1
|
Weinrauch AM, Hoogenboom JL, Anderson WG. A review of reductionist methods in fish gastrointestinal tract physiology. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110571. [PMID: 33556622 DOI: 10.1016/j.cbpb.2021.110571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
A holistic understanding of a physiological system can be accomplished through the use of multiple methods. Our current understanding of the fish gastrointestinal tract (GIT) and its role in both nutrient handling and osmoregulation is the result of the examination of the GIT using multiple reductionist methods. This review summarizes the following methods: in vivo mass balance studies, and in vitro gut sac preparations, intestinal perfusions, and Ussing chambers. From Homer Smith's initial findings of marine fish intestinal osmoregulation in the 1930s through to today's research, we discuss the methods, their advantages and pitfalls, and ultimately how they have each contributed to our understanding of fish GIT physiology. Although in vivo studies provide substantial information on the intact animal, segment specific functions of the GIT cannot be easily elucidated. Instead, in vitro gut sac preparations, intestinal perfusions, or Ussing chamber experiments can provide considerable information on the function of a specific tissue and permit the delineation of specific transport pathways through the use of pharmacological agents; however, integrative inputs (e.g. hormonal and neuronal) are removed and only a fraction of the organ system can be studied. We conclude with two case studies, i) divalent cation transport in teleosts and ii) nitrogen handling in the elasmobranch GIT, to highlight how the use of multiple reductionist methods contributes to a greater understanding of the organ system as a whole.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - J Lisa Hoogenboom
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
2
|
Ahvo A, Lehtonen KK, Lastumäki A, Straumer K, Kraugerud M, Feist SW, Lang T, Tørnes JA. The use of Atlantic hagfish (Myxine glutinosa) as a bioindicator species for studies on effects of dumped chemical warfare agents in the Skagerrak. 2. Biochemical biomarkers. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105097. [PMID: 32992222 DOI: 10.1016/j.marenvres.2020.105097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The sea bottom of the Skagerrak Strait (North Sea) contains munitions loaded with chemical warfare agents (CWA), mostly stored in shipwrecks scuttled intentionally after the end of the World War II. The munition shells inside the wrecks are in different states of deterioration and corrosion and their environmental risk potential is unknown. The Atlantic hagfish (Myxine glutinosa), a sediment-dwelling chordate, was used as a model organism to study the potential impact of dumped CWA on the local ecosystem by using biochemical biomarkers. The hagfish were collected in 2017 and 2018 at three sampling sites: in the immediate vicinity of a wreck with CWA in the Skagerrak, a few kilometres from the wreck, and a reference site 21 km from the wreck, considered to be free of CWA. Significant differences were observed between the wreck site and the reference sites in the activities of glutathione reductase, superoxide dismutase and glutathione S-transferase, while the activity levels of catalase and acetylcholinesterase were identical at all sites. The recorded differences demonstrated negative biological effects in the hagfish sampled close to the dumped chemical munitions. Due to the limited knowledge of hagfish biology and of the extent of CWA contamination in Skagerrak, the results presented here warrant more research to further elucidate the potential environmental risks of the scuttled wrecks. The usefulness of the species as a bioindicator organism is further discussed.
Collapse
Affiliation(s)
- A Ahvo
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland.
| | - K K Lehtonen
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
| | - A Lastumäki
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin Katu 2, 00790, Helsinki, Finland
| | - K Straumer
- Thünen Institute of Fisheries Ecology, Herwigstrasse 31, 27527, Bremerhaven, Germany
| | - M Kraugerud
- FishVet Group, Benchmark Norway AS, P. O. Box 1012, 0218, Oslo, Norway
| | - S W Feist
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - T Lang
- Thünen Institute of Fisheries Ecology, Herwigstrasse 31, 27527, Bremerhaven, Germany
| | - J A Tørnes
- Norwegian Defence Research Establishment, Instituttveien 20, 2007, Kjeller, Norway
| |
Collapse
|
3
|
Tian J, Hua X, Jiang X, Dong D, Liang D, Guo Z, Zheng N, Huang X. Effects of tubificid bioturbation on bioaccumulation of Cu and Zn released from sediment by aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140471. [PMID: 32640400 DOI: 10.1016/j.scitotenv.2020.140471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
To investigate the effects of bioturbation on absorption and enrichment of pollutants from sediments by aquatic organisms, microcosm systems similar to natural aquatic environment were established, and the release of Cu and Zn from the sediment, and their accumulation in some typical aquatic organisms, including submerged plants, floating plants and fish, with the presence of tubificids of different densities were measured. The results of this pilot study showed that the presence of tubificids promoted the migration of the trace metals from sediment to overlying water, especially when there were more worms and especially for Cu which is not easily released from the sediment. During the experiment, Cu in overlying water was mainly in particulate fraction. While for Zn, it was mainly in dissolved form in the early stage of the experiment, and then the dominant fraction gradually changed to particulate fraction. The bioturbation of tubificids also promoted the accumulation of both Cu and Zn in the aquatic organisms. In one system, different types of aquatic organisms showed different features for the accumulation of Cu and Zn. Meanwhile, with the presence of different intensity of bioturbation, the concentration of Cu or Zn in the same kind of organism was different. After a 30-day experiment, trace metal concentration in the aquatic organisms generally decreased in the order of floating plants (lesser duckweed) > submerged plants (Amazon sword) > small fish (zebrafish), and the concentration of Zn in the organisms was usually significantly higher than that of Cu in the same organism, especially in duckweed and zebrafish. However, the presence of tubificids and the density of them had more considerable effects on the uptake of Cu by the organisms, than on the uptake of Zn.
Collapse
Affiliation(s)
- Jiaqing Tian
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Xu Jiang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Dapeng Liang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaomeng Huang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
In vitro characterisation of calcium influx across skin and gut epithelia of the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 2020; 190:149-160. [DOI: 10.1007/s00360-020-01262-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/30/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023]
|
5
|
Wang H, Xia X, Liu R, Wang Z, Lin X, Muir DCG, Wang WX. Multicompartmental Toxicokinetic Modeling of Discrete Dietary and Continuous Waterborne Uptake of Two Polycyclic Aromatic Hydrocarbons by Zebrafish Danio rerio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1054-1065. [PMID: 31841317 DOI: 10.1021/acs.est.9b05513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, we developed a multicompartmental toxicokinetic model for two polycyclic aromatic hydrocarbons (phenanthrene and anthracene) in their deuterated form (PAHs-d10) in zebrafish considering continuous waterborne uptake and discrete dietary uptake. We quantified the bioconcentration, bioaccumulation, and depuration of these two PAHs-d10 in zebrafish, and then estimated the kinetic parameters by fitting the model into the experimental data. The experimental and fitting results both showed that there was a peak concentration in each compartment of zebrafish after every dietary uptake, while the peak value depended on the ingestion amount of the PAH-d10 and varied among different compartments. The PAH-d10 amount in the blood reached 20-27% of the total amount bioaccumulated in zebrafish at steady-state, followed by skin (20-26%), and fillet (16-22%). The rank of PAH-d10 steady-state concentrations in each compartment showed inconsistency with its lipid contents, indicating that the distribution of the PAHs-d10 in zebrafish was not merely affected by the lipid content in each compartment, but also affected by their kinetics and biotransformation. This study suggests that discrete dietary uptake caused by intermittent food ingestion significantly affects the bioaccumulation of PAHs in fish. Further studies are needed to investigate such effect on other toxicants that are more resistant to biotransformation than PAHs in fish.
Collapse
Affiliation(s)
- Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Ran Liu
- Department of Mathematics , Hong Kong Baptist University , Hong Kong SWT 802 , China
| | - Zixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Xiaohan Lin
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Derek C G Muir
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 Canada
| | - Wen-Xiong Wang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
6
|
Glover CN, Weinrauch AM. The good, the bad and the slimy: experimental studies of hagfish digestive and nutritional physiology. ACTA ACUST UNITED AC 2019; 222:222/14/jeb190470. [PMID: 31308056 DOI: 10.1242/jeb.190470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hagfishes provide valuable insight into the physiology of feeding, digestion and nutrient absorption by virtue of unusual and unique features of their biology. For example, members of this group undergo long periods of fasting, and are the only vertebrates known to absorb organic nutrients across their epidermal surface. Such properties engender significant attention from researchers interested in feeding and feeding-related processes; however, the practical realities of employing the hagfish as an experimental organism can be challenging. Many of the key tools of the experimental biologist are compromised by a species that does not readily feed in captivity, is difficult to instrument and which produces copious quantities of slime. This Commentary provides critical insight into the key aspects of hagfish feeding and digestive processes, and highlights the pitfalls of this group as experimental organisms. We also suggest key research gaps that, if filled, will lead to better understanding of hagfishes, and we consider how this group may advance our knowledge of feeding, digestion and nutrient absorption processes.
Collapse
Affiliation(s)
- Chris N Glover
- Athabasca River Basin Research Institute and Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada .,Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
7
|
Thompson ED, Hogstrand C, Glover CN. From sea squirts to squirrelfish: facultative trace element hyperaccumulation in animals. Metallomics 2018; 10:777-793. [PMID: 29850752 DOI: 10.1039/c8mt00078f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hyperaccumulation of trace elements is a widely characterized phenomenon in plants, bacteria, and fungi, but has received little attention in animals. However, there are numerous examples of animals that specifically and facultatively accumulate trace elements in the absence of elevated environmental concentrations. Metal hyperaccumulating animals are usually marine invertebrates, likely owing to environmental (e.g. constant exposure via the water) and physiological (e.g. osmoconforming and reduced integument permeability) factors. However, there are examples of terrestrial animals (insect larvae) and marine vertebrates (e.g. squirrelfish) that accumulate high body and/or tissue metal burdens. This review examines examples of animal hyperaccumulation of the elements arsenic, copper, iron, titanium, vanadium and zinc, describing mechanisms by which accumulation occurs and, where possible, hypothesizing functional roles. Groups such as the ascidians (sea squirts), molluscs (gastropods, bivalves and cephalopods) and polychaete annelids feature prominently as animals with hyperaccumulating capacity. Many of these species are potential model organisms offering insight into fundamental processes underlying metal handling, with relevance to human disease and aquatic metal toxicity, and some offer promise in applied fields such as bioremediation.
Collapse
Affiliation(s)
- E David Thompson
- Department of Biological Sciences, Northern Kentucky University, SC 245 Nunn Dr Highland Heights, KY 41099, USA.
| | | | | |
Collapse
|
8
|
Wang H, Li Y, Xia X, Xiong X. Relationship between metabolic enzyme activities and bioaccumulation kinetics of PAHs in zebrafish (Danio rerio). J Environ Sci (China) 2018; 65:43-52. [PMID: 29548410 DOI: 10.1016/j.jes.2017.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 06/08/2023]
Abstract
Many studies have investigated bioaccumulation and metabolism of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms. However, lack of studies investigated both processes simultaneously, and the interaction between these two processes is less understood so far. This study investigated the bioaccumulation kinetics of PAHs and metabolic enzyme activities, including total cytochrome P450 (CYPs) and total superoxide dismutase (T-SOD), in zebrafish. Mature zebrafish were exposed to the mixture of phenanthrene and anthracene under constant concentration maintained by passive dosing systems for 16days. The results showed that PAH concentrations in zebrafish experienced a peak value after exposure for 1.5days, and then decreased gradually. The bioaccumulation equilibrium was achieved after exposure for 12days. Both of the uptake rate constants (ku) and the elimination rate constants (ke) decreased after the peak value. The variation of PAH concentrations and metabolic enzyme activities in zebrafish had an interactive relationship. The activities of CYPs and T-SOD increased initially with the increase of PAH concentrations, but decreased to the lowest state when PAH concentrations reached the peak value. When the bioaccumulation equilibrium of PAHs was achieved, CYPs and T-SOD activities also reached the steady state. In general, CYPs and T-SOD activities were activated after exposure to PAHs. The decrease of PAH concentrations in zebrafish after the peak value may be attributed to the great drop of ku and the variation of CYPs activities. This study suggests that an interactive relationship exists between bioaccumulation kinetics of PAHs and metabolic enzyme activities in aquatic organisms.
Collapse
Affiliation(s)
- Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yayuan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinyue Xiong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Weinrauch AM, Clifford AM, Goss GG. Functional redundancy of glucose acquisition mechanisms in the hindgut of Pacific hagfish (Eptatretus stoutii). Comp Biochem Physiol A Mol Integr Physiol 2017; 216:8-13. [PMID: 29126986 DOI: 10.1016/j.cbpa.2017.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 02/09/2023]
Abstract
This study examined the mechanisms of glucose acquisition in the hindgut of Pacific hagfish (Eptatretus stoutii) using in vitro gut sac techniques. The intestine was determined to have the capacity to digest maltose into glucose along the entirety of the tract, including the foregut. Glucose uptake was biphasic and consisted of a high-affinity, low-capacity concentration-dependent component conforming to Michaelis-Menten kinetics (Km 0.37mM, Jmax 8.48nmol/cm2/h) as well as a diffusive component. There was no observed difference in glucose flux rate along the length of the intestine, similar to other nutrients investigated in the hagfish intestine. A reduced sodium (<1mM) environment did not result in a change in glucose uptake rates, likely due to a functional redundancy of glucose transporters. There was no observed effect of phloretin, yet the sodium glucose-linked transporter (SGLT)-specific inhibitor phlorizin significantly reduced glucose uptake at all concentrations tested (0.0001-1mM). Additionally, the glucose transporter (GLUT) inhibitor cytochalasin b significantly reduced glucose transport rates. The effects of these pharmacological inhibition experiments suggest the presence of multiple types of glucose transport proteins. This study clarifies the uptake strategies used by hagfish to acquire glucose at the intestine and provides insight into the evolution of such transport systems in early-diverging vertebrates.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Alberta, 116 St. and 85 Ave., Edmonton, Alberta T6G 2R3, Canada; Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield, British Columbia V0R 1B0, Canada.
| | - Alexander M Clifford
- Department of Biological Sciences, University of Alberta, 116 St. and 85 Ave., Edmonton, Alberta T6G 2R3, Canada; Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield, British Columbia V0R 1B0, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, 116 St. and 85 Ave., Edmonton, Alberta T6G 2R3, Canada; Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield, British Columbia V0R 1B0, Canada
| |
Collapse
|
10
|
Glover CN, Wood CM, Goss GG. Drinking and water permeability in the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 2017; 187:1127-1135. [DOI: 10.1007/s00360-017-1097-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
|
11
|
Blewett TA, Leonard EM. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:311-322. [PMID: 28122673 DOI: 10.1016/j.envpol.2017.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 05/07/2023]
Abstract
In freshwater settings the toxicity of the trace metal nickel (Ni) is relatively well understood. However, until recently, there was little knowledge regarding Ni toxicity in waters of higher salinity, where factors such as water chemistry and the physiology of estuarine and marine biota would be expected to alter toxicological impact. This review summarizes recent literature investigating Ni toxicity in marine and estuarine invertebrates and fish. As in freshwater, three main mechanisms of Ni toxicity exist: ionoregulatory impairment, inhibition of respiration, and promotion of oxidative stress. However, unlike in freshwater biota, where mechanisms of toxicity are largely Class-specific, the delineation of toxic mechanisms between different species is less defined. In general, despite changes in Ni speciation in marine waters, organism physiology appears to be the main driver of toxic impact, a fact that will need to be accounted for when adapting regulatory tools (such as bioavailability normalization) from freshwater to estuarine and marine environments.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, AB, Canada.
| | - Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Freedman CR, Fudge DS. Hagfish Houdinis: biomechanics and behavior of squeezing through small openings. ACTA ACUST UNITED AC 2017; 220:822-827. [PMID: 28087655 DOI: 10.1242/jeb.151233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022]
Abstract
Hagfishes are able to squeeze through small openings to gain entry to crevices, burrows, hagfish traps and carcasses, but little is known about how they do this, or what the limits of this ability are. The purpose of this study was to describe this ability, and to investigate possible mechanisms by which it is accomplished. We investigated the hypothesis that the passive movement of blood within a hagfish's flaccid subcutaneous sinus allows it to squeeze through narrow apertures that it would not be able to if it were turgid. To test this hypothesis, we analyzed videos of Atlantic hagfish (Myxine glutinosa) and Pacific hagfish (Eptatretus stoutii) moving through narrow apertures in the lab. We measured changes in body width as the animals moved through these openings and documented the behaviors associated with this ability. We found that hagfishes are able to pass through narrow slits that are less than one half the width of their bodies. Our results are consistent with the idea that a flaccid subcutaneous sinus allows hagfish to squeeze through narrow apertures by facilitating a rapid redistribution of venous blood. In addition, we describe nine distinct behaviors associated with this ability, including a form of non-undulatory locomotion also seen in snakes and lampreys. Our results illuminate a behavior that may be a critical component of the hagfish niche, as a result of its likely importance in feeding and avoiding predators.
Collapse
Affiliation(s)
- Calli R Freedman
- Dept. of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Douglas S Fudge
- Dept. of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 .,Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
13
|
Iron transport across the skin and gut epithelia of Pacific hagfish: Kinetic characterisation and effect of hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:1-7. [DOI: 10.1016/j.cbpa.2016.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
|
14
|
Glover CN, Blewett TA, Wood CM. Determining the functional role of waterborne amino acid uptake in hagfish nutrition: a constitutive pathway when fasting or a supplementary pathway when feeding? J Comp Physiol B 2016; 186:843-53. [DOI: 10.1007/s00360-016-1004-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 01/21/2023]
|
15
|
Clifford AM, Zimmer AM, Wood CM, Goss GG. It's all in the gills: Evaluation of O2 uptake in Pacific hagfish refutes a major respiratory role for the skin. J Exp Biol 2016; 219:2814-2818. [DOI: 10.1242/jeb.141598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/01/2016] [Indexed: 01/02/2023]
Abstract
Hagfish skin has been reported as an important site for ammonia excretion and as the major site of systemic oxygen acquisition. However, debate remains whether cutaneous O2 uptake is the dominant route of uptake; all evidence supporting this hypothesis has been derived using indirect measurements. Here we use separating chambers and direct measurements of oxygen consumption and ammonia excretion to quantify cutaneous and branchial exchanges in Pacific hagfish (Eptatretus stoutii) at rest and following exhaustive exercise. Hagfish primarily relied on the gills for both O2 uptake (81.0%) and ammonia excretion (70.7%). Following exercise, both O2 uptake and ammonia excretion increased, but only across the gill; cutaneous exchange was not increased. When branchial O2 availability was reduced by exposure to anteriorly-localized hypoxia (∼4.6 kPa O2), cutaneous O2 consumption was only slightly elevated on an absolute basis. These results refute a major role for cutaneous O2 acquisition in the Pacific hagfish.
Collapse
Affiliation(s)
- Alexander M. Clifford
- Department of Biological Sciences, University of Alberta, 116 St. and 85 Ave., Edmonton, Alberta, T6G 2R3, Canada
- Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield, British Columbia, V0R 1B0, Canada
| | - Alex M. Zimmer
- Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield, British Columbia, V0R 1B0, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Chris M. Wood
- Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield, British Columbia, V0R 1B0, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, 116 St. and 85 Ave., Edmonton, Alberta, T6G 2R3, Canada
- Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield, British Columbia, V0R 1B0, Canada
| |
Collapse
|