1
|
Morais F, Pires V, Almeida M, Martins MA, Oliveira M, Lopes I. Influence of polystyrene nanoplastics on the toxicity of haloperidol to amphibians: An in vivo and in vitro approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175375. [PMID: 39137847 DOI: 10.1016/j.scitotenv.2024.175375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Chemical pollution is a major driver for the current worldwide crisis of amphibian decline. The present study aimed to assess the influence of polystyrene nanoplastics (PS-NPLs) on the toxicity of haloperidol to aquatic life stages of amphibians, by using in vivo (tadpoles of Xenopus laevis and Pelophylax perezi) and in vitro (A6 and XTC-2 cell lines of X. laevis) biological models. Tadpoles of both species were exposed, for 96 h, to haloperidol: 0.404 to 2.05 mg l-1 (X. laevis) or 0.404 to 3.07 mg L-1 (P. perezi). The most sensitive species to haloperidol (X. laevis) was exposed to haloperidol's LC50,96h combined with two PS-NPLs concentrations (0.01 mg L-1 or 10 mg L-1); the following endpoints were monitored: mortality, malformations, body lengths and weight. In vitro cytotoxicity was assessed by exposing the two cell lines, for 72 h, to: haloperidol (0.195 to 100 mg L-1) alone and combined with 0.01 mg L-1 or 10 mg L-1 of PS-NPLs. Xenopus laevis tadpoles revealed a higher lethal and sublethal sensitivity to haloperidol than those of P. perezi, with LC50,96h of 1.45 and 2.20 mg L-1. In vitro assays revealed that A6 cell line is more sensitive haloperidol than XTC-2: LC50,72h of 13.2 mg L-1 and 5.92 mg L-1, respectively. Results also suggested a higher sensitivity of in vivo models when compared to in vitro biological. Overall, PS-NPLs did not influence haloperidol's toxicity for in vivo and in vitro biological models, except for a reduction on the incidence of malformations while increasing the lethal toxicity (at the lowest concentration) in tadpoles. These opposite interaction patterns highlight the need for a deeper comprehension of NPLs and pharmaceuticals interactions. Results suggest a low risk of haloperidol for anuran tadpoles, though in the presence of PS-NPLs the risk may be increased.
Collapse
Affiliation(s)
- Filipa Morais
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Valérie Pires
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Almeida
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Martins
- PCI - Creative Science Park Aveiro Region, 3830-352 Ílhavo, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Kim SA, Choi T, Kim J, Park H, Rhee JS. Acute and chronic effects of the antifouling booster biocide Irgarol 1051 on the water flea Moina macrocopa revealed by multi-biomarker determination. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109994. [PMID: 39111514 DOI: 10.1016/j.cbpc.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Irgarol 1051 is an herbicide extensively utilized in antifouling paint due to its ability to inhibit photosynthesis. Irgarol and its photodegradation products are highly persistent in waters and sediments, although they are present in low concentrations. However, our understanding of the harmful effects of Irgarol on non-target organisms remains limited. In this study, we assessed the effects of acute (24 h) and chronic (14 days across three generations) exposure to different concentrations (including the 1/10 NOEC, NOEC, and 1/10 LC50 calculated from the 24-h acute toxicity test) of Irgarol using the water flea Moina macrocopa. Acute exposure to 1/10 LC50 significantly decreased survival, feeding rate, thoracic limb activity, heart rate, and acetylcholinesterase activity. Elevated levels of intracellular reactive oxygen species and malondialdehyde, along with a significant increase in catalase and superoxide dismutase activity, suggested the induction of oxidative stress in response to 1/10 LC50. An initial boost in glutathione level and the enzymatic activities of glutathione peroxidase and glutathione reductase, followed by a plunge, implies some compromise in the antioxidant defense system. Upon chronic exposure to the NOEC value, both generations F1 and F2 displayed a significant decrease in survival rate, body length, number of neonates per brood, and delayed sexual maturation, suggesting maternal transfer of potential damage through generations. Taken together, Irgarol induced acute toxicity through physiological and cholinergic damage, accompanied by the induction of oxidative stress, in the water flea. Even its sub-lethal concentrations can induce detrimental effects across generations when consistently exposed.
Collapse
Affiliation(s)
- Sung-Ah Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Thine Choi
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaehee Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
3
|
Lari E, Elahi Z, Wong J, Bluhm K, Brinkmann M, Goss G. Impacts of UV light on the effects of either conventional or nano-enabled azoxystrobin on Daphnia magna. CHEMOSPHERE 2024; 364:142965. [PMID: 39069098 DOI: 10.1016/j.chemosphere.2024.142965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Agri-chemicals such as fungicides are applied in natural settings and hence are exposed to the environment's ultraviolet (UV) light. Recently, many fungicides in commerce are being modified as nano-enabled formulations to increase agricultural productivity and reduce potential off-target effects. The present study investigated the impacts of sunlight-grade UV emission on the effects of either conventional or nano-enabled azoxystrobin (Az or nAz, respectively), a commonly applied agricultural fungicide, on Daphnia magna. Daphnids were exposed to increasing concentrations of Az or nAz under either full-spectrum (Vis) or full-spectrum Vis + UV (Vis + UV) lighting regimes to evaluate LC50s. Az LC50 was calculated at 268.8 and 234.2 μg/L in Vis or Vis + UV, respectively, while LC50 for nAz was 485.6 and 431.0 μg/L under Vis or Vis + UV light, respectively. Daphnids were exposed to 10% LC50 of either Az or nAz under Vis or Vis + UV lighting regime for 48 h or 21 d (acute and chronic, respectively). By 48 h, both Az and nAz reduced O2 consumption and increased TBARS. Heart rate was increased in Az-exposed daphnids but not in nAz groups. Neither of the two chemicals impacted thoracic limb activity. In 21 d exposures, Az significantly reduced biomass production and fecundity, but nAz groups were not significantly different from controls. The results of the present study demonstrate that conventional Az is more toxic to D. magna at lethal and sub-lethal levels in acute and chronic exposures, and sunlight strength UV can potentiate both acute and chronic effects of Az and nAz on D. magna.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zahra Elahi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonas Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kerstin Bluhm
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; School of Environment and Sustainability (SENS), University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security (GIWS), University of Saskatchewan, Saskatoon, Canada
| | - Greg Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Aruoja V, Tunēns J, Kahru A, Blinova I, Heinlaan M. Feeding inhibition in daphnids - A sensitive and rapid toxicity endpoint for chemical stress? Heliyon 2024; 10:e35213. [PMID: 39166034 PMCID: PMC11334833 DOI: 10.1016/j.heliyon.2024.e35213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
The planktonic Crustacea Daphnia are among the most employed organisms in ecotoxicology, mainly in regulatory assays that follow OECD/ISO protocols. The most common endpoint for acute testing (24-48 h) without feeding of organisms is usually monitored as mortality or immobilization. A rapid and physiologically and environmentally more relevant toxicity endpoint could be the impaired feeding of daphnids. Decreased feeding of test organisms upon exposure to toxicants has been used to evaluate sub-lethal effects occurring already in minutes to hours. This endpoint, however, has not been used systematically and the respective data are inconsistent due to heterogeneity of experimental design. The aim of this review is to evaluate the scientific literature where impaired Daphnia feeding has been used in ecotoxicological research. The search made in WoS (June 5, 2024) using combination of keywords "Daphni* AND feed* yielded 152 articles. Out of these 152 papers 46 addressed feeding of d aphnids upon exposure to various toxicants (insecticides, heavy metals, pharmaceuticals, contaminated environmental samples and toxic cyanobacteria; in total 59 different chemicals/combinations). These 46 papers formed the basis of the critical analysis presented in the current review. For 18 chemicals it was possible to compare the sensitivity of the feeding and mortality endpoints. We conclude that although the feeding inhibition of Daphnia sp. did not prove systematically more sensitive than mortality/immobilization, it is a sub-lethal endpoint that allows rapid evaluation of toxic effects of chemicals to aquatic crustaceans - important and sensitive organisms in the aquatic food web.
Collapse
Affiliation(s)
- Villem Aruoja
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, 12618, Tallinn, Estonia
| | - Juris Tunēns
- Department of Marine Monitoring, Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Voleru Iela 4, LV-1007, Riga, Latvia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, 12618, Tallinn, Estonia
| | - Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, 12618, Tallinn, Estonia
| | - Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, 12618, Tallinn, Estonia
| |
Collapse
|
5
|
Wiklund AKE, Guo X, Gorokhova E. Cardiotoxic and neurobehavioral effects of sucralose and acesulfame in Daphnia: Toward understanding ecological impacts of artificial sweeteners. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109733. [PMID: 37619954 DOI: 10.1016/j.cbpc.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Artificial sweeteners are widely used in food and pharmaceuticals, but their stability and persistence raise concerns about their impact on aquatic life. Although standard toxicity tests do not reveal lethal effects, recent studies suggest a potential neurotoxic mode of action. Using environmentally relevant concentrations, we assessed the effects of sucralose and acesulfame, common sugar substitutes, on Daphnia magna focusing on biochemical (acetylcholinesterase activity; AChE), physiological (heart rate), and behavioural (swimming) endpoints. We found dose-dependent increases in AChE and inhibitory effects on heart rate and behaviour for both substances. Moreover, acesulfame induced a biphasic response in AChE activity, inhibiting it at lower concentrations and stimulating at higher ones. For all endpoints, the EC50 values were lower for acesulfame than for sucralose. Additionally, the relationship between acetylcholinesterase and heart rate differed depending on the substance, suggesting possible differences in the mode of action between sucralose and acesulfame. All observed EC50 values were at μg/l levels, i.e., within the levels reported for wastewater, with adverse effects observed at as low as 0.1 μg acesulfame /l. Our findings emphasise the need to re-evaluate risk assessment thresholds for artificial sweeteners and provide evidence for the neurotoxic effects of artificial sweeteners in the environment, informing international regulatory standards.
Collapse
Affiliation(s)
| | - Xueli Guo
- Department of Environmental Science, Stockholm University, SE 10691 Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Gorokhova E, El-Shehawy R. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet. Front Physiol 2022; 12:805646. [PMID: 35058807 PMCID: PMC8764287 DOI: 10.3389/fphys.2021.805646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The association between oxidative processes and physiological responses has received much attention in ecotoxicity assessment. In the Baltic Sea, bloom-forming cyanobacterium Nodularia spumigena is a significant producer of various bioactive compounds, and both positive and adverse effects on grazers feeding in cyanobacteria blooms are reported. To elucidate the effect mechanisms and species sensitivity to the cyanobacteria-dominating diet, we exposed two Baltic copepods, Acartia bifilosa and Eurytemora affinis, to a diet consisting of toxin-producing cyanobacteria N. spumigena and a high-quality food Rhodomonas salina at 0–300 μg C L−1; the control food was R. salina provided as a monodiet at the same food levels. The subcellular responses to food type and availability were assayed using a suite of biomarkers – antioxidant enzymes [superoxide dismutases (SOD), catalase (CAT), and glutathione S-transferases (GST)] and acetylcholinesterase (AChE). In parallel, we measured feeding activity using gut content (GC) assayed by real-time PCR analysis that quantified amounts of the prey DNA in copepod stomachs. As growth and reproduction endpoints, individual RNA content (a proxy for protein synthesis capacity), egg production rate (EPR), and egg viability (EV%) were used. In both toxic and nontoxic foods, copepod GC, RNA content, and EPR increased with food availability. Antioxidant enzyme activities increased with food availability regardless of the diet type. Moreover, CAT (both copepods), SOD, and GST (A. bifilosa) were upregulated in the copepods receiving cyanobacteria; the response was detectable when adjusted for the feeding and/or growth responses. By contrast, the diet effects were not significant when food concentration was used as a co-variable. A bimodal response in AChE was observed in A. bifilosa feeding on cyanobacteria, with up to 52% increase at the lower levels (5–25 μg C L−1) and 32% inhibition at the highest food concentrations. These findings contribute to the refinement of biomarker use for assessing environmental stress and mechanistic understanding of cyanobacteria effects in grazers. They also suggest that antioxidant and AChE responses to feeding activity and diet should be accounted for when using biomarker profiles in field-collected animals in the Baltic Sea and, perhaps other systems, where toxic cyanobacteria are common.
Collapse
Affiliation(s)
- Elena Gorokhova
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Rehab El-Shehawy
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Campos B, Piña B, Barata C. Daphnia magna Gut-Specific Transcriptomic Responses to Feeding Inhibiting Chemicals and Food Limitation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2510-2520. [PMID: 34081794 DOI: 10.1002/etc.5134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Transcriptomic responses combined with apical adverse ecologically relevant outcomes have proven to be useful to unravel and anchor molecular mechanisms of action to adverse outcomes. This is the case for feeding inhibition responses in the model ecotoxicological species Daphnia magna. The aim of the present study was to assess the transcriptomic responses in guts dissected from D. magna individuals exposed to concentrations of selected compounds that inhibit feeding and compare them with the responses associated to 2 levels of food restriction (low food and starvation). Chemical treatments included cadmium, copper, fluoranthene, λ-cyhalothrin, and the cyanotoxin anatoxin-a. Although the initial hypothesis was that exposure to chemical feeding inhibitors should elicit similar molecular responses as food limitation, the corresponding gut transcriptomic responses differed significantly. In moderate food limitation conditions, D. magna individuals increased protein and carbohydrate catabolism, likely to be used as energetic sources, whereas under severe starving conditions most metabolism-related pathways appeared down-regulated. Treatment with chemical feeding inhibitors promoted cell turnover-related signaling pathways in the gut, probably to renew tissue damage caused by the reported oxidative stress effects of these compounds, and inhibited the transcription of gut digestive gene enzymes and energetic metabolic pathways. We conclude that chemical feeding inhibitors, rather than mimicking the physiological response to low- or no-food conditions, cause specific toxic effects, preventing Daphnia both from feeding and from adjusting its metabolism to the resulting low energy intake. Environ Toxicol Chem 2021;40:2510-2520. © 2021 SETAC.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| |
Collapse
|
8
|
Weber A, Jeckel N, Weil C, Umbach S, Brennholt N, Reifferscheid G, Wagner M. Ingestion and Toxicity of Polystyrene Microplastics in Freshwater Bivalves. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2247-2260. [PMID: 33928672 DOI: 10.1002/etc.5076] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 04/17/2021] [Indexed: 05/26/2023]
Abstract
The ubiquity of microplastics in aquatic ecosystems has raised concerns over their interaction with biota. However, microplastics research on freshwater species, especially mollusks, is still scarce. We, therefore, investigated the factors affecting microplastics ingestion in the freshwater mussel Dreissena polymorpha. Using polystyrene spheres (5, 10, 45, 90 µm), we determined the body burden of microplastics in the mussels in relation to 1) exposure and depuration time, 2) body size, 3) food abundance, and 4) microplastic concentrations. D. polymorpha rapidly ingested microplastics and excreted most particles within 12 h. A few microplastics were retained for up to 1 wk. Smaller individuals had a higher relative body burden of microplastics than larger individuals. The uptake of microplastics was concentration-dependent, whereas an additional food supply (algae) reduced it. We also compared the ingestion of microplastics by D. polymorpha with 2 other freshwater species (Anodonta anatina, Sinanodonta woodiana), highlighting that absolute and relative uptake depends on the species and the size of the mussels. In addition, we determined toxicity of polystyrene fragments (≤63 µm, 6.4-100 000 p mL-1 ) and diatomite (natural particle, 100 000 p mL-1 ) in D. polymorpha after 1, 3, 7, and 42 d of exposure, investigating clearance rate, energy reserves, and oxidative stress. Despite ingesting large quantities, exposure to polystyrene fragments only affected the clearance rate of D. polymorpha. Further, results of the microplastic and diatomite exposure did not differ significantly. Therefore, D. polymorpha is unaffected by or can compensate for polystyrene fragment toxicity even at concentrations above current environmental levels. Environ Toxicol Chem 2021;40:2247-2260. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Annkatrin Weber
- Faculty of Biological Sciences, Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Nina Jeckel
- Faculty of Biological Sciences, Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Carolin Weil
- Faculty of Biological Sciences, Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Simon Umbach
- Faculty of Biological Sciences, Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Nicole Brennholt
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology, Koblenz, Germany
| | - Georg Reifferscheid
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology, Koblenz, Germany
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Rodrigues S, Pinto I, Martins F, Formigo N, Antunes SC. Can biochemical endpoints improve the sensitivity of the biomonitoring strategy using bioassays with standard species, for water quality evaluation? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112151. [PMID: 33743402 DOI: 10.1016/j.ecoenv.2021.112151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The Water Framework Directive (WFD) was adopted in 2000 and is a common framework for water policy, management and protection in Europe. The WFD assesses specific parameters; however, it ignores indicators of ecosystem functioning and sub-individual performance. Reservoirs are strongly influenced by anthropogenic activities that promote their imbalance. Bioassays and biomarkers are useful tools to link the chemical, ecological and toxicological assessments in water quality assessments. These approaches can be complementary to WFD methodologies, allowing the detection of impacts on the ecosystem. This study evaluated if the biochemical parameters can improve the sensitivity of the biomonitoring strategy using bioassays with the standard species Daphnia magna, in the assessment of the ecological quality of water reservoirs. To this end, water samples of Portuguese reservoirs were analysed in three sampling periods (Autumn 2018 and Spring, Autumn 2019). In parallel, a physicochemical characterization of waters was performed. D. magna feeding rate assays were performed for 24 h. After exposure, metabolism, oxidative stress and lipid peroxidation biomarkers were evaluated. Feeding rate assays showed sensitivity to different reservoirs. Biomarkers showed a higher sensitivity and can therefore improve the sensitivity of the biomonitoring strategy using bioassays. Bioassays and biomarkers approach allowed to highlight potential sources of stress, more related to the quality of the seston than to chemical contamination. This work highlights the complementarity between bioassays and biomarkers to identify ecotoxicological effects of surface waters, and can be extremely useful, especially in cases where the biotic indices are difficult to establish, such as reservoirs.
Collapse
Affiliation(s)
- S Rodrigues
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.
| | - I Pinto
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - F Martins
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - N Formigo
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - S C Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
10
|
Escudero J, Muñoz JL, Morera-Herreras T, Hernandez R, Medrano J, Domingo-Echaburu S, Barceló D, Orive G, Lertxundi U. Antipsychotics as environmental pollutants: An underrated threat? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144634. [PMID: 33485196 DOI: 10.1016/j.scitotenv.2020.144634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The heterogeneous class of what we nowadays call antipsychotics was born almost 70 years ago with the serendipitous discovery of chlorpromazine. Their utilization is constantly growing because they are used to treat a diverse group of diseases and patients across all age groups: schizophrenia, bipolar disease, depression, autism, attention deficit hyperactivity disorder, behavioural and psychological symptoms in dementia, among others. They possess a complex pharmacological profile, acting on multiple receptors: dopaminergic, serotoninergic, histaminergic, adrenergic, and cholinergic, leading scientists to call them "agents with rich pharmacology" or "dirty drugs". Serotonin, dopamine, acetylcholine, noradrenaline, histamine and their respective receptors are evolutionary ancient compounds, and as such, are found in many different living beings in the environment. Antipsychotics do not disappear once excreted by patient's urine or faeces and are transported to wastewater treatment plants. But as these plant's technology is not designed to eliminate drugs and their metabolites, a variable proportion of the administered dose ends up in the environment, where they have been found in almost every matrix: municipal wastewater, hospital sewage, rivers, lakes, sea and even drinking water. We believe that reported concentrations found in the environment might be high enough to exert significant effect to aquatic wildlife. Besides, recent studies suggest antipsychotics, among others, are very likely bioaccumulating through the web food. Crucially, psychotropics may provoke behavioural changes affecting populations' dynamics at lower concentrations. We believe that so far, antipsychotics have not received the attention they deserve with regards to drug pollution, and that their role as environmental pollutants has been underrated.
Collapse
Affiliation(s)
- J Escudero
- Bioaraba Health Research Institute, Epidemiology and Public Health, Vitoria-Gasteiz, Spain
| | - J L Muñoz
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - T Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - R Hernandez
- Internal Medicine Service, Araba Psychiatric Hospital, Araba Mental Health Network, C/Álava 43, 01006 Vitoria-Gasteiz, Alava, Spain
| | - J Medrano
- Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Bizkaia, Spain
| | - S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
11
|
Wang H, Xia X, Wang Z, Liu R, Muir DCG, Wang WX. Contribution of Dietary Uptake to PAH Bioaccumulation in a Simplified Pelagic Food Chain: Modeling the Influences of Continuous vs Intermittent Feeding in Zooplankton and Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1930-1940. [PMID: 33448220 DOI: 10.1021/acs.est.0c06970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary uptake is important for trophic transfer of polycyclic aromatic hydrocarbons (PAHs) in the freshwater pelagic ecosystem. In this study, we hypothesized that both the dietary uptake rate and interval significantly influenced its relative contribution to bioaccumulation. We developed a toxicokinetic model framework for the bioaccumulation of deuterated PAHs (PAHs-d10) in aquatic organisms considering different feeding intervals ranging from none for phytoplankton to approximately continuous for zooplankton to discrete for fish and built a simple artificial freshwater pelagic food chain composed of algae Chlorella vulgaris, zooplankton Daphnia magna, and zebrafish. We conducted bioaccumulation experiments and simulations for Daphnia magna and zebrafish under different algal densities based on our model. The results showed that intermittent feeding led to a large fluctuation in the PAH-d10 concentrations in zebrafish compared to a leveled-off pattern in Daphnia magna because of approximately continuous feeding. Trophic dilution of PAHs-d10 occurred in the food chain when there was waterborne-only uptake, but dietary uptake largely mitigated its extent that depended on dietary uptake rates. The assimilation efficiency, dietary uptake rate, and its relative contribution to bioaccumulation of PAHs-d10 in zebrafish were all higher than those in Daphnia magna, suggesting that dietary uptake played a more important role in bioaccumulation of PAHs at higher trophic-level organisms.
Collapse
Affiliation(s)
- Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zixuan Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ran Liu
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, L7S 1A1 Canada
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, Research Centre for the Oceans and Human Health, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
12
|
Weber A, von Randow M, Voigt AL, von der Au M, Fischer E, Meermann B, Wagner M. Ingestion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis: No microplastic-induced effects alone or in combination with copper. CHEMOSPHERE 2021; 263:128040. [PMID: 33297056 DOI: 10.1016/j.chemosphere.2020.128040] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 06/12/2023]
Abstract
The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6-96 h of exposure to 5-90 μm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h-7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 μm, 6.4-100,000 particles mL-1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics.
Collapse
Affiliation(s)
- Annkatrin Weber
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department of Aquatic Ecotoxicology, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Marvin von Randow
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department of Aquatic Ecotoxicology, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Anna-Lisa Voigt
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department of Aquatic Ecotoxicology, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Marcus von der Au
- Federal Institute of Hydrology, Department Aquatic Chemistry, Am Mainzer 1, 56068, Koblenz, Germany; Federal Institute for Materials Research and Testing, Division Inorganic Trace Analysis, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Emily Fischer
- Federal Institute of Hydrology, Department Aquatic Chemistry, Am Mainzer 1, 56068, Koblenz, Germany
| | - Björn Meermann
- Federal Institute of Hydrology, Department Aquatic Chemistry, Am Mainzer 1, 56068, Koblenz, Germany; Federal Institute for Materials Research and Testing, Division Inorganic Trace Analysis, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Martin Wagner
- Norwegian University of Science and Technology, Department of Biology, Høgskoleringen 5, 7491, Trondheim, Norway.
| |
Collapse
|
13
|
Trestrail C, Nugegoda D, Shimeta J. Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:138559. [PMID: 32470656 DOI: 10.1016/j.scitotenv.2020.138559] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 05/06/2023]
Abstract
Microplastic ingestion in invertebrates reduces somatic and reproductive growth. This could be caused by energy reserves being detracted from growth processes and redistributed to maintenance processes that preserve life. A potential sink for this diverted energy is the antioxidant system, which minimises oxidative damage and reinstates redox homeostasis following disturbances caused by exposure to pollution. Several microplastic studies have used genetic and molecular redox biomarkers to assess how microplastic ingestion affects the functioning of the antioxidant system. This systematic review synthesises the current understanding of redox biomarker responses in invertebrates that have ingested microplastics. We found that biomarker response information exists for only seven invertebrate taxa, and early life stages have received little scientific attention. The microplastics used by most studies were polystyrene (45% of studies), spherical (51% of studies), and were < 10 μm in diameter (31% of studies). We found multiple examples of microplastic ingestion posing an oxidative challenge to invertebrates, which required upregulation of antioxidant system components. However, the lack of systematic experiments prevented us from clearly identifying which characteristic of microplastics caused these responses. We identify several areas for consideration when investigating biomarker responses to microplastic ingestion and offer research priorities for future studies.
Collapse
Affiliation(s)
- Charlene Trestrail
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
14
|
Liposome-mediated delivery of challenging chemicals to aid environmental assessment of Bioaccumulative (B) and Toxic (T) properties. Sci Rep 2020; 10:9725. [PMID: 32546800 PMCID: PMC7297709 DOI: 10.1038/s41598-020-66694-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
Standard aquatic toxicity tests of chemicals are often limited by the chemicals’ water solubility. Liposomes have been widely used in the pharmaceutical industry to overcome poor pharmacokinetics and biodistribution. In this work, liposomes were synthesized and used in an ecotoxicological context, as a tool to assure stable dosing of technically challenging chemicals to zooplankton. Three chemicals with distinctly different characteristics were successfully incorporated into the liposomes: Tetrabromobisphenol A (TBBPA, log Kow 5.9, pKa1 7.5, pKa2 8.5), chlorinated paraffin CP-52 (log Kow 8–12) and perfluorooctanoic acid (PFOA, pKa 2.8). The size, production yield and stability over time was similar for all blank and chemical-loaded liposomes, except for when the liposomes were loaded with 10 or 100 mg g−1 PFOA. PFOA increased the size and decreased the production yield and stability of the liposomes. Daphnia magna were exposed to blank and chemical-loaded liposomes in 48 hour incubation experiments. A dose-dependent increase in body burden in D. magna and increased immobilization (LD50 = 7.6 ng CPs per individual) was observed. This confirms not only the ingestion of the liposomes but also the successful internalization of chemicals. This study shows that liposomes can be a reliable alternative to aid the study of aquatic toxicity of challenging chemicals.
Collapse
|
15
|
Weber A, Jeckel N, Wagner M. Combined effects of polystyrene microplastics and thermal stress on the freshwater mussel Dreissena polymorpha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137253. [PMID: 32087582 DOI: 10.1016/j.scitotenv.2020.137253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 05/26/2023]
Abstract
Human-induced changes in the environment have increased the number of stressors impacting aquatic organism. In the light of climate change and plastic pollution, thermal stress and microplastics (MP) have become two of the most intensively studied stressors in aquatic ecosystems. Previous studies, however, mostly evaluated the impacts of thermal and MP stress in isolation, thereby neglecting joint effects. To examine the combined effects of both, we exposed the freshwater mussel Dreissena polymorpha to irregular polystyrene MP (6.4, 160, 4000, 100,000 p mL-1) at either 14, 23 or 27 °C for 14 days and analyzed mortality, mussel activity and clearance rate, energy reserves, oxidative stress and the immunological state. Further, we exposed the mussels to diatomite (natural particle equivalent, 100,000 p mL-1) at each of the three water temperatures to compare MP and natural particle toxicity. An increase in water temperature has a pronounced effect on D. polymorpha and significantly affects the activity, energy reserves, oxidative stress and immune function. In contrast, the effects by MP are limited to a change in the antioxidative capacity without any interactive effects between MP and thermal exposure. The comparison of the MP with a diatomite exposure revealed only limited influence of the particle type on the response of D. polymorpha to high concentrations of suspended particles. The results indicate that MPs have minor effects on a freshwater mussel compared to thermal stress, neither alone nor as interactive effect. Limited MP toxicity could be based on adaptation mechanism of dreissenids to suspended solids. Nonetheless, MP may contribute to environmental impacts of multiple anthropogenic stressors, especially if their levels increase in the future. Therefore, we suggest integrating MP into the broader context of multiple stressor studies to understand and assess their joint impacts on freshwater ecosystems.
Collapse
Affiliation(s)
- Annkatrin Weber
- Goethe University Frankfurt am Main, Department of Aquatic Ecotoxicology, Faculty of Biological Sciences, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Nina Jeckel
- Goethe University Frankfurt am Main, Department of Aquatic Ecotoxicology, Faculty of Biological Sciences, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Martin Wagner
- Norwegian University of Science and Technology, Department of Biology, Høgskoleringen 5, Realfagbygget, 7491 Trondheim, Norway.
| |
Collapse
|
16
|
Motiei A, Brindefalk B, Ogonowski M, El-Shehawy R, Pastuszek P, Ek K, Liewenborg B, Udekwu K, Gorokhova E. Disparate effects of antibiotic-induced microbiome change and enhanced fitness in Daphnia magna. PLoS One 2020; 15:e0214833. [PMID: 31899775 PMCID: PMC6941804 DOI: 10.1371/journal.pone.0214833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
It is a common view that an organism’s microbiota has a profound influence on host fitness; however, supporting evidence is lacking in many organisms. We manipulated the gut microbiome of Daphnia magna by chronic exposure to different concentrations of the antibiotic Ciprofloxacin (0.01–1 mg L-1), and evaluated whether this affected the animals fitness and antioxidant capacity. In line with our expectations, antibiotic exposure altered the microbiome in a concentration-dependent manner. However, contrary to these expectations, the reduced diversity of gut bacteria was not associated with any fitness detriment. Moreover, the growth-related parameters correlated negatively with microbial diversity; and, in the daphnids exposed to the lowest Ciprofloxacin concentrations, the antioxidant capacity, growth, and fecundity were even higher than in control animals. These findings suggest that Ciprofloxacin exerts direct stimulatory effects on growth and reproduction in the host, while microbiome- mediated effects are of lesser importance. Thus, although microbiome profiling of Daphnia may be a sensitive tool to identify early effects of antibiotic exposure, disentangling direct and microbiome-mediated effects on the host fitness is not straightforward.
Collapse
Affiliation(s)
- Asa Motiei
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Björn Brindefalk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Ogonowski
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
- Aquabiota Water Research AB, Stockholm, Sweden
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Drottningholm, Sweden
| | - Rehab El-Shehawy
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Paulina Pastuszek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Karin Ek
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Birgitta Liewenborg
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Klas Udekwu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science & Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
17
|
De Felice B, Sabatini V, Antenucci S, Gattoni G, Santo N, Bacchetta R, Ortenzi MA, Parolini M. Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna. CHEMOSPHERE 2019; 231:423-431. [PMID: 31146134 DOI: 10.1016/j.chemosphere.2019.05.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 05/22/2023]
Abstract
Microplastic (μPs) contamination represents a dramatic environmental problem threatening both aquatic and terrestrial organisms. Although several studies have highlighted the presence of μPs in aquatic environments, the information regarding their toxicity towards organisms is still scant. Moreover, most of the ecotoxicological studies of μPs have focused on marine organisms, largely neglecting the effects on freshwater species. The present study aimed at exploring the effects caused by 21-days exposure to three concentrations (0.125, 1.25 and 12.5 μg/mL) of two differently sized polystyrene microplastics (PμPs; 1 and 10 μm) to the Cladoceran Daphnia magna. The ingestion/egestion capability of daphnids (<24 h) and adults, the changes in individual growth and behavior, in terms of changes in swimming activity, phototactic behavior and reproduction, were investigated. Both particles filled the digestive tract of daphnids and adults within 24 h of exposure at all the tested concentrations. Ingested PμPs remained in the digestive tract even after 96 h in a clean medium. For both particles, an overall increase in body size of adults was noted at the end of the exposure to the highest tested concentrations, accompanied by a significant increase in swimming activity, in terms of distance moved and swimming velocity, and by an alteration of the phototactic behavior. A significant increase in the mean number of offspring after the exposure to the highest PμPs concentrations of different size was recorded. Polystyrene μPs can affect behavioral traits of D. magna leading to potentially harmful consequences on population dynamics of this zooplanktonic species.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Valentina Sabatini
- Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Stefano Antenucci
- Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy; Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Nadia Santo
- Unitech NOLIMITS, Imaging Facility, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Renato Bacchetta
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Marco Aldo Ortenzi
- Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| |
Collapse
|
18
|
Fan LY, Zhu D, Yang Y, Huang Y, Zhang SN, Yan LC, Wang S, Zhao YH. Comparison of modes of action among different trophic levels of aquatic organisms for pesticides and medications based on interspecies correlations and excess toxicity: Theoretical consideration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 177:25-31. [PMID: 30954009 DOI: 10.1016/j.ecoenv.2019.03.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Pesticides and medications have adverse effects in non-target organisms that can lead to different modes of action (MOAs). However, no study has been performed to compare the MOAs between different levels of aquatic species. In this study, theoretical equations of interspecies relationship and excess toxicity have been developed and used to investigate the MOAs among fish, Daphnia magna, Tetrahymena pyriformis and Vibrio fischeri for pesticides and medications. The analysis on the interspecies correlation and excess toxicity suggested that fungicides, herbicides and medications share the similar MOAs among the four species. On the other hand, insecticides share different MOAs among the four species. Exclusion of insecticides from the interspecies correlation can significantly improve regression coefficient. Interspecies relationship is dependent not only on the difference in interaction of chemicals with the target receptor(s), but also on the difference in bio-uptake between two species. The difference in physiological structures will result in the difference in bioconcentration potential between two different trophic levels of organisms. Increasing of molecular size or hydrophobicity will increase the toxicity to higher level of aquatic organisms; on the other hand, chemical ionization will decrease the toxicity to higher level organisms. Hydrophilic compounds can more easily pass through cell membrane than skin or gill, leading to greater excess toxicity to Vibrio fischeri, but not to fish and Daphnia magna.
Collapse
Affiliation(s)
- Ling Y Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Di Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Sheng N Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Li C Yan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| |
Collapse
|
19
|
Ek C, Garbaras A, Yu Z, Oskarsson H, Wiklund AKE, Kumblad L, Gorokhova E. Increase in stable isotope ratios driven by metabolic alterations in amphipods exposed to the beta-blocker propranolol. PLoS One 2019; 14:e0211304. [PMID: 31095563 PMCID: PMC6522046 DOI: 10.1371/journal.pone.0211304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022] Open
Abstract
Anthropogenic pressures, such as contaminant exposure, may affect stable isotope ratios in biota. These changes are driven by alterations in the nutrient allocation and metabolic pathways induced by specific stressors. In a controlled microcosm study with the amphipod Gammarus spp., we studied effects of the β-blocker propranolol on stable isotope signatures (δ15N and δ13C), elemental composition (%C and %N), and growth (protein content and body size) as well as biomarkers of oxidative status (antioxidant capacity, ORAC; lipid peroxidation, TBARS) and neurological activity (acetylcholinesterase, AChE). Based on the known effects of propranolol exposure on cellular functions, i.e., its mode of action (MOA), we expected to observe a lower scope for growth, accompanied by a decrease in protein deposition, oxidative processes and AChE inhibition, with a resulting increase in the isotopic signatures. The observed responses in growth, biochemical and elemental variables supported most of these predictions. In particular, an increase in %N was observed in the propranolol exposures, whereas both protein allocation and body size declined. Moreover, both ORAC and TBARS levels decreased with increasing propranolol concentration, with the decrease being more pronounced for TBARS, which indicates the prevalence of the antioxidative processes. These changes resulted in a significant increase of the δ15N and δ13C values in the propranolol-exposed animals compared to the control. These findings suggest that MOA of β-blockers may be used to predict sublethal effects in non-target species, including inhibited AChE activity, improved oxidative balance, and elevated stable isotope ratios. The latter also indicates that metabolism-driven responses to environmental contaminants can alter stable isotope signatures, which should be taken into account when interpreting trophic interactions in the food webs.
Collapse
Affiliation(s)
- Caroline Ek
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Andrius Garbaras
- Mass Spectrometry Laboratory, Center for Physical Science and Technology, Vilnius, Lithuania
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, P. R. China
| | - Hanna Oskarsson
- Department of Ecology, Environment and Plant Science, Stockholm University, Svante Stockholm, Sweden
| | | | - Linda Kumblad
- Department of Ecology, Environment and Plant Science, Stockholm University, Svante Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
20
|
Pokhrel P, Akashi J, Suzuki J, Fujita M. Oxidative stress responses to feeding activity and salinity level in brackish water clam Corbicula japonica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:191-195. [PMID: 30772549 DOI: 10.1016/j.scitotenv.2019.02.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Three laboratory-scale experiments were conducted to assess the oxidative stress responses of brackish water clam Corbicula japonica to feeding activity and salinity level. Natural brackish water from Lake Hinuma was used in experiments I and II, while experiment III used artificial brackish water with cultured diatoms as the food source. During experiment I, the oxygen radical absorbance capacity (ORAC) varied greatly when the initial suspended solids (SS) concentration was 50 mg SS·L-1. As a result, no significant difference in ORAC was found between the initial SS concentrations of 5 and 50 mg SS·L-1 (p > 0.05). In contrast, during experiment II, ORAC decreased from 6.4 to 3.5 μmol Trolox Equivalent (TE)·mg protein-1 at the SS concentration of ~5 mg SS·L-1 (p < 0.05). The rate of carbon uptake in experiment I (SS concentration = 5 mg SS·L-1) was ~2.3 times greater than that in experiment II. These results indicate that SS availability has a great effect on ORAC in C. japonica. During experiment III, ORAC increased under initial SS concentrations of 0 and 40 mg SS·L-1 at salinities of 10 (p < 0.01) and 20 psu (p < 0.05), respectively. In contrast, ORAC decreased significantly decreased during the experiment for SS concentration = 80 mg SS·L-1 and salinity = 20 psu (p < 0.01) and for SS concentration = 120 mg SS·L-1 and salinity = 10 or 20 psu (p < 0.01); ATP content also decreased significantly (p < 0.01). A good correlation was found between the change in ATP content and ORAC. Together, the findings suggest that energy availability and salinity level have strong effects on antioxidant capacity in C. japonica.
Collapse
Affiliation(s)
- Preeti Pokhrel
- Major in Social Infrastructure System Science, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Junko Akashi
- Department of Civil, Architectural and Environmental Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Jumpei Suzuki
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
| | - Masafumi Fujita
- Department of Civil, Architectural and Environmental Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.
| |
Collapse
|
21
|
Gerdes Z, Ogonowski M, Nybom I, Ek C, Adolfsson-Erici M, Barth A, Gorokhova E. Microplastic-mediated transport of PCBs? A depuration study with Daphnia magna. PLoS One 2019; 14:e0205378. [PMID: 30779782 PMCID: PMC6380591 DOI: 10.1371/journal.pone.0205378] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/01/2019] [Indexed: 11/24/2022] Open
Abstract
The role of microplastic (MP) as a carrier of persistent organic pollutants (POPs) to aquatic organisms has been a topic of debate. However, the reverse POP transport can occur if relative contaminant concentrations are higher in the organism than in the microplastic. We evaluated the effect of microplastic on the PCB removal in planktonic animals by exposing the cladoceran Daphnia magna with a high body burden of polychlorinated biphenyls (PCB 18, 40, 128 and 209) to a mixture of microplastic and algae; daphnids exposed to only algae served as the control. As the endpoints, we used PCB body burden, growth, fecundity and elemental composition (%C and %N) of the daphnids. In the daphnids fed with microplastic, PCB 209 was removed more efficiently, while there was no difference for any other congeners and ΣPCBs between the microplastic-exposed and control animals. Also, higher size-specific egg production in the animals carrying PCB and receiving food mixed with microplastics was observed. However, the effects of the microplastic exposure on fecundity were of low biological significance, because the PCB body burden and the microplastic exposure concentrations were greatly exceeding environmentally relevant concentrations.
Collapse
Affiliation(s)
- Zandra Gerdes
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Martin Ogonowski
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- Aquabiota Water Research AB, Stockholm, Sweden
- Institute of Freshwater Research, Department of Aquatic Resources, Swedish University of Agricultural Sciences, Stockholm, Sweden
| | - Inna Nybom
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Caroline Ek
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Yu Z, Yin D, Zhang J. Sex-dependent effects of sulfamethoxazole exposure on pro-/anti-oxidant status with stimulation on growth, behavior and reproduction in the amphipod Hyalella azteca. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:398-404. [PMID: 30352354 DOI: 10.1016/j.envpol.2018.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 10/05/2018] [Indexed: 05/05/2023]
Abstract
Negative effects of environmental antibiotics on non-target organisms were observed in studies at various levels of the biological organization. Yet, studies combining the effects at multiple levels were required to interpret their ecological frequencies in a broader context. Currently, effects of sulfamethoxazole (SMX) was studied on the amphipod Hyalella azteca which is important in ecological stability. At the biochemical level, effects on the antioxidant capacities showed stimulation with an inverse U-shaped change over the concentrations. The stimulation was greater in male than in females. Effects on the oxidative stress showed a U-shaped change which included stimulation and inhibition in males, and solely stimulation in females. The stimulation was less in males than in females. Effects on acetylcholinesterase (AChE) activities in both sexes were well correlated with those on oxidative stress (p < 0.05). At the individual level, effects on the body weight showed an inverse U-shaped change over concentrations, and the stimulation was greater in males than in females. The stimulations were significantly correlated with the male oxidative stress (p < 0.01), and male (p < 0.1) and female AChE activities (p < 0.05). Effects of SMX on the pre-copulation behavior also showed an inverse U-shaped change which correlated with male and female antioxidant capacities (p < 0.05) and the male body weight (p < 0.05). At the population level, effects on the reproduction showed an inverse U-shaped change over concentrations, and they significantly correlated with the male body weight (p < 0.05) and the pre-copulation behavior (p < 0.05). Summing up, SMX provoked simultaneous disturbances on the amphipod at multiple levels with sex-dependent responses.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang, 314051, PR China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| |
Collapse
|
23
|
Yu Z, Yin D, Hou M, Zhang J. Effects of food availability on the trade-off between growth and antioxidant responses in Caenorhabditis elegans exposed to sulfonamide antibiotics. CHEMOSPHERE 2018; 211:278-285. [PMID: 30077107 DOI: 10.1016/j.chemosphere.2018.07.173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Adverse effects of sulfonamide antibiotics (SAs) include growth inhibition and antioxidant activation which showed trade-off effects. Yet, the influence of food availability on such effects have not been thoroughly investigated. Caenorhabditis elegans were exposed to four SAs at high and low food availabilities which were represented by the optical densities of bacteria at 600 nm. The nematode feeding, growth and antioxidants including superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were determined. Results showed that the control nematodes at low food availability had less growth and greater antioxidant responses than the nematodes at high food availability. In SA exposure, the nematode growth in the presence of food (at both high and low food availability) was less than that in its absence, supporting the role of food as an exposure pathway. The nematode growth at low food availability showed significantly greater inhibition than at high food availability (p < 0.05). The nematode antioxidants showed stimulations, and CAT had the greatest stimulation. Moreover, the stimulation on CAT at low food availability were significantly higher than those at high food availability (p < 0.05). That is to say, SA exposure at low food availability further biased the trade-off effects towards more energy investment in antioxidant with less in growth. Further studies on the expression levels of CAT encoding genes demonstrated that cells in intestines were the main antioxidant response sites, which further supported the contributions of food to the observed toxicities.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang, 314051, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
24
|
Ebert B, Ebert D, Koebsch K, Maser E, Kisiela M. Carbonyl reductases from Daphnia are regulated by redox cycling compounds. FEBS J 2018; 285:2869-2887. [PMID: 29893480 DOI: 10.1111/febs.14578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/20/2018] [Accepted: 06/11/2018] [Indexed: 01/22/2023]
Abstract
Oxidative stress is a major source of reactive carbonyl compounds that can damage cellular macromolecules, leading to so-called carbonyl stress. Aside from endogenously formed carbonyls, including highly reactive short-chain aldehydes and diketones, air pollutants derived from diesel exhaust like 9,10-phenanthrenequinone (PQ) can amplify oxidative stress by redox cycling, causing tissue damage. Carbonyl reductases (CRs), which are inducible in response to ROS, represent a fundamental enzymatic defense mechanism against oxidative stress. While commonly two carbonyl reductases (CBR1 and CBR3) are found in mammalian genomes, invertebrate model organisms like Drosophila melanogaster express no CR but a functional homolog to human CBR1, termed sniffer. The microcrustacean Daphnia is an ideal model organism to investigate the function of CRs because of its unique equipment with even four copies of the CR gene (CR1, CR2, CR3, CR4) in addition to one sniffer gene. Cloning and catalytic characterization of two carbonyl reductases CR1 and CR3 from D. magna and D. pulex arenata revealed that both proteins reductively metabolize aromatic dicarbonyls (e.g., menadione, PQ) and aliphatic α-diketones (e.g., 2,3-hexanedione), while sugar-derived aldehydes (methylglyoxal, glyoxal) and lipid peroxidation products such as acrolein and butanal were poor substrates, indicating no physiological function in the metabolism of short-chain aldehydes. Treatment of D. magna with redox cyclers like menadione and the pesticide paraquat led to an upregulation of CR1 and CR3 mRNA, suggesting a role in oxidative stress defense. Further studies are needed to investigate their potential to serve as novel biomarkers for oxidative stress in Daphnia.
Collapse
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Dieter Ebert
- Departement Environmental Sciences, Zoology, Basel University, Switzerland
| | - Katrin Koebsch
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
25
|
Ogonowski M, Edlund U, Gorokhova E, Linde M, Ek K, Liewenborg B, Könnecke O, Navarro JRG, Breitholtz M. Multi-level toxicity assessment of engineered cellulose nanofibrils inDaphnia magna. Nanotoxicology 2018; 12:509-521. [DOI: 10.1080/17435390.2018.1464229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Martin Ogonowski
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Ulrica Edlund
- Fiber and Polymer Technology Department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Margareta Linde
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Karin Ek
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Birgitta Liewenborg
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Oda Könnecke
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Julien R. G. Navarro
- Fiber and Polymer Technology Department, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Magnus Breitholtz
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
26
|
Rist S, Baun A, Hartmann NB. Ingestion of micro- and nanoplastics in Daphnia magna - Quantification of body burdens and assessment of feeding rates and reproduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:398-407. [PMID: 28554029 DOI: 10.1016/j.envpol.2017.05.048] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Evidence is increasing that micro- and nanoplastic particles can have adverse effects on aquatic organisms. Exposure studies have so far mainly been qualitative since quantitative measurements of particle ingestion are analytically challenging. The aim of this study was therefore to use a quantitative approach for determining ingestion and egestion of micro- and nanoplastics in Daphnia magna and to analyze the influence of particle size, exposure duration and the presence of food. One week old animals were exposed to 2 μm and 100 nm fluorescent polystyrene beads (1 mg/l) for 24 h, followed by a 24 h egestion period in clean medium. During both phases body burdens of particles were determined by measuring the fluorescence intensity in dissolved tissues. Ingestion and egestion were investigated in the absence and presence of food (6.7·105 cells of Raphidocelis subcapitata per ml). Furthermore, feeding rates of daphnids in response to particle exposure were measured as well as effects on reproduction during a 21 days exposure (at 1 mg/l, 0.5 mg/l and 0.1 mg/l) to investigate potential impairments of physiology. Both particle sizes were readily ingested, but the ingested mass of particles was five times higher for the 2 μm particles than for the 100 nm particles. Complete egestion did not occur within 24 h but generally higher amounts of the 2 μm particles were egested. Animal body burdens of particles were strongly reduced in the presence of food. Daphnid feeding rates decreased by 21% in the presence of 100 nm particles, but no effect on reproduction was found despite high body burdens of particles at the end of 21 days exposure. The lower egestion and decreased feeding rates, caused by the 100 nm particles, could indicate that particles in the nanometer size range are potentially more hazardous to D. magna compared to larger particle sizes.
Collapse
Affiliation(s)
- Sinja Rist
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, Kgs. Lyngby, Denmark.
| | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, Kgs. Lyngby, Denmark
| | - Nanna B Hartmann
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Grintzalis K, Dai W, Panagiotidis K, Belavgeni A, Viant MR. Miniaturising acute toxicity and feeding rate measurements in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:352-357. [PMID: 28189099 DOI: 10.1016/j.ecoenv.2017.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 05/27/2023]
Abstract
Phenotypic markers of animal health form an essential component of regulatory toxicology. Immobilisation of neonate water fleas - Daphnia magna - as a surrogate measure of their mortality following exposure to a chemical for 24-48h forms the basis of the internationally utilised OECD acute toxicity test 202. A second important marker of animal physiology and health is feeding rate, which in Daphnia is determined by measuring the algae feeding rate. Given the widespread use of OECD test 202 for acute toxicity as well as the quantification of feeding rate in toxicological studies of daphniids, significant benefits could result from miniaturising this assay. In particular, miniaturisation would use fewer animals, less media and chemicals, less laboratory space and make the tests more compatible with automation, and therefore could result in considerable time savings. Furthermore, miniaturising phenotypic markers to the ultimate level of a single animal per well would facilitate multiple measurements of other phenotypic markers, such as behavioural responses, which could be integrated at the individual level. In this study we used a wide range of exposure vessels to evaluate the impacts of systematically varying total media volume, surface to volume ratio and animal density for the acute toxicity testing of cadmium. We demonstrate that Daphnia acute toxicity tests using single animals within 24- or 48-well plates produce equivalent results as for traditional test configurations, for different chemicals. Considering algae feeding rates by Daphnia, we studied the impacts of varying algae concentration, total volume and animal density. After having demonstrated that multiwell plates can again yield equivalent test results as traditional experimental setups, we used miniaturised test vessels to show the impact of metals on the feeding activity on daphniids for both neonates and adult animals. Overall we confirm the feasibility of a multiwell approach for Daphnia toxicity testing that requires less time and materials than a traditional assay and can provide phenotypic characterisation at a single animal level.
Collapse
Affiliation(s)
| | - Wenkui Dai
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Konstantinos Panagiotidis
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Biology, Section of Animal Biology, School of Natural Sciences, University of Patras, Patras 26500, Greece
| | - Alexia Belavgeni
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Biology, Section of Animal Biology, School of Natural Sciences, University of Patras, Patras 26500, Greece
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
28
|
Ek C, Gerdes Z, Garbaras A, Adolfsson-Erici M, Gorokhova E. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8296-8304. [PMID: 27367056 DOI: 10.1021/acs.est.6b01731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF.
Collapse
Affiliation(s)
- Caroline Ek
- Department of Environmental Science and Analytical Chemistry, Stockholm University , Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden
| | - Zandra Gerdes
- Department of Environmental Science and Analytical Chemistry, Stockholm University , Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden
| | - Andrius Garbaras
- Mass Spectrometry Laboratory, Center for Physical Science and Technology , Savanoriu 231, LT-02300 Vilnius, Lithuania
| | - Margaretha Adolfsson-Erici
- Department of Environmental Science and Analytical Chemistry, Stockholm University , Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University , Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Ogonowski M, Schür C, Jarsén Å, Gorokhova E. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna. PLoS One 2016; 11:e0155063. [PMID: 27176452 PMCID: PMC4866784 DOI: 10.1371/journal.pone.0155063] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/23/2016] [Indexed: 11/19/2022] Open
Abstract
Concerns are being raised that microplastic pollution can have detrimental effects on the feeding of aquatic invertebrates, including zooplankton. Both small plastic fragments (microplastics, MPs) produced by degradation of larger plastic waste (secondary MPs; SMPs) and microscopic plastic spheres used in cosmetic products and industry (primary MPs; PMPs) are ubiquitously present in the environment. However, despite the fact that most environmental MPs consist of weathered plastic debris with irregular shape and broad size distribution, experimental studies of organism responses to MP exposure have largely used uniformly sized spherical PMPs. Therefore, effects observed for PMPs in such experiments may not be representative for MP-effects in situ. Moreover, invertebrate filter-feeders are generally well adapted to the presence of refractory material in seston, which questions the potential of MPs at environmentally relevant concentrations to measurably affect digestion in these organisms. Here, we compared responses to MPs (PMPs and SMPs) and naturally occurring particles (kaolin clay) using the cladoceran Daphnia magna as a model organism. We manipulated food levels (0.4 and 9 μg C mL-1) and MP or kaolin contribution to the feeding suspension (<1 to 74%) and evaluated effects of MPs and kaolin on food uptake, growth, reproductive capacity of the daphnids, and maternal effects on offspring survival and feeding. Exposure to SMPs caused elevated mortality, increased inter-brood period and decreased reproduction albeit only at high MP levels in the feeding suspension (74% by particle count). No such effects were observed in either PMP or kaolin treatments. In daphnids exposed to any particle type at the low algal concentration, individual growth decreased by ~15%. By contrast, positive growth response to all particle types was observed at the high algal concentration with 17%, 54% and 40% increase for kaolin, PMP and SMP, respectively. When test particles comprised 22% in the feeding suspension, both MP types decreased food intake by 30%, while kaolin had no effect. Moreover, SMPs were found to homoaggregate in a concentration-dependent manner, which resulted in a 77% decrease of the ingested SMPs compared to PMPs. To better understand MP-processing in the gut, gut passage time (GPT) and evacuation rate of MPs were also assayed. SMPs and PMPs differed in their effects on daphnids; moreover, the particle effects were dependent on the MP: algae ratio in the suspension. When the MP contribution to the particle abundance in the medium changed from 1 to 4%, GPT for daphnids exposed to SMPs increased 2-fold. Our results suggest that MPs and, in particular, SMPs, have a greater capacity to negatively affect feeding in D. magna compared to naturally occurring mineral particles of similar size. Moreover, grazer responses observed in experiments with PMPs cannot be extrapolated to the field where SMPs dominate, because of the greater effects caused by the latter.
Collapse
Affiliation(s)
- Martin Ogonowski
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- AquaBiota Water Research, Stockholm, Sweden
| | - Christoph Schür
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Åsa Jarsén
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Reutgard M, Furuhagen S. Linking sub-cellular biomarkers to embryo aberrations in the benthic amphipod Monoporeia affinis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:36-42. [PMID: 26836507 DOI: 10.1016/j.aquatox.2016.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 05/04/2023]
Abstract
To adequately assess and monitor environmental status in the aquatic environment a broad approach is needed that integrates physical variables, chemical analyses and biological effects at different levels of the biological organization. Embryo aberrations in the Baltic Sea key species Monoporeia affinis can be induced by both metals and organic substances as well as by hypoxia, increasing temperatures and malnutrition. This amphipod has therefore been used for more than three decades as a biological effect indicator in monitoring and assessment of chemical pollution and environmental stress. However, little is known about the sub-cellular mechanisms underlying embryo aberrations. An improved mechanistic understanding may open up the possibility of including sub-cellular alterations as sensitive warning signals of stress-induced embryo aberrations. In the present study, M. affinis was exposed in microcosms to 4 different sediments from the Baltic Sea. After 88-95 days of exposure, survival and fecundity were determined as well as the frequency and type of embryo aberrations. Moreover, oxygen radical absorption capacity (ORAC) was assayed as a proxy for antioxidant defense, thiobarbituric acid reactive substances (TBARS) level as a measure of lipid peroxidation and acetylcholinesterase (AChE) activity as an indicator of neurotoxicity. The results show that AChE and ORAC can be linked to the frequency of malformed embryos and arrested embryo development. The occurrence of dead broods was significantly associated with elevated TBARS levels. It can be concluded that these sub-cellular biomarkers are indicative of effects that could affect Darwinian fitness and that oxidative stress is a likely mechanism in the development of aberrant embryos in M. affinis.
Collapse
Affiliation(s)
- Martin Reutgard
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden.
| | - Sara Furuhagen
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
31
|
Ek C, Karlson AML, Hansson S, Garbaras A, Gorokhova E. Stable isotope composition in Daphnia is modulated by growth, temperature, and toxic exposure: implications for trophic magnification factor assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6934-6942. [PMID: 25893846 DOI: 10.1021/acs.est.5b00270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The potential for using stable isotope analysis in risk assessment of environmental contaminants is crucially dependent on the predictability of the trophic transfer of isotopes in food webs. The relationship between contaminant levels and trophic position of consumers is widely used to assess biomagnification properties of various pollutants by establishing trophic magnification factors (TMF). However, contaminant-induced variability of the isotopic composition in biota is poorly understood. Here, we investigated effects of toxic exposure on δ(15)N and δ(13)C values in a consumer, with a main hypothesis that these effects would be largely mediated via growth rate and metabolic turnover of the test animals. The cladoceran Daphnia magna was used in two experiments that were conducted to manipulate growth and body condition (assayed as C:N ratio) by food availability and temperature (Experiment 1) and by toxic exposure to the pesticide lindane (Experiment 2). We found a significant negative effect of growth rate and a positive effect of temperature on the consumer-diet discrimination factor for δ(15)N and δ(13)C, with no effects on the C:N ratio (Experiment 1). In lindane-exposed daphnids, a significant growth inhibition was observed, with concomitant increase in metabolic costs and significantly elevated size-specific δ(15)N and δ(13)C values. Moreover, a significantly higher incorporation of carbon relative to nitrogen, yet a concomitant decrease in C:N ratio was observed in the exposed animals. Together, these results have methodological implications for determining trophic positions and TMF in polluted environments, where elevated δ(15)N values would translate into overestimated trophic positions and underestimated TMF. Furthermore, altered δ(13)C values may lead to erroneous food-chain assignment of the consumer in question.
Collapse
Affiliation(s)
| | | | | | - Andrius Garbaras
- §Mass Spectrometry Laboratory, Center for Physical Science and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| | | |
Collapse
|