1
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
2
|
Zhang M, Zou Y, Xiao S, Hou J. Environmental DNA metabarcoding serves as a promising method for aquatic species monitoring and management: A review focused on its workflow, applications, challenges and prospects. MARINE POLLUTION BULLETIN 2023; 194:115430. [PMID: 37647798 DOI: 10.1016/j.marpolbul.2023.115430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Marine and freshwater biodiversity is under threat from both natural and manmade causes. Biological monitoring is currently a top priority for biodiversity protection. Given present limitations, traditional biological monitoring methods may not achieve the proposed monitoring aims. Environmental DNA metabarcoding technology reflects species information by capturing and extracting DNA from environmental samples, using molecular biology techniques to sequence and analyze the DNA, and comparing the obtained information with existing reference libraries to obtain species identification. However, its practical application has highlighted several limitations. This paper summarizes the main steps in the environmental application of eDNA metabarcoding technology in aquatic ecosystems, including the discovery of unknown species, the detection of invasive species, and evaluations of biodiversity. At present, with the rapid development of big data and artificial intelligence, certain advanced technologies and devices can be combined with environmental DNA metabarcoding technology to promote further development of aquatic species monitoring and management.
Collapse
Affiliation(s)
- Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yingtong Zou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Xiao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Improving Environmental DNA Sensitivity for Dreissenid Mussels by Targeting Tandem Repeat Regions of the Mitochondrial Genome. WATER 2022. [DOI: 10.3390/w14132069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent genetic revolution through the analysis of aquatic environmental DNA (eDNA) has become a powerful tool for improving the detection of rare and/or invasive species. For the majority of eDNA studies, genetic assays are designed to target mitochondrial genes commonly referred to as “barcode” regions. However, unlike the typical structure of an animal mitochondrial genome, those for the invasive zebra and quagga mussels are greatly expanded with large extended tandem repeat regions. These sections of repeated DNA can appear hundreds of times within the genome compared to a single copy for the mitochondrial barcode genes. This higher number of target copies per mitochondrial genome presents an opportunity to increase eDNA assay sensitivity for these species. Therefore, we designed and evaluated new eDNA assays to target the extended repeat sections for both zebra and quagga mussels. These assays lower the limit of detection of genomic DNA by 100-fold for zebra mussels and 10-fold for quagga mussels. Additionally, these newly developed assays provided longer durations of detection during degradation mesocosm experiments and greater sensitivity for eDNA detection from water samples collected across western Lake Erie compared to standard assays targeting mitochondrial genes. This work illustrates how understanding the complete genomic structure of an organism can improve eDNA analysis.
Collapse
|
4
|
Brandão-Dias PFP, Deatsch AE, Tank JL, Shogren AJ, Rosi EJ, Ruggiero ST, Tanner CE, Egan SP. Novel Field-Based Protein Detection Method Using Light Transmission Spectroscopy and Antibody Functionalized Gold Nanoparticles. NANO LETTERS 2022; 22:2611-2617. [PMID: 35362986 DOI: 10.1021/acs.nanolett.1c04142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein detection is a universal tool critical to many applications in medicine, agriculture, and biotechnology. We developed a novel protein detection method combining light transmission spectroscopy and particle-size analysis of gold nanospheres monovalently functionalized with polyclonal antibodies and applied it to an emerging challenge for such technologies─the monitoring of environmental proteins (eProteins) present in natural aquatic systems. These are an underreported source of pollution and include the pseudopersistent Cry toxins that enter aquatic ecosystems from surrounding genetically engineered crops. The assay is capable of detecting proteins in complex matrices, such as water samples collected in the field, making it a competitive assay for eProtein detection. It is sensitive, reaching 1.25 ng mL-1, and we demonstrate its application to the detection of Cry1Ab from subsurface tile-drain and streamwater samples from agricultural waterways. The assay can also be quickly adapted for other protein detection applications in the future.
Collapse
Affiliation(s)
| | - Alison E Deatsch
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jennifer L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arial J Shogren
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States
| | - Steven T Ruggiero
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carol E Tanner
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Fish Diversity Monitored by Environmental DNA in the Yangtze River Mainstream. FISHES 2021. [DOI: 10.3390/fishes7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surveys and assessments based on environmental DNA are not only efficient and time-saving, but also cause less harm to monitoring targets. Environmental DNA has become a common tool for the assessment and monitoring of aquatic organisms. In this study, we investigated fish resources in the Yangtze River mainstream using environmental DNA, and the variations in fish during two seasons (spring and autumn) were compared. The results showed that 13 species were identified in spring, and nine species of fish were identified in autumn. The fish with higher eDNA detection were Sinibotia superciliaris, Tachysurus fulvidraco, Cyprinus carpio, Ctenopharyngodon Idella, Monopterus albus, Acanthogobius hasta, Saurogobio dabryi, Oncorhynchus mykiss, Mugil cephalus, Odontamblyopus rubicundus. Seasonal variation between spring and autumn was not significant, and the environmental factors had different effects on fish assemblages during the two seasons. Our study used the eDNA technique to monitor the composition of fish in the spring and autumn in the Yangtze River mainstream, providing a new technology for the long-term management and protection of fishery resources in the region. Of course, problems such as pollution and insufficient databases are the current shortcomings of environmental DNA, which will be the focus of our future research and study.
Collapse
|
6
|
Feist SM, Lance RF. Advanced molecular-based surveillance of quagga and zebra mussels: A review of environmental DNA/RNA (eDNA/eRNA) studies and considerations for future directions. NEOBIOTA 2021. [DOI: 10.3897/neobiota.66.60751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive methods, capable of rapidly and accurately detecting aquatic invasive species, are in demand. Molecular-based approaches, such as environmental DNA (eDNA) surveys, satisfy these requirements and have grown in popularity. As such, eDNA surveys could aid the effort to combat the colonisation and spread of two notoriously invasive freshwater mussel species, the quagga mussel (Dreissena rostriformis bugensis) and zebra mussel (D. polymorpha), through improved surveillance ability. Here, we provide a review of dreissenid eDNA literature (both grey and published), summarising efforts involved in the development of various assays for use in multiple different technologies (e.g. quantitative PCR, high-throughput sequencing and loop-mediated isothermal amplification) and sampling scenarios. We discuss important discoveries made along the way, including novel revelations involving environmental RNA (eRNA), as well as the advantages and limitations of available methods and instrumentation. In closing, we highlight critical remaining gaps, where further investigation could lead to advancements in dreissenid monitoring capacity.
Collapse
|
7
|
Carvalho J, Garrido-Maestu A, Azinheiro S, Fuciños P, Barros-Velázquez J, De Miguel RJ, Gros V, Prado M. Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification. Sci Rep 2021; 11:10175. [PMID: 33986380 PMCID: PMC8119715 DOI: 10.1038/s41598-021-89574-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Zebra mussel (Dreissena polymorpha) is considered as one of the 100 most harmful IAS in the world. Traditional detection methods have limitations, and PCR based environmental DNA detection has provided interesting results for early warning. However, in the last years, the development of isothermal amplification methods has received increasing attention. Among them, loop-mediated isothermal amplification (LAMP) has several advantages, including its higher tolerance to the presence of inhibitors and the possibility of naked-eye detection, which enables and simplifies its potential use in decentralized settings. In the current study, a real-time LAMP (qLAMP) method for the detection of Dreissena polymorpha was developed and tested with samples from the Guadalquivir River basin, together with two real-time PCR (qPCR) methods using different detection chemistries, targeting a specific region of the mitochondrial gene cytochrome C oxidase subunit I. All three developed approaches were evaluated regarding specificity, sensitivity and time required for detection. Regarding sensitivity, both qPCR approaches were more sensitive than qLAMP by one order of magnitude, however the qLAMP method proved to be as specific and much faster being performed in just 9 min versus 23 and 29 min for the qPCR methods based on hydrolysis probe and intercalating dye respectively.
Collapse
Affiliation(s)
- Joana Carvalho
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.,Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Garrido-Maestu
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Sarah Azinheiro
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.,Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Fuciños
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón J De Miguel
- Department of Zoology, University of Cordoba, Córdoba, Spain.,Guadalictio S.L., Córdoba, Spain
| | - Verónica Gros
- Confederación Hidrográfica del Guadalquivir, Ministerio para la Transición Ecológica y el Reto Demográfico, Sevilla, Spain
| | - Marta Prado
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
8
|
Sarra A, Stanchieri GDP, De Marcellis A, Bordi F, Postorino P, Palange E. Laser Transmission Spectroscopy Based on Tunable-Gain Dual-Channel Dual-Phase LIA for Biological Nanoparticles Characterization. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:177-187. [PMID: 33606634 DOI: 10.1109/tbcas.2021.3060569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Size and absolute concentration of suspensions of nanoparticles are important information for the study and development of new materials and products in different industrial applications spanning from biotechnology and pharmaceutics to food preparation and conservation. Laser Transmission Spectroscopy (LTS) is the only methodology able to measure nanoparticle size and concentration by performing a single measurement. In this paper we report on a new variable gain calibration procedure for LTS-based instruments allowing to decrease of an order of magnitude the experimental indetermination of the particle size respect to the conventional LTS based on the double ratio technique. The variable gain calibration procedure makes use of a specifically designed tunable-gain, dual-channel, dual-phase Lock-In Amplifier (LIA) whose input voltage signals are those ones generated by two Si photodiodes that measure the laser beam intensities passing through the sample containing the nanoparticles and a reference optical path. The LTS variable gain calibration procedure has been validated by firstly using a suspension of NIST standard polystyrene nanoparticles even 36 hours after the calibration procedure was accomplished. The paper reports in detail the LIA implementation describing the design methodologies and the electronic circuits. As a case example of the characterization of biological nanostructures, we demonstrate that a single LTS measurement allowed to determine size density distribution of a population of extracellular vesicles extracted from orange juice (25 nm in size) with the presence of their aggregates having a size of 340 nm and a concentration smaller than 3 orders of magnitude.
Collapse
|
9
|
Apothéloz-Perret-Gentil L, Bouchez A, Cordier T, Cordonier A, Guéguen J, Rimet F, Vasselon V, Pawlowski J. Monitoring the ecological status of rivers with diatom eDNA metabarcoding: A comparison of taxonomic markers and analytical approaches for the inference of a molecular diatom index. Mol Ecol 2020; 30:2959-2968. [PMID: 32979002 PMCID: PMC8358953 DOI: 10.1111/mec.15646] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023]
Abstract
Recently, several studies demonstrated the usefulness of diatom eDNA metabarcoding as an alternative to assess the ecological quality of rivers and streams. However, the choice of the taxonomic marker as well as the methodology for data analysis differ between these studies, hampering the comparison of their results and effectiveness. The aim of this study was to compare two taxonomic markers commonly used in diatom metabarcoding and three distinct analytical approaches to infer a molecular diatom index. We used the values of classical morphological diatom index as a benchmark for this comparison. We amplified and sequenced both a fragment of the rbcL gene and the V4 region of the 18S rRNA gene for 112 epilithic samples from Swiss and French rivers. We inferred index values using three analytical approaches: by computing it directly from taxonomically assigned sequences, by calibrating de novo the ecovalues of all metabarcodes, and by using a supervised machine learning algorithm to train predictive models. In general, the values of index obtained using the two "taxonomy-free" approaches, encompassing molecular assignment and machine learning, were closer correlated to the values of the morphological index than the values based on taxonomically assigned sequences. The correlations of the three analytical approaches were higher in the case of rbcL compared to the 18S marker, highlighting the importance of the reference database which is more complete for the rbcL marker. Our study confirms the effectiveness of diatom metabarcoding as an operational tool for rivers ecological quality assessment and shows that the analytical approaches by-passing the taxonomic assignments are particularly efficient when reference databases are incomplete.
Collapse
Affiliation(s)
- Laure Apothéloz-Perret-Gentil
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,ID-Gene ecodiagnostics, Geneva, Switzerland
| | - Agnès Bouchez
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon, France
| | - Tristan Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,ID-Gene ecodiagnostics, Geneva, Switzerland
| | - Arielle Cordonier
- Department of Territorial Management, Water Ecology Service, Geneva, Switzerland
| | - Julie Guéguen
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon, France
| | - Frederic Rimet
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon, France
| | - Valentin Vasselon
- Pôle R&D "ECLA", Thonon-les-Bains, France.,OFB, Site INRA UMR CARRTEL, Thonon-les-Bains, France
| | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,ID-Gene ecodiagnostics, Geneva, Switzerland.,Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
10
|
Brunner JL. Pooled samples and eDNA-based detection can facilitate the "clean trade" of aquatic animals. Sci Rep 2020; 10:10280. [PMID: 32581260 PMCID: PMC7314758 DOI: 10.1038/s41598-020-66280-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
The regional and international trade of live animals facilitates the movement, spillover, and emergence of zoonotic and epizootic pathogens around the world. Detecting pathogens in trade is critical for preventing their continued movement and introduction, but screening a sufficient fraction to ensure rare infections are detected is simply infeasible for many taxa and settings because of the vast numbers of animals involved—hundreds of millions of live animals are imported into the U.S.A. alone every year. Batch processing pools of individual samples or using environmental DNA (eDNA)—the genetic material shed into an organism’s environment—collected from whole consignments of animals may substantially reduce the time and cost associated with pathogen surveillance. Both approaches, however, lack a framework with which to determine sampling requirements and interpret results. Here I present formulae for pooled individual samples (e.g,. swabs) and eDNA samples collected from finite populations and discuss key assumptions and considerations for their use with a focus on detecting Batrachochytrium salamandrivorans, an emerging pathogen that threatens global salamander diversity. While empirical validation is key, these formulae illustrate the potential for eDNA-based detection in particular to reduce sample sizes and help bring clean trade into reach for a greater number of taxa, places, and contexts.
Collapse
Affiliation(s)
- Jesse L Brunner
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, USA.
| |
Collapse
|
11
|
Gollasch S, Hewitt CL, Bailey S, David M. Introductions and transfers of species by ballast water in the Adriatic Sea. MARINE POLLUTION BULLETIN 2019; 147:8-15. [PMID: 30177381 DOI: 10.1016/j.marpolbul.2018.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/28/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Following the Editorial addressing the BALMAS project, we open the ballast water management special issue for the Adriatic Sea by providing background information on non-indigenous species and the mechanisms (vectors) of transport. Problems allocating introduction mechanisms for various species with certainty are described; in general, key introduction mechanisms are shipping, with ballast water and biofouling as dominant vectors, and aquaculture activities. The dominant mechanisms for introduction may differ through time, between regions and across species. We highlight ballast water as the focus of an international convention to prevent future introductions, reviewing management options and suggesting future research needs. This assessment is not restricted in application to the Adriatic Sea, but is applicable to other coastal waters. Results of such future work may contribute to the experience building phase planned by the International Maritime Organization for a harmonised implementation of the Ballast Water Management Convention.
Collapse
Affiliation(s)
| | - Chad L Hewitt
- University of Waikato, Faculty of Science & Engineering, Private Bag 3105, Hamilton 3240, New Zealand
| | - Sarah Bailey
- Fisheries and Oceans Canada, Great Lakes Laboratory for Fisheries and Aquatic Sciences, 867 Lakeshore Road, Burlington L7S 1A1, Canada
| | - Matej David
- Dr. Matej David Consult, Korte 13e, 6310 Izola, Slovenia
| |
Collapse
|
12
|
Marshall NT, Stepien CA. Invasion genetics from eDNA and thousands of larvae: A targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels. Ecol Evol 2019; 9:3515-3538. [PMID: 30988898 PMCID: PMC6434565 DOI: 10.1002/ece3.4985] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/30/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Identifying species and population genetic compositions of biological invasions at early life stages and/or from environmental (e)DNA using targeted high-throughput sequencing (HTS) metabarcode assays offers powerful and cost-effective means for early detection, analysis of spread patterns, and evaluating population changes. The present study develops, tests, and applies this method with a targeted sequence assay designed to simultaneously identify and distinguish between the closely related invasive Eurasian zebra and quagga mussels (Dreissena polymorpha and D. rostriformis) and their relatives and discern their respective population genetic patterns. Invasions of these dreissenid mussel species have markedly changed freshwater ecosystems throughout North America and Europe, exerting severe ecological and economic damage. Their planktonic early life stages (eggs and larvae) are morphologically indistinguishable, yet each species exerts differential ecological effects, with the quagga often outcompeting the zebra mussel as adults. Our targeted assay analyzes genetic variation from a diagnostic sequence region of the mitochondrial (mt)DNA cytochrome oxidase I (COI) gene, to assess temporal and spatial inter- and intra-specific genetic variability. The assay facilitates analysis of environmental (e)DNA from water, early life stages from thousands of individuals, and simultaneous analysis of 50-100 tagged field-collected samples. Experiments evaluated its accuracy and performance using: (a) mock laboratory communities containing known DNA quantities per taxon, (b) aquaria with mixed-species/haplotype compositions of adults, and (c) field-collected water and plankton versus traditional sampling of adult communities. Results delineated species compositions, relative abundances, and population-level diversity differences among ecosystems, habitats, time series, and life stages from two allopatric concurrent invasions in the Great Lakes (Lake Erie) and the Hudson River, which had separate founding histories. Findings demonstrate application of this targeted assay and our approach to accurately and simultaneously discern species- and population-level differences across spatial and temporal scales, facilitating early detection and ecological understanding of biological invasions.
Collapse
Affiliation(s)
- Nathaniel T. Marshall
- Genetics and Genomics Group, Department of Environmental SciencesThe University of ToledoToledoOhio
- Genetics and Genomics GroupNOAA Pacific Marine Environmental LaboratorySeattle, Washington
| | - Carol A. Stepien
- Genetics and Genomics GroupNOAA Pacific Marine Environmental LaboratorySeattle, Washington
| |
Collapse
|
13
|
Gerhard WA, Gunsch CK. Metabarcoding and machine learning analysis of environmental DNA in ballast water arriving to hub ports. ENVIRONMENT INTERNATIONAL 2019; 124:312-319. [PMID: 30660844 DOI: 10.1016/j.envint.2018.12.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
While ballast water has long been linked to the global transport of invasive species, little is known about its microbiome. Herein, we used 16S rRNA gene sequencing and metabarcoding to perform the most comprehensive microbiological survey of ballast water arriving to hub ports to date. In total, we characterized 41 ballast, 20 harbor, and 6 open ocean water samples from four world ports (Shanghai, China; Singapore; Durban, South Africa; Los Angeles, California). In addition, we cultured Enterococcus and E. coli to evaluate adherence to International Maritime Organization standards for ballast discharge. Five of the 41 vessels - all of which were loaded in China - did not comply with standards for at least one indicator organism. Dominant bacterial taxa of ballast water at the class level were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia. Ballast water samples were composed of significantly lower proportions of Oxyphotobacteria than either ocean or harbor samples. Linear discriminant analysis (LDA) effect size (LEfSe) and machine learning were used to identify and test potential biomarkers for classifying sample types (ocean, harbor, ballast). Eight candidate biomarkers were used to achieve 81% (k nearest neighbors) to 88% (random forest) classification accuracy. Further research of these biomarkers could aid the development of techniques to rapidly assess ballast water origin.
Collapse
Affiliation(s)
- William A Gerhard
- Duke University, Department of Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC 27708-0287, United States
| | - Claudia K Gunsch
- Duke University, Department of Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC 27708-0287, United States.
| |
Collapse
|
14
|
Deatsch AE, Shogren AJ, Egan SP, Tank JL, Sun N, Ruggiero ST, Tanner CE. Rapid quantitative protein detection by light transmission spectroscopy. APPLIED OPTICS 2019; 58:1121-1127. [PMID: 30874161 DOI: 10.1364/ao.58.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Rapid, sensitive, and quantitative protein detection is critical for many applications in medicine, environmental monitoring, and the food industry. Advancements in detection of proteins include the use of antigen-antibody binding; however, many current methods are time-consuming and have limiting factors such as low sensitivity and the inability to provide absolute values. We present a new high-throughput method for protein detection using light transmission spectroscopy (LTS), which can quantify and size nanoparticles in fluid suspension. LTS can quantify proteins directly and target specific proteins through antigen-antibody binding. This work shows that LTS can distinguish between and quantify bovine serum albumin, its antibody, and the BSA + Ab complex and determine BSA protein concentrations down to 5 μg/mL. We use both Mie and discrete dipole approximation models to provide geometric insight into the binding process.
Collapse
|
15
|
Shogren AJ, Tank JL, Egan SP, August O, Rosi EJ, Hanrahan BR, Renshaw MA, Gantz CA, Bolster D. Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8530-8537. [PMID: 29995389 DOI: 10.1021/acs.est.8b01822] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The increasing use of environmental DNA (eDNA) for determination of species presence in aquatic ecosystems is an invaluable technique for both ecology as a field and for the management of aquatic ecosystems. We examined the degradation dynamics of fish eDNA using an experimental array of recirculating streams, also using a "nested" primer assay to estimate degradation among eDNA fragment sizes. We introduced eDNA into streams with a range of water velocities (0.1-0.8 m s-1) and substrate biofilm coverage (0-100%) and monitored eDNA concentrations over time (∼10 d) to assess how biophysical conditions influence eDNA persistence. We found that the presence of biofilm significantly increased initial decay rates relative to previous studies conducted in nonflowing microcosms, suggesting important differences in detection and persistence in lentic vs lotic systems. Lastly, by using a nested primer assay that targeted different size eDNA fragments, we found that fragment size altered both the estimated rate constant coefficients, as well as eDNA detectability over time. Larger fragments (>600 bp) were quickly degraded, while shorter fragments (<100 bp) remained detectable for the entirety of the experiment. When using eDNA as a stream monitoring tool, understanding environmental factors controlling eDNA degradation will be critical for optimizing eDNA sampling strategies.
Collapse
Affiliation(s)
- Arial J Shogren
- Department of Biological Sciences, Environmental Change Initiative , University of Notre Dame , Notre Dame , Indiana 46656 , United States
| | - Jennifer L Tank
- Department of Biological Sciences, Environmental Change Initiative , University of Notre Dame , Notre Dame , Indiana 46656 , United States
| | - Scott P Egan
- Biosciences Department , Rice University , Houston , Texas 77251 , United States
| | - Olivia August
- Department of Biological Sciences, Environmental Change Initiative , University of Notre Dame , Notre Dame , Indiana 46656 , United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook , New York 12545 , United States
| | - Brittany R Hanrahan
- Department of Biological Sciences, Environmental Change Initiative , University of Notre Dame , Notre Dame , Indiana 46656 , United States
| | - Mark A Renshaw
- Department of Biological Sciences, Environmental Change Initiative , University of Notre Dame , Notre Dame , Indiana 46656 , United States
| | - Crysta A Gantz
- Department of Biological Sciences, Environmental Change Initiative , University of Notre Dame , Notre Dame , Indiana 46656 , United States
| | - Diogo Bolster
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
16
|
Li J, Lawson Handley LJ, Read DS, Hänfling B. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding. Mol Ecol Resour 2018; 18:1102-1114. [PMID: 29766663 DOI: 10.1111/1755-0998.12899] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022]
Abstract
Environmental DNA (eDNA) is a promising tool for rapid and noninvasive biodiversity monitoring. eDNA density is low in environmental samples, and a capture method, such as filtration, is often required to concentrate eDNA for downstream analyses. In this study, six treatments, with differing filter types and pore sizes for eDNA capture, were compared for their efficiency and accuracy to assess fish community structure with known fish abundance and biomass via eDNA metabarcoding. Our results showed that different filters (with the exception of 20-μm large-pore filters) were broadly consistent in their DNA capture ability. The 0.45-μm filters performed the best in terms of total DNA yield, probability of species detection, repeatability within pond and consistency between ponds. However performance of 0.45-μm filters was only marginally better than for 0.8-μm filters, while filtration time was significantly longer. Given this trade-off, the 0.8-μm filter is the optimal pore size of membrane filter for turbid, eutrophic and high fish density ponds analysed here. The 0.45-μm Sterivex enclosed filters performed reasonably well and are suitable in situations where on-site filtration is required. Finally, prefilters are applied only if absolutely essential for reducing the filtration time or increasing the throughput volume of the capture filters. In summary, we found encouraging similarity in the results obtained from different filtration methods, but the optimal pore size of filter or filter type might strongly depend on the water type under study.
Collapse
Affiliation(s)
- Jianlong Li
- Evolutionary and Environmental Genomics Group (@EvoHull), School of Environmental Sciences, University of Hull (UoH), Hull, UK
| | - Lori-Jayne Lawson Handley
- Evolutionary and Environmental Genomics Group (@EvoHull), School of Environmental Sciences, University of Hull (UoH), Hull, UK
| | - Daniel S Read
- Centre for Ecology & Hydrology (CEH), Wallingford, Oxfordshire, UK
| | - Bernd Hänfling
- Evolutionary and Environmental Genomics Group (@EvoHull), School of Environmental Sciences, University of Hull (UoH), Hull, UK
| |
Collapse
|
17
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Environmental DNA detection of aquatic invasive plants in lab mesocosm and natural field conditions. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1718-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Darling JA, Frederick RM. Nucleic acids-based tools for ballast water surveillance, monitoring, and research. JOURNAL OF SEA RESEARCH 2018; 133:43-52. [PMID: 30147432 PMCID: PMC6104837 DOI: 10.1016/j.seares.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Understanding the risks of biological invasion posed by ballast water-whether in the context of compliance testing, routine monitoring, or basic research-is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools available for tackling that problem. The past several decades have seen growing application of genetic methods for the study of biodiversity, driven in large part by dramatic technological advances in nucleic acids analysis. Monitoring approaches based on such methods have the potential to increase dramatically sampling throughput for biodiversity assessments, and to improve on the sensitivity, specificity, and taxonomic accuracy of traditional approaches. The application of targeted detection tools (largely focused on PCR but increasingly incorporating novel probe-based methodologies) has led to a paradigm shift in rare species monitoring, and such tools have already been applied for early detection in the context of ballast water surveillance. Rapid improvements in community profiling approaches based on high throughput sequencing (HTS) could similarly impact broader efforts to catalogue biodiversity present in ballast tanks, and could provide novel opportunities to better understand the risks of biotic exchange posed by ballast water transport-and the effectiveness of attempts to mitigate those risks. These various approaches still face considerable challenges to effective implementation, depending on particular management or research needs. Compliance testing, for instance, remains dependent on accurate quantification of viable target organisms; while tools based on RNA detection show promise in this context, the demands of such testing require considerable additional investment in methods development. In general surveillance and research contexts, both targeted and community-based approaches are still limited by various factors: quantification remains a challenge (especially for taxa in larger size classes), gaps in nucleic acids reference databases are still considerable, uncertainties in taxonomic assignment methods persist, and many applications have not yet matured sufficiently to offer standardized methods capable of meeting rigorous quality assurance standards. Nevertheless, the potential value of these tools, their growing utilization in biodiversity monitoring, and the rapid methodological advances over the past decade all suggest that they should be seriously considered for inclusion in the ballast water surveillance toolkit.
Collapse
Affiliation(s)
- John A. Darling
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Raymond M. Frederick
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Edison, NJ, USA
| |
Collapse
|
20
|
Nevers MB, Byappanahalli MN, Morris CC, Shively D, Przybyla-Kelly K, Spoljaric AM, Dickey J, Roseman EF. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus). PLoS One 2018; 13:e0191720. [PMID: 29357382 PMCID: PMC5777661 DOI: 10.1371/journal.pone.0191720] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 12/29/2022] Open
Abstract
Environmental DNA (eDNA) is revolutionizing biodiversity monitoring, occupancy estimates, and real-time detections of invasive species. In the Great Lakes, the round goby (Neogobius melanostomus), an invasive benthic fish from the Black Sea, has spread to encompass all five lakes and many tributaries, outcompeting or consuming native species; however, estimates of round goby abundance are confounded by behavior and habitat preference, which impact reliable methods for estimating their population. By integrating eDNA into round goby monitoring, improved estimates of biomass may be obtainable. We conducted mesocosm experiments to estimate rates of goby DNA shedding and decay. Further, we compared eDNA with several methods of traditional field sampling to compare its use as an alternative/complementary monitoring method. Environmental DNA decay was comparable to other fish species, and first-order decay was lower at 12°C (k = 0.043) than at 19°C (k = 0.058). Round goby eDNA was routinely detected in known invaded sites of Lake Michigan and its tributaries (range log10 4.8-6.2 CN/L), but not upstream of an artificial fish barrier. Traditional techniques (mark-recapture, seining, trapping) in Lakes Michigan and Huron resulted in fewer, more variable detections than eDNA, but trapping and eDNA were correlated (Pearson R = 0.87). Additional field testing will help correlate round goby abundance with eDNA, providing insight on its role as a prey fish and its impact on food webs.
Collapse
Affiliation(s)
- Meredith B. Nevers
- U.S. Geological Survey, Great Lakes Science Center, Lake Michigan Ecological Research Station, Chesterton, Indiana, United States of America
- * E-mail:
| | - Murulee N. Byappanahalli
- U.S. Geological Survey, Great Lakes Science Center, Lake Michigan Ecological Research Station, Chesterton, Indiana, United States of America
| | - Charles C. Morris
- National Park Service, Indiana Dunes National Lakeshore, Porter, Indiana, United States of America
| | - Dawn Shively
- U.S. Geological Survey, Great Lakes Science Center, Lake Michigan Ecological Research Station, Chesterton, Indiana, United States of America
| | - Kasia Przybyla-Kelly
- U.S. Geological Survey, Great Lakes Science Center, Lake Michigan Ecological Research Station, Chesterton, Indiana, United States of America
| | - Ashley M. Spoljaric
- U.S. Geological Survey, Great Lakes Science Center, Lake Michigan Ecological Research Station, Chesterton, Indiana, United States of America
| | - Joshua Dickey
- National Park Service, Indiana Dunes National Lakeshore, Porter, Indiana, United States of America
| | - Edward F. Roseman
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, Michigan, United States of America
| |
Collapse
|
21
|
Trebitz AS, Hoffman JC, Darling JA, Pilgrim EM, Kelly JR, Brown EA, Chadderton WL, Egan SP, Grey EK, Hashsham SA, Klymus KE, Mahon AR, Ram JL, Schultz MT, Stepien CA, Schardt JC. Early detection monitoring for aquatic non-indigenous species: Optimizing surveillance, incorporating advanced technologies, and identifying research needs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 202:299-310. [PMID: 28738203 PMCID: PMC5927374 DOI: 10.1016/j.jenvman.2017.07.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 05/19/2023]
Abstract
Following decades of ecologic and economic impacts from a growing list of nonindigenous and invasive species, government and management entities are committing to systematic early- detection monitoring (EDM). This has reinvigorated investment in the science underpinning such monitoring, as well as the need to convey that science in practical terms to those tasked with EDM implementation. Using the context of nonindigenous species in the North American Great Lakes, this article summarizes the current scientific tools and knowledge - including limitations, research needs, and likely future developments - relevant to various aspects of planning and conducting comprehensive EDM. We begin with the scope of the effort, contrasting target-species with broad-spectrum monitoring, reviewing information to support prioritization based on species and locations, and exploring the challenge of moving beyond individual surveys towards a coordinated monitoring network. Next, we discuss survey design, including effort to expend and its allocation over space and time. A section on sample collection and analysis overviews the merits of collecting actual organisms versus shed DNA, reviews the capabilities and limitations of identification by morphology, DNA target markers, or DNA barcoding, and examines best practices for sample handling and data verification. We end with a section addressing the analysis of monitoring data, including methods to evaluate survey performance and characterize and communicate uncertainty. Although the body of science supporting EDM implementation is already substantial, research and information needs (many already actively being addressed) include: better data to support risk assessments that guide choice of taxa and locations to monitor; improved understanding of spatiotemporal scales for sample collection; further development of DNA target markers, reference barcodes, genomic workflows, and synergies between DNA-based and morphology-based taxonomy; and tools and information management systems for better evaluating and communicating survey outcomes and uncertainty.
Collapse
Affiliation(s)
- Anett S Trebitz
- U.S. Environmental Protection Agency, National Health and Environmental Effects Laboratory, Duluth, MN, 55804, USA.
| | - Joel C Hoffman
- U.S. Environmental Protection Agency, National Health and Environmental Effects Laboratory, Duluth, MN, 55804, USA.
| | - John A Darling
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Durham, NC, 27713, USA.
| | - Erik M Pilgrim
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH, 45268, USA.
| | - John R Kelly
- U.S. Environmental Protection Agency, National Health and Environmental Effects Laboratory, Duluth, MN, 55804, USA.
| | - Emily A Brown
- Université du Québec à Montréal, Montreal, Québec, H2L 2C4, Canada.
| | - W Lindsay Chadderton
- The Nature Conservancy, c/o Environmental Change Initiative, South Bend, IN, 46617, USA.
| | - Scott P Egan
- Rice University, BioSciences Department, Houston, TX, 77005, USA.
| | - Erin K Grey
- Governors State University, Division of Chemistry and Biological Sciences, University Park, IL, 60484, USA.
| | - Syed A Hashsham
- Engineering Research Center, Michigan State University, East Lansing, MI, 48823, USA.
| | - Katy E Klymus
- University of Toledo, Great Lakes Genetics/Genomics Laboratory, Department of Environmental Sciences, Toledo, OH, 43606, USA.
| | - Andrew R Mahon
- Central Michigan University, Department of Biology, Institute for Great Lakes Research, Mount Pleasant, MI, 48859, USA.
| | - Jeffrey L Ram
- Wayne State University, Department of Physiology, Detroit, MI, 48201, USA.
| | - Martin T Schultz
- U.S. Army Corps of Engineers, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA.
| | - Carol A Stepien
- National Oceanic and Atmospheric Administration, Pacific Marine Environmental Lab, Seattle, WA, 98115, USA.
| | - James C Schardt
- U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL, 60604, USA.
| |
Collapse
|
22
|
Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol 2017; 26:5872-5895. [PMID: 28921802 DOI: 10.1111/mec.14350] [Citation(s) in RCA: 655] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-throughput sequencing ("HTS") platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed "environmental DNA" or "eDNA"). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called "eDNA metabarcoding" and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.
Collapse
Affiliation(s)
- Kristy Deiner
- Atkinson Center for a Sustainable Future, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Holly M Bik
- Department of Nematology, University of California, Riverside, CA, USA
| | - Elvira Mächler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Mathew Seymour
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK
| | | | - Florian Altermatt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK
| | - Iliana Bista
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - David M Lodge
- Atkinson Center for a Sustainable Future, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Natasha de Vere
- Conservation and Research Department, National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Louis Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada
| |
Collapse
|
23
|
Darling JA, Galil BS, Carvalho GR, Rius M, Viard F, Piraino S. Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. MARINE POLICY 2017; 85:56-64. [PMID: 29681680 PMCID: PMC5909192 DOI: 10.1016/j.marpol.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The European Union's Marine Strategy Framework Directive (MSFD) aims to adopt integrated ecosystem management approaches to achieve or maintain "Good Environmental Status" for marine waters, habitats and resources, including mitigation of the negative effects of non-indigenous species (NIS). The Directive further seeks to promote broadly standardized monitoring efforts and assessment of temporal trends in marine ecosystem condition, incorporating metrics describing the distribution and impacts of NIS. Accomplishing these goals will require application of advanced tools for NIS surveillance and risk assessment, particularly given known challenges associated with surveying and monitoring with traditional methods. In the past decade, a host of methods based on nucleic acids (DNA and RNA) analysis have been developed or advanced that promise to dramatically enhance capacity in assessing and managing NIS. However, ensuring that these rapidly evolving approaches remain accessible and responsive to the needs of resource managers remains a challenge. This paper provides recommendations for future development of these genetic tools for assessment and management of NIS in marine systems, within the context of the explicit requirements of the MSFD. Issues considered include technological innovation, methodological standardization, data sharing and collaboration, and the critical importance of shared foundational resources, particularly integrated taxonomic expertise. Though the recommendations offered here are not exhaustive, they provide a basis for future intentional (and international) collaborative development of a genetic toolkit for NIS research, capable of fulfilling the immediate and long term goals of marine ecosystem and resource conservation.
Collapse
Affiliation(s)
- John A. Darling
- National Exposure Research Laboratory, United States Environmental
Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711,
USA
- Corresponding author.
(J.A. Darling)
| | - Bella S. Galil
- The Steinhardt Museum of Natural History, Israel National Center for
Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre, University of
Southampton, UK
- Centre for Ecological Genomics and Wildlife Conservation, University
of Johannesburg, South Africa
| | - Frédérique Viard
- Sorbonne Université, Université Paris 06, CNRS, UMR
7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff,
France
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali,
Università del Salento, Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Roma, Italy
| |
Collapse
|
24
|
Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples. Sci Rep 2016; 6:39067. [PMID: 27966602 PMCID: PMC5155230 DOI: 10.1038/srep39067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 11/17/2016] [Indexed: 02/02/2023] Open
Abstract
The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations.
Collapse
|
25
|
Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment. Sci Rep 2016; 6:22441. [PMID: 26931160 PMCID: PMC4773755 DOI: 10.1038/srep22441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/15/2016] [Indexed: 01/04/2023] Open
Abstract
An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors.
Collapse
|
26
|
Dougherty MM, Larson ER, Renshaw MA, Gantz CA, Egan SP, Erickson DM, Lodge DM. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J Appl Ecol 2016; 53:722-732. [PMID: 27773942 PMCID: PMC5053277 DOI: 10.1111/1365-2664.12621] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/02/2016] [Indexed: 11/27/2022]
Abstract
Early detection is invaluable for the cost‐effective control and eradication of invasive species, yet many traditional sampling techniques are ineffective at the low population abundances found at the onset of the invasion process. Environmental DNA (eDNA) is a promising and sensitive tool for early detection of some invasive species, but its efficacy has not yet been evaluated for many taxonomic groups and habitat types. We evaluated the ability of eDNA to detect the invasive rusty crayfish Orconectes rusticus and to reflect patterns of its relative abundance, in upper Midwest, USA, inland lakes. We paired conventional baited trapping as a measure of crayfish relative abundance with water samples for eDNA, which were analysed in the laboratory with a qPCR assay. We modelled detection probability for O. rusticus eDNA using relative abundance and site characteristics as covariates and also tested the relationship between eDNA copy number and O. rusticus relative abundance. We detected O. rusticus eDNA in all lakes where this species was collected by trapping, down to low relative abundances, as well as in two lakes where trap catch was zero. Detection probability of O. rusticus eDNA was well predicted by relative abundance of this species and lake water clarity. However, there was poor correspondence between eDNA copy number and O. rusticus relative abundance estimated by trap catches. Synthesis and applications. Our study demonstrates a field and laboratory protocol for eDNA monitoring of crayfish invasions, with results of statistical models that provide guidance of sampling effort and detection probabilities for researchers in other regions and systems. We propose eDNA be included as a tool in surveillance for invasive or imperilled crayfishes and other benthic arthropods.
Our study demonstrates a field and laboratory protocol for eDNA monitoring of crayfish invasions, with results of statistical models that provide guidance of sampling effort and detection probabilities for researchers in other regions and systems. We propose eDNA be included as a tool in surveillance for invasive or imperilled crayfishes and other benthic arthropods.
Collapse
Affiliation(s)
- Matthew M Dougherty
- Department of Biological Sciences University of Notre Dame Notre Dame IN 46556 USA; Catholic Theological Union Chicago IL 60615 USA
| | - Eric R Larson
- Daniel P. Haerther Center for Conservation and Research John G. Shedd Aquarium Chicago IL 60605 USA; Environmental Change Initiative University of Notre Dame South Bend IN 46617 USA; Department of Natural Resources and Environmental Sciences University of Illinois Urbana IL 61801 USA
| | - Mark A Renshaw
- Department of Biological Sciences University of Notre Dame Notre Dame IN 46556 USA
| | - Crysta A Gantz
- Department of Biological Sciences University of Notre Dame Notre Dame IN 46556 USA
| | - Scott P Egan
- Department of BioSciences Rice University Houston TX 77251 USA
| | - Daniel M Erickson
- Department of Biological Sciences University of Notre Dame Notre Dame IN 46556 USA
| | - David M Lodge
- Department of Biological Sciences University of Notre Dame Notre Dame IN 46556 USA; Environmental Change Initiative University of Notre Dame South Bend IN 46617 USA
| |
Collapse
|