the leaf area index. Excluding Indian anthropogenic emissions from the model simulations resulted in a substantial decrease (21.9% and 33.5%) in wet and total Hg deposition fluxes, highlighting the dominant role of human activities in Hg pollution in India.
Collapse
Affiliation(s)
- Chakradhar Reddy Malasani
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Basudev Swain
- Institute of Environmental Physics, Department of Physics, University of Bremen, Bremen, Germany.
| | - Ankit Patel
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Yaswanth Pulipatti
- Hydraulics and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madas, Chennai, India
| | - Nidhi L Anchan
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Amit Sharma
- Department of Civil and Infrastructure Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Marco Vountas
- Institute of Environmental Physics, Department of Physics, University of Bremen, Bremen, Germany.
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sachin S Gunthe
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Gustin MS, Dunham-Cheatham SM, Lyman S, Horvat M, Gay DA, Gačnik J, Gratz L, Kempkes G, Khalizov A, Lin CJ, Lindberg SE, Lown L, Martin L, Mason RP, MacSween K, Vijayakumaran Nair S, Nguyen LSP, O'Neil T, Sommar J, Weiss-Penzias P, Zhang L, Živković I. Measurement of Atmospheric Mercury: Current Limitations and Suggestions for Paths Forward. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12853-12864. [PMID: 38982755 DOI: 10.1021/acs.est.4c06011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Mercury (Hg) researchers have made progress in understanding atmospheric Hg, especially with respect to oxidized Hg (HgII) that can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over the past ∼10 years has pointed to existing challenges with current methods for measuring atmospheric Hg concentrations and the chemical composition of HgII compounds. Because of these challenges, atmospheric Hg experts met to discuss limitations of current methods and paths to overcome them considering ongoing research. Major conclusions included that current methods to measure gaseous oxidized and particulate-bound Hg have limitations, and new methods need to be developed to make these measurements more accurate. Developing analytical methods for measurement of HgII chemistry is challenging. While the ultimate goal is the development of ultrasensitive methods for online detection of HgII directly from ambient air, in the meantime, new surfaces are needed on which HgII can be quantitatively collected and from which it can be reversibly desorbed to determine HgII chemistry. Discussion and identification of current limitations, described here, provide a basis for paths forward. Since the atmosphere is the means by which Hg is globally distributed, accurately calibrated measurements are critical to understanding the Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- College of Biotechnology, Natural Resources & Environmental Science, University of Nevada, Reno, Nevada 89557, United States
| | - Sarrah M Dunham-Cheatham
- College of Biotechnology, Natural Resources & Environmental Science, University of Nevada, Reno, Nevada 89557, United States
| | - Seth Lyman
- Bingham Research Center, Utah State University, Vernal, Utah 84078, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
| | - David A Gay
- Wisconsin State Laboratory of Hygiene, University of Wisconsin Madison, Madison, Wisconsin 53707-7996, United States
| | - Jan Gačnik
- College of Biotechnology, Natural Resources & Environmental Science, University of Nevada, Reno, Nevada 89557, United States
| | - Lynne Gratz
- Chemistry Department and Environmental Studies Program, Reed College, Portland, Oregon 97202, United States
| | | | - Alexei Khalizov
- New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Che-Jen Lin
- Lamar University, Beaumont, Texas 77710, United States
| | - Steven E Lindberg
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Livia Lown
- College of Biotechnology, Natural Resources & Environmental Science, University of Nevada, Reno, Nevada 89557, United States
| | - Lynwill Martin
- South Africa Weather Service, Cape Town 7525, South Africa
| | - Robert Peter Mason
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Katrina MacSween
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change, Toronto, Ontario M3H 5T4, Canada
| | - Sreekanth Vijayakumaran Nair
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
| | - Ly Sy Phu Nguyen
- Faculty of Environment, University of Science, Vietnam National University, Ho Chi Minh City 700000,Vietnam
| | - Trevor O'Neil
- Bingham Research Center, Utah State University, Vernal, Utah 84078, United States
| | - Jonas Sommar
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009, China
| | - Peter Weiss-Penzias
- University of California-Santa Cruz, Santa Cruz, California 95064, United States
| | - Lei Zhang
- School of the Environment, Nanjing University, Nanjing 210023, China
| | - Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
| |
Collapse
|
4
|
Elgiar TR, Lyman SN, Andron TD, Gratz L, Hallar AG, Horvat M, Vijayakumaran Nair S, O'Neil T, Volkamer R, Živković I. Traceable Calibration of Atmospheric Oxidized Mercury Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10706-10716. [PMID: 38850513 DOI: 10.1021/acs.est.4c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Most previous measurements of oxidized mercury were collected using a method now known to be biased low. In this study, a dual-channel system with an oxidized mercury detection limit of 6-12 pg m-3 was deployed alongside a permeation tube-based automated calibrator at a mountain top site in Steamboat Springs Colorado, USA, in 2021 and 2022. Permeation tubes containing elemental mercury and mercury halides were characterized via an International System of Units (SI)-traceable gravimetric method and gas chromatography/mass spectrometry before deployment in the calibrator. The dual-channel system recovered 97 ± 4 and 100 ± 8% (±standard deviation) of injected elemental mercury and HgBr2, respectively. Total Hg permeation rates and Hg speciation from the gravimetric method, the chromatography system, the dual-channel system, and an independent SI-traceable measurement method performed at the Jožef Stefan Institute laboratory were all comparable within the respective uncertainties of each method. These are the first measurements of oxidized mercury at low environmental concentrations that have been verified against an SI-traceable calibration system in field conditions while sampling ambient air, and they show that accurate, routinely calibrated oxidized mercury measurements are achievable.
Collapse
Affiliation(s)
- Tyler R Elgiar
- Bingham Research Center, Utah State University, Vernal, Utah 84078, United States
| | - Seth N Lyman
- Bingham Research Center, Utah State University, Vernal, Utah 84078, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan ,Utah 84322, United States
| | - Teodor D Andron
- JoŽef Stefan Institute, Ljubljana 1000, Slovenia
- JoŽef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Lynne Gratz
- Reed College, Portland, Oregon 97202, United States
| | - A Gannet Hallar
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Milena Horvat
- JoŽef Stefan Institute, Ljubljana 1000, Slovenia
- JoŽef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Sreekanth Vijayakumaran Nair
- JoŽef Stefan Institute, Ljubljana 1000, Slovenia
- JoŽef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| | - Trevor O'Neil
- Bingham Research Center, Utah State University, Vernal, Utah 84078, United States
| | - Rainer Volkamer
- Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Igor Živković
- JoŽef Stefan Institute, Ljubljana 1000, Slovenia
- JoŽef Stefan International Postgraduate School, Ljubljana 1000, Slovenia
| |
Collapse
|
5
|
Dunham-Cheatham SM, Lyman S, Gustin MS. Comparison and calibration of methods for ambient reactive mercury quantification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159219. [PMID: 36202360 DOI: 10.1016/j.scitotenv.2022.159219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gaseous oxidized mercury (GOM) is the dominant form of atmospheric mercury (Hg) deposited and sequestered within ecosystems. Thus, accurate, calibrated measurements of GOM are needed. Here, two active membrane-based collection systems (RMAS) were used to determine GOM and particulate-bound Hg (PBM), as well as reactive Hg (RM = GOM + PBM), and compared with two dual-channel systems (DCS) and a Tekran 2537/1130 speciation system. The DCS measured operationally defined GOM by difference, using concentrations of gaseous elemental Hg (GEM) and total gaseous Hg. One DCS was linked to a custom-built, automated calibration system that permeated GEM, HgBr2, or HgCl2. The five systems were co-located for one-year to develop a dataset that would allow for understanding limitations of each system, and assessing measurement accuracy and long-term precision of the calibrator. The Tekran system measured ~14.5 % of the GOM measured by the other systems. The USU and UNR DCS and RMAS were significantly correlated, but the DCS was 50 and 30 % higher, respectively, than the RMAS. The calibrator performed consistently in the field and lab, and the DCS fully recovered GOM injected by the calibrator. Since the uncalibrated DCS measured the same concentrations as the calibrated DCS, they are both accurate methods for measuring RM and/or GOM. Some loss occurred from the RMAS membranes. SYNOPSIS: Accurate and calibrated measurements of atmospheric reactive mercury using membranes and two dual-channel systems.
Collapse
Affiliation(s)
- Sarrah M Dunham-Cheatham
- Department of Natural Resources & Environmental Science, University of Nevada, Reno, 1664 N. Virginia Street, Mail Stop 186, Reno, NV 89557, USA.
| | - Seth Lyman
- Bingham Research Center, Utah State University, 320 N Aggie Blvd, Vernal, UT 84078, USA; Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, USA
| | - Mae Sexauer Gustin
- Department of Natural Resources & Environmental Science, University of Nevada, Reno, 1664 N. Virginia Street, Mail Stop 186, Reno, NV 89557, USA
| |
Collapse
|
6
|
Zhang L, Zhang G, Zhou P, Zhao Y. A Review of Dry Deposition Schemes for Speciated Atmospheric Mercury. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:16. [PMID: 36525086 DOI: 10.1007/s00128-022-03641-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
This study reviewed the existing framework of dry deposition schemes for speciated atmospheric mercury. As the most commonly used methods for mercury dry deposition estimation, the big-leaf resistance scheme for gaseous oxidized mercury (GOM), the size distribution regarded resistance scheme for particulate bound mercury (PBM), and the bidirectional air-surface exchange scheme for gaseous elemental mercury (GEM) were introduced in detail. Sensitivity analysis were conducted to quantitatively identify the key parameters for the estimation of speciated mercury dry deposition velocities. The dry deposition velocity of GOM was found to be sensitive to the wind speed and some land use related parameters. The chemical forms of GOM could have a significant impact on the dry deposition velocity. The dry deposition velocity of PBM is sensitive to the mass fraction of PBM in coarse particles, while that of GEM is most sensitive to air temperature. Future research needs were proposed accordingly.
Collapse
Affiliation(s)
- Lei Zhang
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - Guichen Zhang
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Peisheng Zhou
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Yu Zhao
- School of the Environment and State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China
| |
Collapse
|
7
|
Davis M, Lu J. Calibration Sources for Gaseous Oxidized Mercury: A Review of Source Design, Performance, and Operational Parameters. Crit Rev Anal Chem 2022; 54:1748-1757. [PMID: 36223220 DOI: 10.1080/10408347.2022.2131373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mercury is a neurotoxin that, unlike many localized industrial pollutants, spreads globally through atmospheric transport. Mercury in the atmosphere is operationally partitioned into gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (TPM). Although GOM makes up only a small fraction of Hg in the free troposphere under normal conditions, its role in the dry and wet deposition of mercury makes GOM a significant species for understanding the transport and fate of mercury in the atmosphere. Although instruments for atmospheric mercury speciation are commercially available, significant uncertainty is associated with the current speciation methods, from sample collection to calibration, for GOM measurements. This paper examines the custom-made calibration sources that have been developed for GOM measuring instruments, evaluates the factors influencing the source performance, and synthesizes recommendations for the design and operation of GOM calibration sources in the future.
Collapse
Affiliation(s)
- Matthew Davis
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Julia Lu
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| |
Collapse
|
8
|
Liu K, Wu Q, Wang S, Chang X, Tang Y, Wang L, Liu T, Zhang L, Zhao Y, Wang Q, Chen J. Improved atmospheric mercury simulation using updated gas-particle partition and organic aerosol concentrations. J Environ Sci (China) 2022; 119:106-118. [PMID: 35934455 DOI: 10.1016/j.jes.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The gaseous or particulate forms of divalent mercury (HgII) significantly impact the spatial distribution of atmospheric mercury concentration and deposition flux (FLX). In the new nested-grid GEOS-Chem model, we try to modify the HgII gas-particle partitioning relationship with synchronous and hourly observations at four sites in China. Observations of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and PM2.5 were used to derive an empirical gas-particle partitioning coefficient as a function of temperature (T) and organic aerosol (OA) concentrations under different relative humidity (RH). Results showed that with increasing RH, the dominant process of HgII gas-particle partitioning changed from physical adsorption to chemical desorption. And the dominant factor of HgII gas-particle partitioning changed from T to OA concentrations. We thus improved the simulated OA concentration field by introducing intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emission inventory into the model framework and refining the volatile distributions of I/SVOCs according to new filed tests in the recent literatures. Finally, normalized mean biases (NMBs) of monthly gaseous element mercury (GEM), GOM, PBM, WFLX were reduced from -33%-29%, 95%-300%, 64%-261%, 117%-122% to -13%-0%, -20%-80%, -31%-50%, -17%-23%. The improved model explains 69%-98% of the observed atmospheric Hg decrease during 2013-2020 and can serve as a useful tool to evaluate the effectiveness of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Xing Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yi Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Long Wang
- Institute of Atmospheric Environment, Guangdong provincial academy of environmental science, Guangzhou 510045, China
| | - Tonghao Liu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Lei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmos. Environ., Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
9
|
Tang Y, Wang S, Li G, Han D, Liu K, Li Z, Wu Q. Elevated Gaseous Oxidized Mercury Revealed by a Newly Developed Speciated Atmospheric Mercury Monitoring System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7707-7715. [PMID: 35607915 DOI: 10.1021/acs.est.2c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gaseous oxidized mercury (Hg2+) monitoring is one of the largest challenges in the mercury research field, where existing methods cannot simultaneously satisfy the measurement requirements of both accuracy and time precision, especially in high-particulate environments. Here, we verified that dual-stage cation exchange membrane (CEM) sampler is incapable of gaseous elemental mercury (Hg0) uptake even if particulate matter is trapped on CEM, whereas the Hg2+ capture efficiency of the sampler is more than 90%. We then developed a Cation Exchange Membrane-Coupled Speciated Atmospheric Mercury Monitoring System (CSAMS) by coupling the dual-stage CEM sampler with the commercial Tekran 2537/1130/1135 system and configuring a new sampling and analysis procedure, so as to improve the monitoring accuracy of Hg2+ and ensure the simultaneous measurement of Hg0, Hg2+, and Hgp in 2 h time resolution. We deployed the CSAMS in urban Beijing in September 2021 and observed an unprecedented elevated Hg2+ during the daytime with an average amplitude of 510 pg m-3. Using a zero-dimensional box model, the elevated Hg2+ production rate was attributed to high atmospheric oxidant concentrations, Hg0 heterogeneous and interfacial oxidation processes on the surface of atmospheric particles, or potential unknown oxidants.
Collapse
Affiliation(s)
- Yi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Guoliang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Deming Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhijian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
10
|
Gačnik J, Živković I, Ribeiro Guevara S, Kotnik J, Berisha S, Vijayakumaran Nair S, Jurov A, Cvelbar U, Horvat M. Calibration Approach for Gaseous Oxidized Mercury Based on Nonthermal Plasma Oxidation of Elemental Mercury. Anal Chem 2022; 94:8234-8240. [PMID: 35647905 PMCID: PMC9201811 DOI: 10.1021/acs.analchem.2c00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Atmospheric mercury
measurements carried out in the recent decades
have been a subject of bias largely due to insufficient consideration
of metrological traceability and associated measurement uncertainty,
which are ultimately needed for the demonstration of comparability
of the measurement results. This is particularly challenging for gaseous
HgII species, which are reactive and their ambient concentrations
are very low, causing difficulties in proper sampling and calibration.
Calibration for atmospheric HgII exists, but barriers to
reliable calibration are most evident at ambient HgII concentration
levels. We present a calibration of HgII species based
on nonthermal plasma oxidation of Hg0 to HgII. Hg0 was produced by quantitative reduction of HgII in aqueous solution by SnCl2 and aeration. The
generated Hg0 in a stream of He and traces of reaction
gas (O2, Cl2, or Br2) was then oxidized
to different HgII species by nonthermal plasma. A highly
sensitive 197Hg radiotracer was used to evaluate the oxidation
efficiency. Nonthermal plasma oxidation efficiencies with corresponding
expanded standard uncertainty values were 100.5 ± 4.7% (k = 2) for 100 pg of HgO, 96.8 ± 7.3% (k = 2) for 250 pg of HgCl2, and 77.3 ± 9.4% (k = 2) for 250 pg of HgBr2. The presence of HgO,
HgCl2, and HgBr2 was confirmed by temperature-programmed
desorption quadrupole mass spectrometry (TPD-QMS). This work demonstrates
the potential for nonthermal plasma oxidation to generate reliable
and repeatable amounts of HgII compounds for routine calibration
of ambient air measurement instrumentation.
Collapse
Affiliation(s)
- Jan Gačnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche, Argentina
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sabina Berisha
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sreekanth Vijayakumaran Nair
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Andrea Jurov
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Uroš Cvelbar
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.,Department of Gaseous Electronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Shah V, Jacob DJ, Thackray CP, Wang X, Sunderland EM, Dibble TS, Saiz-Lopez A, Černušák I, Kellö V, Castro PJ, Wu R, Wang C. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14445-14456. [PMID: 34724789 DOI: 10.1021/acs.est.1c03160] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a new chemical mechanism for Hg0/HgI/HgII atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg0 by Br and OH, subsequent oxidation of HgI by ozone and radicals, respeciation of HgII in aerosols and cloud droplets, and speciated HgII photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg0 concentrations and HgII wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg0 to HgII. Ozone is the principal HgI oxidant, enabling the efficient oxidation of Hg0 to HgII by OH. BrHgIIOH and HgII(OH)2, the initial HgII products of Hg0 oxidation, respeciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of HgII to Hg0 takes place largely through photolysis of aqueous HgII-organic complexes. 71% of model HgII deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of HgI, and speciation and photoreduction of HgII in aerosols and clouds.
Collapse
Affiliation(s)
- Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel J Jacob
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xuan Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Theodore S Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Vladimir Kellö
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Pedro J Castro
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Rongrong Wu
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| |
Collapse
|
12
|
Gačnik J, Živković I, Ribeiro Guevara S, Jaćimović R, Kotnik J, Horvat M. Validating an Evaporative Calibrator for Gaseous Oxidized Mercury. SENSORS 2021; 21:s21072501. [PMID: 33916694 PMCID: PMC8038396 DOI: 10.3390/s21072501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Understanding atmospheric mercury chemistry is the key for explaining the biogeochemical cycle of mercury and for improving the predictive capability of computational models. Increased efforts are being made to ensure comparable Hg speciation measurements in the air through establishing metrological traceability. While traceability for elemental mercury has been recently set, this is by no means the case for gaseous oxidized mercury (GOM). Since a calibration unit suitable for traceable GOM calibrations based on evaporation of HgCl2 solution was recently developed, the purpose of our work was to extensively evaluate its performance. A highly specific and sensitive 197Hg radiotracer was used for validation over a wide range of concentrations. By comparing experimental and calculated values, we obtained recoveries for the calibration unit. The average recoveries ranged from 88.5% for 1178 ng m−3 HgCl2 gas concentration to 39.4% for 5.90 ng m−3 HgCl2 gas concentration. The losses were due to the adsorption of oxidized Hg on the inner walls of the calibrator and tubing. An adsorption isotherm was applied to estimate adsorption enthalpy (ΔHads); a ΔHads value of −12.33 kJ mol−1 was obtained, suggesting exothermal adsorption. The results of the calibrator performance evaluation suggest that a newly developed calibration unit is only suitable for concentrations of HgCl2 higher than 1 µg m−3. The concentration dependence of recoveries prevents the system from being used for calibration of instruments for ambient GOM measurements. Moreover, the previously assessed uncertainty of this unit at µg m−3 level (2.0%, k = 2) was re-evaluated by including uncertainty related to recovery and was found to be 4.1%, k = 2. Calibrator performance was also evaluated for HgBr2 gas calibration; the recoveries were much lower for HgBr2 gas than for HgCl2 gas even at a high HgBr2 gas concentration (>1 µg m−3). As HgBr2 is often used as a proxy for various atmospheric HgBr species, the suitability of the unit for such calibration must be further developed.
Collapse
Affiliation(s)
- Jan Gačnik
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (I.Ž.); (R.J.); (J.K.)
| | - Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (I.Ž.); (R.J.); (J.K.)
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av. Bustillo km 9.5, Bariloche 8400, Argentina;
| | - Radojko Jaćimović
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (I.Ž.); (R.J.); (J.K.)
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (I.Ž.); (R.J.); (J.K.)
| | - Milena Horvat
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (I.Ž.); (R.J.); (J.K.)
- Correspondence: ; Tel.: +386-1-588-53-55
| |
Collapse
|
13
|
Gustin MS, Dunham-Cheatham SM, Zhang L, Lyman S, Choma N, Castro M. Use of Membranes and Detailed HYSPLIT Analyses to Understand Atmospheric Particulate, Gaseous Oxidized, and Reactive Mercury Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:893-901. [PMID: 33404225 DOI: 10.1021/acs.est.0c07876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The atmosphere is the primary pathway by which mercury enters ecosystems. Despite the importance of atmospheric deposition, concentrations and chemistry of gaseous oxidized (GOM) and particulate-bound (PBM) mercury are poorly characterized. Here, three membranes (cation exchange (CEM), nylon, and poly(tetrafluoroethylene) (PTFE) membranes) were used as a means for quantification of concentrations and identification of the chemistry of GOM and PBM. Detailed HYSPLIT analyses were used to determine sources of oxidants forming reactive mercury (RM = PBM + GOM). Despite the coarse sampling resolution (1-2 weeks), a gradient in chemistry was observed, with halogenated compounds dominating over the Pacific Ocean, and continued influence from the marine boundary layer in Nevada and Utah with a periodic occurrence in Maryland. Oxide-based RM compounds arrived at continental locations via long-range transport. Nitrogen, sulfur, and organic RM compounds correlated with regional and local air masses. RM concentrations were highest over the ocean and decreased moving from west to east across the United States. Comparison of membrane concentrations demonstrated that the CEM provided a quantitative measure of RM concentrations and PTFE membranes were useful for collecting PBM. Nylon membranes do not retain all compounds with equal efficiency in ambient air, and an alternate desorption surface is needed.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada 89557, United States
| | - Sarrah M Dunham-Cheatham
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada 89557, United States
| | - Lei Zhang
- School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Seth Lyman
- Bingham Research Center, Utah State University, Vernal, Utah 84322, United States
| | - Nicole Choma
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada 89557, United States
| | - Mark Castro
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland 21532, United States
| |
Collapse
|
14
|
Miller MB, Howard DA, Pierce AM, Cook KR, Keywood M, Powell J, Gustin MS, Edwards GC. Atmospheric reactive mercury concentrations in coastal Australia and the Southern Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141681. [PMID: 32861947 DOI: 10.1016/j.scitotenv.2020.141681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg), especially reactive Hg (RM), data from the Southern Hemisphere (SH) are limited. In this study, long-term measurements of both gaseous elemental Hg (GEM) and RM were made at two ground-based monitoring locations in Australia, the Cape Grim Baseline Air Pollution Station (CGBAPS) in Tasmania, and the Macquarie University Automatic Weather Station (MQAWS) in Sydney, New South Wales. Measurements were also made on board the Australian RV Investigator (RVI) during an ocean research voyage to the East Antarctic coast. GEM was measured using the standard Tekran® 2537 series analytical platform, and RM was measured using cation exchange membranes (CEM) in a filter-based sampling method. Overall mean RM concentrations at CGBAPS and MQAWS were 15.9 ± 6.7 pg m-3 and 17.8 ± 6.6 pg m-3, respectively. For the 10-week austral summer period on RVI, mean RM was 23.5 ± 6.7 pg m-3. RM concentrations at CGBAPS were seasonally invariable, while those at MQAWS were significantly different between summer and winter due to seasonal changes in synoptic wind patterns. During the RVI voyage, RM concentrations were relatively enhanced along the Antarctic coast (up to 30 pg m-3) and GEM concentrations were variable (0.2 to 0.9 ng m-3), suggesting periods of enrichment and depletion. Both RM and GEM concentrations were relatively lower while transiting the Southern Ocean farther north of Antarctica. RM concentrations measured in this study were higher in comparison to most other reported measurements of RM in the global marine boundary layer (MBL), especially for remote SH locations. As observations of GEM and RM concentrations inform global ocean-atmosphere model simulations of the atmospheric Hg budget, our results have important implications for understanding of total atmospheric Hg (TAM).
Collapse
Affiliation(s)
- Matthieu B Miller
- Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2113, Australia.
| | - Dean A Howard
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Ashley M Pierce
- Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2113, Australia
| | - Kellie R Cook
- Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2113, Australia
| | - Melita Keywood
- Centre for Australian Climate and Weather Research, Australian Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Jennifer Powell
- Centre for Australian Climate and Weather Research, Australian Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Mae S Gustin
- Department of Natural Resources and Environmental Sciences, University of Nevada, Reno, NV 89557, United States
| | - Grant C Edwards
- Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2113, Australia
| |
Collapse
|
15
|
Abstract
This review focuses on providing the history of measurement efforts to quantify and characterize the compounds of reactive mercury (RM), and the current status of measurement methods and knowledge. RM collectively represents gaseous oxidized mercury (GOM) and that bound to particles. The presence of RM was first recognized through measurement of coal-fired power plant emissions. Once discovered, researchers focused on developing methods for measuring RM in ambient air. First, tubular KCl-coated denuders were used for stack gas measurements, followed by mist chambers and annular denuders for ambient air measurements. For ~15 years, thermal desorption of an annular KCl denuder in the Tekran® speciation system was thought to be the gold standard for ambient GOM measurements. Research over the past ~10 years has shown that the KCl denuder does not collect GOM compounds with equal efficiency, and there are interferences with collection. Using a membrane-based system and an automated system—the Detector for Oxidized mercury System (DOHGS)—concentrations measured with the KCl denuder in the Tekran speciation system underestimate GOM concentrations by 1.3 to 13 times. Using nylon membranes it has been demonstrated that GOM/RM chemistry varies across space and time, and that this depends on the oxidant chemistry of the air. Future work should focus on development of better surfaces for collecting GOM/RM compounds, analytical methods to characterize GOM/RM chemistry, and high-resolution, calibrated measurement systems.
Collapse
|
16
|
Lyman SN, Gratz LE, Dunham-Cheatham SM, Gustin MS, Luippold A. Improvements to the Accuracy of Atmospheric Oxidized Mercury Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13379-13388. [PMID: 33075225 DOI: 10.1021/acs.est.0c02747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a cation-exchange membrane-based dual-channel system to measure elemental and oxidized mercury and deployed it with an automated calibration system and the University of Nevada, Reno-Reactive Mercury Active System (UNR-RMAS) at a rural/suburban field site in Colorado during the summer of 2018. Unlike oxidized mercury measurements collected via the widely used KCl denuder method, the dual-channel system was able to quantitatively recover HgCl2 and HgBr2 injected by the calibrator into the ambient sample air and compared well with the UNR-RMAS measurements. The system measured at 10 min intervals and had a 3-h average detection limit for oxidized mercury of 33 pg m-3. It was able to detect day-to-day variability and diel cycles in oxidized mercury (0 to 200 pg m-3) and will be an important tool for future studies of atmospheric mercury. We used a gravimetric method to independently determine the total mercury permeation rate from the permeation tubes. Permeation rates derived from the gravimetric method matched the permeation rates observed via mercury measurement devices to within 25% when the mercury permeation rate was relatively high (up to 30 pg s-1), but the agreement decreased for lower permeation rates, probably because of increased uncertainty in the gravimetric measurements.
Collapse
Affiliation(s)
- Seth N Lyman
- Bingham Research Center, Utah State University, Vernal, Utah 84078, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0305, United States
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, Colorado Springs, Colorado 80903-3298, United States
| | - Sarrah M Dunham-Cheatham
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Adriel Luippold
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada 89557, United States
| |
Collapse
|
17
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
18
|
Tang H, You W, Wang Z, Li C, Zhu C, Cai L, Duan Y. Detrimental effects of SO 2 on gaseous mercury(II) adsorption and retention by CaO-based sorbent traps: Competition and heterogeneous reduction. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121679. [PMID: 31796365 DOI: 10.1016/j.jhazmat.2019.121679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Reliable gaseous Hg(II) measurement is crucial to mercury emissions control from coal-fired flue gas, but Hg(II) sampling under SO2 condition could probably increase the uncertainty of sorbent traps. CaO-AcS synthesized from calcium acetate and porous support were previously demonstrated to be effective for Hg(II) trapping under SO2-free condition. This work further evaluated SO2 influence on its Hg(II) retention ability via integrating experimental and DFT computational studies. Increased breakthrough rate of HgCl2 was found in a two-section CaO-AcS trap under SO2 conditions. Significant basicity and porosity loss of CaO-AcS were attributed to the formation of agglomerate CaSO3. Hg0 release from CaO-AcS samples suggested potential reactions between Hg(II) and SO2. The detected HgO and Hg2SO4 species by Hg-TPD in CaO-AcS further confirmed this speculation. Moreover, both competition and reduction effects of SO2 on surface-bound Hg(II) species were substantiated by DFT calculations. SO2 showed a stronger interaction with CaO than HgCl2 because SO2 has a lower LUMO level and can accept electrons easier. Reaction pathways indicated Hg(II) was partially reduced to Hg2SO4 under SO2-deficient condition, or directly reduced to Hg0 under SO2-rich condition. This work fully proposed the SO2 influence mechanisms and improvement countermeasures for practical gaseous Hg(II) sampling.
Collapse
Affiliation(s)
- Hongjian Tang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore
| | - Wenqin You
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Zewei Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Chunfeng Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Chun Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Liang Cai
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yufeng Duan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
19
|
Lyman SN, Cheng I, Gratz LE, Weiss-Penzias P, Zhang L. An updated review of atmospheric mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135575. [PMID: 31784172 DOI: 10.1016/j.scitotenv.2019.135575] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The atmosphere is a key component of the biogeochemical cycle of mercury, acting as a reservoir, transport mechanism, and facilitator of chemical reactions. The chemical and physical behavior of atmospheric mercury determines how, when, and where emitted mercury pollution impacts ecosystems. In this review, we provide current information about what is known and what remains uncertain regarding mercury in the atmosphere. We discuss new ambient, laboratory, and theoretical information about the chemistry of mercury in various atmospheric media. We review what is known about mercury in and on solid- and liquid-phase aerosols. We present recent findings related to wet and dry deposition and spatial and temporal trends in atmospheric mercury concentrations. We also review atmospheric measurement methods that are in wide use and those that are currently under development.
Collapse
Affiliation(s)
- Seth N Lyman
- Bingham Research Center, Utah State University, 320 N Aggie Blvd., Vernal, UT, USA; Department of Chemistry and Biochemistry, Utah State University, 4820 Old Main Hill, Logan, UT, USA.
| | - Irene Cheng
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, 14 East Cache la Poudre St., Colorado Springs, CO, USA
| | - Peter Weiss-Penzias
- Chemistry and Biochemistry Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA; Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| | - Leiming Zhang
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| |
Collapse
|
20
|
Long-Term Observations of Atmospheric Speciated Mercury at a Coastal Site in the Northern Gulf of Mexico during 2007–2018. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atmospheric mercury species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM)), trace pollutants (O3, SO2, CO, NO, NOY, and black carbon), and meteorological parameters have been continuously measured since 2007 at an Atmospheric Mercury Network (AMNet) site that is located on the northern coast of the Gulf of Mexico in Moss Point, Mississippi. For the data that were collected between 2007 and 2018, the average concentrations and standard deviations are 1.39 ± 0.22 ng m−3 for GEM, 5.1 ± 10.2 pg m−3 for GOM, 5.9 ± 13.0 pg m−3 for PBM, and 309 ± 407 ng m−2 wk−1 for mercury wet deposition, with interannual trends of −0.009 ng m−3 yr−1 for GEM, −0.36 pg m−3 yr−1 for GOM, 0.18 pg m−3 yr−1 for PBM, and 2.8 ng m−2 wk−1 yr−1 for mercury wet deposition. The diurnal variation of GEM shows lower concentrations in the early morning due to GEM depletion, likely due to plant uptake in high humidity events and slight elevation during the day, likely due to downward mixing to the surface of higher concentrations of GEM in the air aloft. The seasonal variation of GEM shows higher levels in winter and spring and lower levels in summer and fall. Diurnal variations of both GOM and PBM show broad peaks in the afternoon likely due to the photochemical oxidation of GEM. Seasonally, PBM measurements exhibit higher levels in winter and early spring and lower levels in summer with rising levels in fall, while GOM measurements show high levels in late spring/early summer and late fall and low levels in winter. The seasonal variation of mercury wet deposition shows higher values in summer and lower values in winter, due to larger rainfall amounts in summer than in winter. As expected, anticorrelation between mercury wet deposition and the sum of GOM and PBM, but positive correlation between mercury wet deposition and rainfall were observed. Correlation among GOM, ozone, and SO2 suggests possible different GOM sources: direct emissions and photochemical oxidation of GEM, with the possible influence of boundary layer dynamics and seasonal variability. This study indicates that the monitoring site experiences are impacted from local and regional mercury sources as well as large scale mercury cycling phenomena.
Collapse
|
21
|
Development of methodology to generate, measure, and characterize the chemical composition of oxidized mercury nanoparticles. Anal Bioanal Chem 2019; 412:691-702. [PMID: 31853601 DOI: 10.1007/s00216-019-02279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
The phase of oxidized mercury is critical in the fate, transformation, and bioavailability of mercury species in Earth's ecosystem. There is now evidence that what is measured as gaseous oxidized mercury (GOM) is not only gaseous but also consists of airborne nanoparticles with distinct physicochemical properties. Herein, we present the development of the first method for the consistent and reproducible generation of oxidized mercury nano- and sub-micron particles (~ 5 to 400 nm). Oxidized mercury nanoparticles are generated using two methods, vapor-phase condensation and aqueous nebulization, for three proxies: mercury(II) bromide (HgBr2), mercury(II) chloride (HgCl2), and mercury(II) oxide (HgO). These aerosols are characterized using scanning mobility and optical sizing, high-resolution scanning transmission electron microscopy (STEM), and nano/microparticle interface coupled to soft ionization mercury mass spectrometric techniques. Synthetic nanoparticle stability was studied in aqueous media, and using a microcosm at ambient tropospheric conditions of ~ 740 Torr pressure, room temperature, and at relative humidity of approximately 20%. Analysis of microcosm airborne nanoparticles confirmed that generated synthetic mercury nanoparticles retain their physical properties once in air. KCl-coated denuders, which are currently used globally to measure gaseous mercury compounds, were exposed to generated oxidized mercury nanoparticles. The degree of synthetic mercury nanoparticle capture by KCl-coated denuders and particulate filters was assessed. A significant portion of nanoparticulate and sub-micron particulate mercury was trapped on the KCl-coated denuder and measured as GOM. Finally, we demonstrate the applicability of soft ionization mercury mass spectrometry to the measurement of mercury species present in the gaseous and solid phase. We recommend coupling of this technique with existing methodology for a more accurate representation of mercury biogeochemistry cycling. Graphical Abstract.
Collapse
|
22
|
Gustin MS, Dunham-Cheatham SM, Zhang L. Comparison of 4 Methods for Measurement of Reactive, Gaseous Oxidized, and Particulate Bound Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14489-14495. [PMID: 31742397 DOI: 10.1021/acs.est.9b04648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The atmosphere is an important (1) pathway by which mercury (Hg) is transported around the globe and (2) source of Hg to ecosystems. Thus, understanding Hg atmospheric chemistry is critical for understanding the biogeochemical cycle and impacts to human and ecosystem health. Work over the past 13 years has demonstrated that the standard instrument used to measure atmospheric Hg does not accurately quantify gaseous oxidized mercury (GOM) or particulate bound mercury (PBM). This study focused on comparing four methods for quantifying atmospheric Hg and identifying Hg(II) compounds. Data from two automated systems, the Tekran 2537/1130 system and the University of Nevada, Reno-Dual Channel System (DCS), were compared with two University of Nevada, Reno-Reactive Mercury Active Systems (RMAS 2.0). One RMAS 2.0 included cation exchange membranes (CEMs) and nylon membranes, and the second included a polytetrafluoroethylene (PTFE) membrane upstream of the CEM and nylon membranes. The Tekran system and the DCS underestimated GOM concentrations with respect to that measured using the RMAS 2.0. The RMAS 2.0 with the upstream PTFE provided a means of distinguishing GOM and PBM. Thermal desorption of nylon membrane data identified a variety of GOM and PBM compounds present.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science , University of Nevada, Reno , Reno , Nevada 89557 , United States
| | - Sarrah M Dunham-Cheatham
- Department of Natural Resources and Environmental Science , University of Nevada, Reno , Reno , Nevada 89557 , United States
| | - Lei Zhang
- School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
23
|
Giang A, Song S, Muntean M, Janssens-Maenhout G, Harvey A, Berg E, Selin NE. Understanding factors influencing the detection of mercury policies in modelled Laurentian Great Lakes wet deposition. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1373-1389. [PMID: 30247491 DOI: 10.1039/c8em00268a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used chemical transport modelling to better understand the extent to which policy-related anthropogenic mercury emissions changes (a policy signal) can be statistically detected in wet deposition measurements in the Great Lakes region on the subdecadal scale, given sources of noise. In our modelling experiment, we consider hypothetical regional (North American) and global (rest of the world) policy changes, consistent with existing policy efforts (Δglobal = -18%; Δregional = -30%) that divide an eight-year period. The magnitude of statistically significant (p < 0.1) pre- and post-policy period wet deposition differences, holding all else constant except for the policy change, ranges from -0.3 to -2.0% for the regional policy and -0.8 to -2.7% for the global policy. We then introduce sources of noise-trends and variability in factors that are exogenous to the policy action-and evaluate the extent to which the policy signals can still be detected. For instance, technology-related variability in emissions magnitude and speciation can shift the magnitude of differences between periods, in some cases dampening the policy effect. We have found that the interannual variability in meteorology has the largest effect of the sources of noise considered, driving deposition differences between periods to ±20%, exceeding the magnitude of the policy signal. However, our simulations suggest that gaseous elemental mercury concentration may be more robust to this meteorological variability in this region, and a stronger indicator of local/regional emissions changes. These results highlight the potential challenges of detecting statistically significant policy-related changes in Great Lakes wet deposition within the subdecadal scale.
Collapse
Affiliation(s)
- Amanda Giang
- Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhou H, Zhou C, Hopke PK, Holsen TM. Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:943-953. [PMID: 29763876 DOI: 10.1016/j.scitotenv.2018.05.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/12/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Measurements of ambient speciated mercury (Hg) concentrations and Hg wet deposition were made at two urban sites (Bronx, NY and Rochester, NY) and one rural site (Potsdam, NY) in New York State in 2013 and 2014 to: 1) determine the factors influencing Hg wet deposition concentrations, 2) identify the contribution of gaseous oxidized Hg (GOM) and particulate bound Hg (PBM) scavenging to Hg wet deposition concentrations, and 3) identify potential source areas associated with high concentration events. The Bronx had the highest mean gaseous elemental Hg (GEM) and GOM concentrations, Rochester had the highest mean PBM and the lowest GOM concentrations, and Potsdam had the lowest mean GEM and PBM concentrations. The annual volume weighted mean (VWM) Hg concentrations and Hg wet deposition fluxes in the Bronx, Rochester, and Potsdam were significantly different with mean values of 10.3 ± 8.16, 10.2 ± 9.06, and 5.07 ± 1.79 ngL-1 and 8.45 ± 0.64, 6.65 ± 0.21, and 5.25 ± 0.49 μg/m2 year-1, respectively. Hg wet deposition flux and precipitation depth were positively correlated at all three sites as were Hg concentration in precipitation and weekly GOM concentrations at the Bronx and Potsdam sites. Scavenging coefficients (SC) of 680, 630, 850 for GOM and 410, 320, and 410 for PBM at Bronx, Rochester, and Potsdam, respectively, suggest GOM is responsible for most of the scavenged Hg. Measured GOM and PBM concentrations were relatively constant before precipitation events and Hg concentrations in precipitation did not vary significantly during precipitation events implying the scavenging process mainly occurred in clouds. VWM Hg concentrations, monthly accumulated Hg flux, and SCs for GOM and PBM were higher at the urban sites and significantly different for non-snow and snow events. Local sources appeared more important at the rural site while regional sources affected high urban concentrations.
Collapse
Affiliation(s)
- Hao Zhou
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam 13699, NY, United States
| | - Chuanlong Zhou
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam 13699, NY, United States
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam 13699, NY, United States; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester 14642, NY, United States.
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam 13699, NY, United States
| |
Collapse
|
25
|
Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. AMBIO 2018; 47:116-140. [PMID: 29388126 PMCID: PMC5794683 DOI: 10.1007/s13280-017-1004-9] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg0 concentrations and HgII wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized HgII in the tropical and subtropical free troposphere where deep convection can scavenge these HgII reservoirs. As a result, up to 50% of total global wet HgII deposition has been predicted to occur to tropical oceans. Ocean Hg0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg0 levels suggest enhanced Hg0 ocean evasion in the intertropical convergence zone, which may be linked to high HgII deposition. Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020-1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg0 deposition via plant inputs dominates, accounting for 57-94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170-300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.
Collapse
Affiliation(s)
- Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, One University Ave, Lowell, MA 01854 USA
| | - Jane L. Kirk
- Environment and Climate Change, Canada, 867 Lakeshore Road, Burlington, ON L7P 2X3 Canada
| | - Lei Zhang
- School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 Jiangsu China
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard T.H. Chan School of Public Health, Harvard University, 29 Oxford Street, Cambridge, MA 02138 USA
| | - Martin Jiskra
- Géosciences Environnement Toulouse, GET-CNRS, CNRS – OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Noelle E. Selin
- Institute for Data, Systems, and Society and Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
26
|
Marusczak N, Sonke JE, Fu X, Jiskra M. Tropospheric GOM at the Pic du Midi Observatory-Correcting Bias in Denuder Based Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:863-869. [PMID: 27960251 DOI: 10.1021/acs.est.6b04999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gaseous elemental mercury (GEM, Hg) emissions are transformed to divalent reactive Hg (RM) forms throughout the troposphere and stratosphere. RM is often operationally quantified as the sum of particle bound Hg (PBM) and gaseous oxidized Hg (GOM). The measurement of GOM and PBM is challenging and under mounting criticism. Here we intercompare six months of automated GOM and PBM measurements using a Tekran (TK) KCl-coated denuder and quartz regenerable particulate filter method (GOMTK, PBMTK, and RMTK) with RMCEM collected on cation exchange membranes (CEMs) at the high altitude Pic du Midi Observatory. We find that RMTK is systematically lower by a factor of 1.3 than RMCEM. We observe a significant relationship between GOMTK (but not PBMTK) and Tekran flushTK blanks suggesting significant loss (36%) of labile GOMTK from the denuder or inlet. Adding the flushTK blank to RMTK results in good agreement with RMCEM (slope = 1.01, r2 = 0.90) suggesting we can correct bias in RMTK and GOMTK. We provide a bias corrected (*) Pic du Midi data set for 2012-2014 that shows GOM* and RM* levels in dry free tropospheric air of 198 ± 57 and 229 ± 58 pg m-3 which agree well with in-flight observed RM and with model based GOM and RM estimates.
Collapse
Affiliation(s)
- Nicolas Marusczak
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
| | - Jeroen E Sonke
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
| | - Xuewu Fu
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
| | - Martin Jiskra
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
| |
Collapse
|
27
|
Cheng I, Zhang L. Uncertainty Assessment of Gaseous Oxidized Mercury Measurements Collected by Atmospheric Mercury Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:855-862. [PMID: 28009168 DOI: 10.1021/acs.est.6b04926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gaseous oxidized mercury (GOM) measurement uncertainties undoubtedly impact the understanding of mercury biogeochemical cycling; however, there is a lack of consensus on the uncertainty magnitude. The numerical method presented in this study provides an alternative means of estimating the uncertainties of previous GOM measurements. Weekly GOM in ambient air was predicted from measured weekly mercury wet deposition using a scavenging ratio approach, and compared against field measurements of 2-4 hly GOM to estimate the measurement biases of the Tekran speciation instruments at 13 Atmospheric Mercury Network (AMNet) sites. Multiyear average GOM measurements were estimated to be biased low by more than a factor of 2 at six sites, between a factor of 1.5 and 1.8 at six other sites, and below a factor of 1.3 at one site. The differences between predicted and observed were significantly larger during summer than other seasons potentially because of higher ozone concentrations that may interfere with GOM sampling. The analysis data collected over six years at multiple sites suggests a systematic bias in GOM measurements, supporting the need for further investigation of measurement technologies and identifying the chemical composition of GOM.
Collapse
Affiliation(s)
- Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4 Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4 Canada
| |
Collapse
|
28
|
Pierce AM, Gustin MS. Development of a Particulate Mass Measurement System for Quantification of Ambient Reactive Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:436-445. [PMID: 27966905 DOI: 10.1021/acs.est.6b04707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Teledyne Advanced Pollution Instrumentation (TAPI) model 602 BetaPlus particulate system provides nondestructive analysis of particulate matter (PM2.5) mass concentration. This instrument was used to determine if measurements made with cation exchange membranes (CEM) were comparable to standard methods, the β attenuation method at two locations in Reno, NV and an environmental β attenuation method and gravimetric method at Great Basin National Park, NV. TAPI PM2.5 CEM measurements were statistically similar to the other three PM2.5 methods. Once this was established, the second objective, a destructive method for measurement of reactive mercury (RM = gaseous oxidized and particulate bound Hg), was tested. Samples collected at 16.7 L per min (Lpm) for 24 h on CEM from the TAPI were compared to those measured by the University of Nevada, Reno-Reactive Mercury Active System (UNRRMAS, 1 Lpm) CEM and a Tekran 2537/1130/1135 system (7 Lpm). Given the use of CEM in the TAPI and UNRRMAS, we hypothesized that both should collect RM. Due to the high flow rate and different inlets, TAPI data were systematically lower than the UNRRMAS. Correlation between RM concentrations demonstrated that the TAPI may be used to estimate 24 h resolution RM concentrations in Nevada.
Collapse
Affiliation(s)
- Ashley M Pierce
- Department of Natural Resources and Environmental Sciences, University of Nevada , Reno, 1664 N. Virginia St. Reno, Nevada 89557, United States
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Sciences, University of Nevada , Reno, 1664 N. Virginia St. Reno, Nevada 89557, United States
| |
Collapse
|
29
|
Lyman S, Jones C, O'Neil T, Allen T, Miller M, Gustin MS, Pierce AM, Luke W, Ren X, Kelley P. Automated Calibration of Atmospheric Oxidized Mercury Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12921-12927. [PMID: 27934266 DOI: 10.1021/acs.est.6b04211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The atmosphere is an important reservoir for mercury pollution, and understanding of oxidation processes is essential to elucidating the fate of atmospheric mercury. Several recent studies have shown that a low bias exists in a widely applied method for atmospheric oxidized mercury measurements. We developed an automated, permeation tube-based calibrator for elemental and oxidized mercury, and we integrated this calibrator with atmospheric mercury instrumentation (Tekran 2537/1130/1135 speciation systems) in Reno, Nevada and at Mauna Loa Observatory, Hawaii, U.S.A. While the calibrator has limitations, it was able to routinely inject stable amounts of HgCl2 and HgBr2 into atmospheric mercury measurement systems over periods of several months. In Reno, recovery of injected mercury compounds as gaseous oxidized mercury (as opposed to elemental mercury) decreased with increasing specific humidity, as has been shown in other studies, although this trend was not observed at Mauna Loa, likely due to differences in atmospheric chemistry at the two locations. Recovery of injected mercury compounds as oxidized mercury was greater in Mauna Loa than in Reno, and greater still for a cation-exchange membrane-based measurement system. These results show that routine calibration of atmospheric oxidized mercury measurements is both feasible and necessary.
Collapse
Affiliation(s)
- Seth Lyman
- Bingham Research Center, Utah State University , Vernal, Utah 84322, United States
| | - Colleen Jones
- Bingham Research Center, Utah State University , Vernal, Utah 84322, United States
| | - Trevor O'Neil
- Bingham Research Center, Utah State University , Vernal, Utah 84322, United States
| | - Tanner Allen
- Bingham Research Center, Utah State University , Vernal, Utah 84322, United States
| | - Matthieu Miller
- Macquarie University , North Ryde, New South Wales Australia
- Department of Natural Resources and Environmental Science, University of Nevada, Reno , Reno, Nevada 89557, United States
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada, Reno , Reno, Nevada 89557, United States
| | - Ashley M Pierce
- Department of Natural Resources and Environmental Science, University of Nevada, Reno , Reno, Nevada 89557, United States
| | - Winston Luke
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland 20742, United States
| | - Xinrong Ren
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland 20742, United States
- Cooperative Institute for Climate and Satellites, University of Maryland , College park, Maryland 20742, United States
| | - Paul Kelley
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland 20742, United States
- Cooperative Institute for Climate and Satellites, University of Maryland , College park, Maryland 20742, United States
| |
Collapse
|
30
|
Sexauer Gustin M, Pierce AM, Huang J, Miller MB, Holmes HA, Loria-Salazar SM. Evidence for Different Reactive Hg Sources and Chemical Compounds at Adjacent Valley and High Elevation Locations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12225-12231. [PMID: 27801579 DOI: 10.1021/acs.est.6b03339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The spatial distribution of chemical compounds and concentration of reactive mercury (RM), defined as the sum of gaseous oxidized mercury (GOM) and <3 μm particulate bound mercury (PBM), are poorly characterized. The objective of this study was to understand the chemistry, concentration, and spatial and temporal distribution of GOM at adjacent locations (12 km apart) with a difference in elevation of ∼1000 m. Atmospheric GOM measurements were made with passive and active samplers using membranes, and at one location, a Tekran mercury measurement system was used. The chemistry of GOM varied across time and location. On the basis of data collected, chemistry at the low elevation site adjacent to a highway was primarily influenced by pollutants generated by mobile sources (GOM = nitrogen and sulfur-based compounds), and the high elevation site (GOM = halogen-based compounds) was affected by long-range transport in the free troposphere over the marine boundary layer into Nevada. Data collected at these two locations demonstrate that different GOM compounds exist depending on the oxidants present in the air. Measurements of GOM made by the KCl denuder in the Tekran instrument located at the low elevation site were lower than that measured using membranes by 1.7-13 times. Accurate measurements of atmospheric concentrations and chemistry of RM are necessary for proper assessment of environmental impacts, and field measurements are essential for atmospheric models, which in turn influence policy decisions.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science and ‡Atmospheric Sciences Program, Department of Physics University of Nevada-Reno , Reno, Nevada 89557, United States
| | - Ashley M Pierce
- Department of Natural Resources and Environmental Science and ‡Atmospheric Sciences Program, Department of Physics University of Nevada-Reno , Reno, Nevada 89557, United States
| | - Jiaoyan Huang
- Department of Natural Resources and Environmental Science and ‡Atmospheric Sciences Program, Department of Physics University of Nevada-Reno , Reno, Nevada 89557, United States
| | - Matthieu B Miller
- Department of Natural Resources and Environmental Science and ‡Atmospheric Sciences Program, Department of Physics University of Nevada-Reno , Reno, Nevada 89557, United States
| | - Heather A Holmes
- Department of Natural Resources and Environmental Science and ‡Atmospheric Sciences Program, Department of Physics University of Nevada-Reno , Reno, Nevada 89557, United States
| | - S Marcela Loria-Salazar
- Department of Natural Resources and Environmental Science and ‡Atmospheric Sciences Program, Department of Physics University of Nevada-Reno , Reno, Nevada 89557, United States
| |
Collapse
|
31
|
Fu X, Marusczak N, Wang X, Gheusi F, Sonke JE. Isotopic Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic du Midi Observatory, France. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5641-5650. [PMID: 27214126 DOI: 10.1021/acs.est.6b00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the sources and transformations of mercury (Hg) in the free troposphere is a critical aspect of global Hg research. Here we present one year of observations of atmospheric Hg speciation and gaseous elemental Hg (GEM) isotopic composition at the high-altitude Pic du Midi Observatory (2860 m above sea level) in France. Biweekly integrated GEM from February 2012 to January 2013 revealed significant variations in δ(202)HgGEM (-0.04‰ to 0.52‰) but not in Δ(199)HgGEM (-0.17‰ to -0.27‰) or Δ(200)HgGEM (-0.10‰ to 0.05‰). δ(202)HgGEM was negatively correlated with CO and reflected air mass origins from Europe (high CO, low δ(202)HgGEM) and from the Atlantic Ocean (low CO, high δ(202)HgGEM). We suggest that the δ(202)HgGEM variations represent mixing of recent low δ(202)HgGEM European anthropogenic emissions with high δ(202)HgGEM northern hemispheric background GEM. In addition, Atlantic Ocean free troposphere air masses showed a positive correlation between δ(202)HgGEM and gaseous oxidized Hg (GOM) concentrations, indicative of mass-dependent Hg isotope fractionation during GEM oxidation. On the basis of atmospheric δ(202)HgGEM and speciated Hg observations, we suggest that the oceanic free troposphere is a reservoir within which GEM is readily oxidized to GOM.
Collapse
Affiliation(s)
- Xuewu Fu
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , 46 Guanshui Road 550002, Guiyang, China
| | - Nicolas Marusczak
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , 46 Guanshui Road 550002, Guiyang, China
| | - François Gheusi
- Observatoire Midi-Pyrénées, Laboratoire d'Aérologie, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
| | - Jeroen E Sonke
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université de Toulouse, 14, avenue Édouard Belin, 31400 Toulouse, France
| |
Collapse
|
32
|
Impact of Measurement Uncertainties on Receptor Modeling of Speciated Atmospheric Mercury. Sci Rep 2016; 6:20676. [PMID: 26857835 PMCID: PMC4746649 DOI: 10.1038/srep20676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
Abstract
Gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurement uncertainties could potentially affect the analysis and modeling of atmospheric mercury. This study investigated the impact of GOM measurement uncertainties on Principal Components Analysis (PCA), Absolute Principal Component Scores (APCS), and Concentration-Weighted Trajectory (CWT) receptor modeling results. The atmospheric mercury data input into these receptor models were modified by combining GOM and PBM into a single reactive mercury (RM) parameter and excluding low GOM measurements to improve the data quality. PCA and APCS results derived from RM or excluding low GOM measurements were similar to those in previous studies, except for a non-unique component and an additional component extracted from the RM dataset. The percent variance explained by the major components from a previous study differed slightly compared to RM and excluding low GOM measurements. CWT results were more sensitive to the input of RM than GOM excluding low measurements. Larger discrepancies were found between RM and GOM source regions than those between RM and PBM. Depending on the season, CWT source regions of RM differed by 40–61% compared to GOM from a previous study. No improvement in correlations between CWT results and anthropogenic mercury emissions were found.
Collapse
|
33
|
Huang J, Gustin MS. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6102-6108. [PMID: 25877790 DOI: 10.1021/acs.est.5b00098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies.
Collapse
Affiliation(s)
- Jiaoyan Huang
- Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, 1664 North Virginia Street, Reno, Nevada, 89557, United States
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, 1664 North Virginia Street, Reno, Nevada, 89557, United States
| |
Collapse
|
34
|
Deeds DA, Ghoshdastidar A, Raofie F, Guérette ÉA, Tessier A, Ariya PA. Development of a Particle-Trap Preconcentration-Soft Ionization Mass Spectrometric Technique for the Quantification of Mercury Halides in Air. Anal Chem 2015; 87:5109-16. [DOI: 10.1021/ac504545w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel A. Deeds
- Department
of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Avik Ghoshdastidar
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Farhad Raofie
- Department
of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 2K6, Canada
| | | | - Alain Tessier
- Centre
for Biological Applications of Mass Spectrometry, Concordia University, Montreal, Quebec, Canada
| | - Parisa A. Ariya
- Department
of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 2K6, Canada
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|