1
|
Zhang K, Pu Q, Liu J, Hao Z, Zhang L, Zhang L, Fu X, Meng B, Feng X. Using Mercury Stable Isotopes to Quantify Directional Soil-Atmosphere Hg(0) Exchanges in Rice Paddy Ecosystems: Implications for Hg(0) Emissions to the Atmosphere from Land Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11053-11062. [PMID: 38867369 DOI: 10.1021/acs.est.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Gaseous elemental mercury [Hg(0)] emissions from soils constitute a large fraction of global total Hg(0) emissions. Existing studies do not distinguish biotic- and abiotic-mediated emissions and focus only on photoreduction mediated emissions, resulting in an underestimation of soil Hg(0) emissions into the atmosphere. In this study, directional mercury (Hg) reduction pathways in paddy soils were identified using Hg isotopes. Results showed significantly different isotopic compositions of Hg(0) between those produced from photoreduction (δ202Hg = -0.80 ± 0.67‰, Δ199Hg = -0.38 ± 0.18‰), microbial reduction (δ202Hg = -2.18 ± 0.25‰, Δ199Hg = 0.29 ± 0.38‰), and abiotic dark reduction (δ202Hg = -2.31 ± 0.25‰, Δ199Hg = 0.50 ± 0.22‰). Hg(0) exchange fluxes between the atmosphere and the paddy soils were dominated by emissions, with the average flux ranging from 2.2 ± 5.7 to 16.8 ± 21.7 ng m-2 h-1 during different sampling periods. Using an isotopic signature-based ternary mixing model, we revealed that photoreduction is the most important contributor to Hg(0) emissions from paddy soils. Albeit lower, microbial and abiotic dark reduction contributed up to 36 ± 22 and 25 ± 15%, respectively, to Hg(0) emissions on the 110th day. These novel findings can help improve future estimation of soil Hg(0) emissions from rice paddy ecosystems, which involve complex biotic-, abiotic-, and photoreduction processes.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhu W, Li Z, Li P, Sommar J, Fu X, Feng X, Yu B, Zhang W, Reis AT, Pereira E. Legacy Mercury Re-emission and Subsurface Migration at Contaminated Sites Constrained by Hg Isotopes and Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5336-5346. [PMID: 38472090 DOI: 10.1021/acs.est.3c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The re-emission and subsurface migration of legacy mercury (Hg) are not well understood due to limited knowledge of the driving processes. To investigate these processes at a decommissioned chlor-alkali plant, we used mercury stable isotopes and chemical speciation analysis. The isotopic composition of volatilized Hg(0) was lighter compared to the bulk total Hg (THg) pool in salt-sludge and adjacent surface soil with mean ε202HgHg(0)-THg values of -3.29 and -2.35‰, respectively. Hg(0) exhibited dichotomous directions (E199HgHg(0)-THg = 0.17 and -0.16‰) of mass-independent fractionation (MIF) depending on the substrate from which it was emitted. We suggest that the positive MIF enrichment during Hg(0) re-emission from salt-sludge was overall controlled by the photoreduction of Hg(II) primarily ligated by Cl- and/or the evaporation of liquid Hg(0). In contrast, O-bonded Hg(II) species were more important in the adjacent surface soils. The migration of Hg from salt-sludge to subsurface soil associated with selective Hg(II) partitioning and speciation transformation resulted in deep soils depleted in heavy isotopes (δ202Hg = -2.5‰) and slightly enriched in odd isotopes (Δ199Hg = 0.1‰). When tracing sources using Hg isotopes, it is important to exercise caution, particularly when dealing with mobilized Hg, as this fraction represents only a small portion of the sources.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Zhonggen Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- School of Resources and Environment, Zunyi Normal College, Zunyi 563006, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Yu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ana T Reis
- EPIUnit─Instituto de Saúde Pública, Universidade do Porto, Porto 4050-600, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto 4050-600, Portugal
| | - Eduarda Pereira
- LAQV-REQUIMTE─Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
3
|
Huang Y, Yi J, Huang Y, Zhong S, Zhao B, Zhou J, Wang Y, Zhu Y, Du Y, Li F. Insights into the reduction of methylmercury accumulation in rice grains through biochar application: Hg transformation, isotope fractionation, and transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122863. [PMID: 37925005 DOI: 10.1016/j.envpol.2023.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, easily moves from the soil into rice plants and subsequently accumulates within the grains. Although biochar can reduce MeHg accumulation in rice grains, the precise mechanism underlying biochar-mediated responses to mercury (Hg) stress, specifically regarding MeHg accumulation in rice, remains poorly understood. In the current study, we employed a 4% biochar amendment to remediate Hg-contaminated paddy soil, elucidate the impacts of biochar on MeHg accumulation through a comprehensive analysis involving Hg isotopic fractionation and transcriptomic analyses. The results demonstrated that biochar effectively lowered the levels of MeHg in paddy soils by decreasing bioavailable Hg and microbial Hg methylation. Furthermore, biochar reduced the uptake and translocation of MeHg in rice plants, ultimately leading to a reduction MeHg accumulation in rice grains. During the process of total mercury (THg) uptake, biochar induced a more pronounced negative isotope fractionation magnitude, whereas the effect was less pronounced during the upward transport of THg. Conversely, biochar caused a more pronounced positive isotope fractionation magnitude during the upward transport of MeHg. Transcriptomics analyses revealed that biochar altered the expression levels of genes associated with the metabolism of cysteine, glutathione, and metallothionein, cell wall biogenesis, and transport, which possibly enhance the sequestration of MeHg in rice roots. These findings provide novel insights into the effects of biochar application on Hg transformation and transport, highlighting its role in mitigating MeHg accumulation in rice.
Collapse
Affiliation(s)
- Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Bin Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Norwegian University of Life Sciences, Department of Environmental Sciences, 5003, N-1432 Ås, Norway
| | - Jing Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yuxuan Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yiwen Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Liu S, Hu R, Peng N, Zhou Z, Chen R, He Z, Wang C. Phylogenetic and ecophysiological novelty of subsurface mercury methylators in mangrove sediments. THE ISME JOURNAL 2023; 17:2313-2325. [PMID: 37880540 PMCID: PMC10689504 DOI: 10.1038/s41396-023-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Mangrove sediment is a crucial component in the global mercury (Hg) cycling and acts as a hotspot for methylmercury (MeHg) production. Early evidence has documented the ubiquity of well-studied Hg methylators in mangrove superficial sediments; however, their diversity and metabolic adaptation in the more anoxic and highly reduced subsurface sediments are lacking. Through MeHg biogeochemical assay and metagenomic sequencing, we found that mangrove subsurface sediments (20-100 cm) showed a less hgcA gene abundance but higher diversity of Hg methylators than superficial sediments (0-20 cm). Regional-scale investigation of mangrove subsurface sediments spanning over 1500 km demonstrated a prevalence and family-level novelty of Hg-methylating microbial lineages (i.e., those affiliated to Anaerolineae, Phycisphaerae, and Desulfobacterales). We proposed the candidate phylum Zixibacteria lineage with sulfate-reducing capacity as a currently understudied Hg methylator across anoxic environments. Unlike other Hg methylators, the Zixibacteria lineage does not use the Wood-Ljungdahl pathway but has unique capabilities of performing methionine synthesis to donate methyl groups. The absence of cobalamin biosynthesis pathway suggests that this Hg-methylating lineage may depend on its syntrophic partners (i.e., Syntrophobacterales members) for energy in subsurface sediments. Our results expand the diversity of subsurface Hg methylators and uncover their unique ecophysiological adaptations in mangrove sediments.
Collapse
Affiliation(s)
- Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Nenglong Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruihan Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Li C, Jiskra M, Nilsson MB, Osterwalder S, Zhu W, Mauquoy D, Skyllberg U, Enrico M, Peng H, Song Y, Björn E, Bishop K. Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes. Nat Commun 2023; 14:7389. [PMID: 37968321 PMCID: PMC10652010 DOI: 10.1038/s41467-023-43164-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear. Here we present results from a comprehensive study covering concentrations and isotopic signatures of Hg in an open boreal peatland system to identify post-depositional Hg redox transformation processes. Isotope mass balances suggest photoreduction of HgII is the predominant process by which 30% of annually deposited Hg is emitted back to the atmosphere. Isotopic analyses indicate that above the water table, dark abiotic oxidation decreases peat soil gaseous Hg0 concentrations. Below the water table, supersaturation of gaseous Hg is likely created more by direct photoreduction of rainfall rather than by reduction and release of Hg from the peat soil. Identification and quantification of these light-driven and dark redox processes advance our understanding of the fate of Hg in peatlands, including the potential for mobilization and methylation of HgII.
Collapse
Affiliation(s)
- Chuxian Li
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Dmitri Mauquoy
- School Geosciences, University of Aberdeen, Scotland, UK
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maxime Enrico
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, IPREM, Pau, France
| | - Haijun Peng
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yu Song
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Du H, Wang X, Yuan W, Wu F, Jia L, Liu N, Lin CJ, Gan J, Zeng F, Wang K, Feng X. Elevated Mercury Deposition, Accumulation, and Migration in a Karst Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17490-17500. [PMID: 37908057 DOI: 10.1021/acs.est.3c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The karst forest is one of the extremely sensitive and fragile ecosystems in southwest China, where the biogeochemical cycling of mercury (Hg) is largely unknown. In this study, we investigated the litterfall deposition, accumulation, and soil migration of Hg in an evergreen-deciduous broadleaf karst forest using high-resolution sampling and stable isotope techniques. Results show that elevated litterfall Hg concentrations and fluxes in spring are due to the longer lifespan of evergreen tree foliage exposed to atmospheric Hg0. The hillslope has 1-2 times higher litterfall Hg concentration compared to the low-lying land due to the elevated atmospheric Hg levels induced by topographical and physiological factors. The Hg isotopic model suggests that litterfall Hg depositions account for ∼80% of the Hg source contribution in surface soil. The spatial trend of litterfall Hg deposition cannot solely explain the trend of Hg accumulation in the surface soil. Indeed, soil erosion enhances Hg accumulation in soil of low-lying land, with soil Hg concentration up to 5-times greater than the concentration on the hillslope. The high level of soil Hg migration in the karst forest poses significant ecological risks to groundwater and downstream aquatic ecosystems.
Collapse
Affiliation(s)
- Hu Du
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Jiang Gan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Fuping Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Kelin Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
7
|
Wu F, Yang L, Wang X, Yuan W, Lin CJ, Feng X. Mercury Accumulation and Sequestration in a Deglaciated Forest Chronosequence: Insights from Particulate and Mineral-Associated Forms of Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16512-16521. [PMID: 37857302 DOI: 10.1021/acs.est.3c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Understanding mercury (Hg) complexation with soil organic matter is important in assessing atmospheric Hg accumulation and sequestration processes in forest ecosystems. Separating soil organic matter into particulate organic matter (POM) and mineral-associated organic matter (MAOM) can help in the understanding of Hg dynamics and cycling due to their very different chemical constituents and associated formation and functioning mechanisms. The concentration of Hg, carbon, and nitrogen contents and isotopic signatures of POM and MAOM in a deglaciated forest chronosequence were determined to construct the processes of Hg accumulation and sequestration. The results show that Hg in POM and MAOM are mainly derived from atmospheric Hg0 deposition. Hg concentration in MAOM is up to 76% higher than that in POM of broadleaf forests and up to 60% higher than that in POM of coniferous forests. Hg accumulation and sequestration in organic soil vary with the vegetation succession. Variations of δ202Hg and Δ199Hg are controlled by source mixing in the broadleaf forest and by Hg sequestration processes in the coniferous forest. Accumulation of atmospheric Hg and subsequent microbial reduction enrich heavier Hg isotopes in MAOM compared to POM due to the specific chemical constituents and nutritional role of MAOM.
Collapse
Affiliation(s)
- Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luhan Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
8
|
Chen C, Huang JH, Li K, Osterwalder S, Yang C, Waldner P, Zhang H, Fu X, Feng X. Isotopic Characterization of Mercury Atmosphere-Foliage and Atmosphere-Soil Exchange in a Swiss Subalpine Coniferous Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15892-15903. [PMID: 37788478 DOI: 10.1021/acs.est.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
To understand the role of vegetation and soil in regulating atmospheric Hg0, exchange fluxes and isotope signatures of Hg were characterized using a dynamic flux bag/chamber at the atmosphere-foliage/soil interfaces at the Davos-Seehornwald forest, Switzerland. The foliage was a net Hg0 sink and took up preferentially the light Hg isotopes, consequently resulting in large shifts (-3.27‰) in δ202Hg values. The soil served mostly as net sources of atmospheric Hg0 with higher Hg0 emission from the moss-covered soils than from bare soils. The negative shift of δ202Hg and Δ199Hg values of the efflux air relative to ambient air and the Δ199Hg/Δ201Hg ratio among ambient air, efflux air, and soil pore gas highlight that Hg0 re-emission was strongly constrained by soil pore gas evasion together with microbial reduction. The isotopic mass balance model indicates 8.4 times higher Hg0 emission caused by pore gas evasion than surface soil photoreduction. Deposition of atmospheric Hg0 to soil was noticeably 3.2 times higher than that to foliage, reflecting the high significance of the soil to influence atmospheric Hg0 isotope signatures. This study improves our understanding of Hg atmosphere-foliage/soil exchange in subalpine coniferous forests, which is indispensable in the model assessment of forest Hg biogeochemical cycling.
Collapse
Affiliation(s)
- Chaoyue Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Environmental Geosciences, University of Basel, 4056 Basel, Switzerland
| | - Kai Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Stefan Osterwalder
- Environmental Geosciences, University of Basel, 4056 Basel, Switzerland
- Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Chenmeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
9
|
Schwab L, Gallati N, Reiter SM, Kimber RL, Kumar N, McLagan DS, Biester H, Kraemer SM, Wiederhold JG. Mercury Isotope Fractionation during Dark Abiotic Reduction of Hg(II) by Dissolved, Surface-Bound, and Structural Fe(II). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15243-15254. [PMID: 37748105 PMCID: PMC10569049 DOI: 10.1021/acs.est.3c03703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionation during dark, abiotic reduction of Hg(II) by dissolved iron(Fe)(II), magnetite, and Fe(II) sorbed to boehmite or goethite by analyzing both the reactants and products of laboratory experiments. For homogeneous reduction of Hg(II) by dissolved Fe(II) in continuously purged reactors, the results followed a Rayleigh distillation model with enrichment factors of -2.20 ± 0.16‰ (ε202Hg) and 0.21 ± 0.02‰ (E199Hg). In closed system experiments, allowing reequilibration, the initial kinetic fractionation was overprinted by isotope exchange and followed a linear equilibrium model with -2.44 ± 0.17‰ (ε202Hg) and 0.34 ± 0.02‰ (E199Hg). Heterogeneous Hg(II) reduction by magnetite caused a smaller isotopic fractionation (-1.38 ± 0.07 and 0.13 ± 0.01‰), whereas the extent of isotopic fractionation of the sorbed Fe(II) experiments was similar to the kinetic homogeneous case. Small mass-independent fractionation of even-mass Hg isotopes with 0.02 ± 0.003‰ (E200Hg) and ≈ -0.02 ± 0.01‰ (E204Hg) was consistent with theoretical predictions for the nuclear volume effect. This study contributes significantly to the database of Hg isotope enrichment factors for specific processes. Our findings show that Hg(II) reduction by dissolved Fe(II) in open systems results in a kinetic MDF with a larger ε compared to other abiotic reduction pathways, and combining MDF with the observed MIF allows the distinction from photochemical or microbial Hg(II) reduction pathways.
Collapse
Affiliation(s)
- Lorenz Schwab
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Environmental
Engineering Institute IIE-ENAC, Soil Biogeochemistry Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), Route
des Ronquos 86, 1951 Sion, Switzerland
| | - Niklas Gallati
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sofie M. Reiter
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Richard L. Kimber
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Soil
Chemistry and Chemical Soil Quality Group, Department of Environmental
Sciences, University of Wageningen, Droevendaalsesteeg 3a, 6708 Wageningen, Netherlands
| | - David S. McLagan
- Environmental
Geochemistry Group, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
- Department
of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- School
of Environmental Studies, Queen’s
University, Kingston, Ontario K7L 3N6, Canada
| | - Harald Biester
- Environmental
Geochemistry Group, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Stephan M. Kraemer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jan G. Wiederhold
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
10
|
Yuan W, Wang X, Lin CJ, Song Q, Zhang H, Wu F, Liu N, Lu H, Feng X. Deposition and Re-Emission of Atmospheric Elemental Mercury over the Tropical Forest Floor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10686-10695. [PMID: 37437160 DOI: 10.1021/acs.est.3c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Significant knowledge gaps exist regarding the emission of elemental mercury (Hg0) from the tropical forest floor, which limit our understanding of the Hg mass budget in forest ecosystems. In this study, biogeochemical processes of Hg0 deposition to and evasion from soil in a Chinese tropical rainforest were investigated using Hg stable isotopic techniques. Our results showed a mean air-soil flux as deposition of -4.5 ± 2.1 ng m-2 h-1 in the dry season and as emission of +7.4 ± 1.2 ng m-2 h-1 in the rainy season. Hg re-emission, i.e., soil legacy Hg evasion, induces negative transitions of Δ199Hg and δ202Hg in the evaded Hg0 vapor, while direct atmospheric Hg0 deposition does not exhibit isotopic fractionation. Using an isotopic mass balance model, direct atmospheric Hg0 deposition to soil was estimated to be 48.6 ± 13.0 μg m-2 year-1. Soil Hg0 re-emission was estimated to be 69.5 ± 10.6 μg m-2 year-1, of which 63.0 ± 9.3 μg m-2 year-1 is from surface soil evasion and 6.5 ± 5.0 μg m-2 year-1 from soil pore gas diffusion. Combined with litterfall Hg deposition (∼34 μg m-2 year-1), we estimated a ∼12.6 μg m-2 year-1 net Hg0 sink in the tropical forest. The fast nutrient cycles in the tropical rainforests lead to a strong Hg0 re-emission and therefore a relatively weaker atmospheric Hg0 sink.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Qinghai Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
11
|
Zhang H, Fu X, Wu X, Deng Q, Tang K, Zhang L, Sommar J, Sun G, Feng X. Using Mercury Stable Isotopes to Quantify Bidirectional Water-Atmosphere Hg(0) Exchange Fluxes and Explore Controlling Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37378655 DOI: 10.1021/acs.est.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In this study, exchange fluxes and Hg isotope fractionation during water-atmosphere Hg(0) exchange were investigated at three lakes in China. Water-atmosphere exchange was overall characterized by net Hg(0) emissions, with lake-specific mean exchange fluxes ranging from 0.9 to 1.8 ng m-2 h-1, which produced negative δ202Hg (mean: -1.61 to -0.03‰) and Δ199Hg (-0.34 to -0.16‰) values. Emission-controlled experiments conducted using Hg-free air over the water surface at Hongfeng lake (HFL) showed negative δ202Hg and Δ199Hg in Hg(0) emitted from water, and similar values were observed between daytime (mean δ202Hg: -0.95‰, Δ199Hg: -0.25‰) and nighttime (δ202Hg: -1.00‰, Δ199Hg: -0.26‰). Results of the Hg isotope suggest that Hg(0) emission from water is mainly controlled by photochemical Hg(0) production in water. Deposition-controlled experiments at HFL showed that heavier Hg(0) isotopes (mean ε202Hg: -0.38‰) preferentially deposited to water, likely indicating an important role of aqueous Hg(0) oxidation played during the deposition process. A Δ200Hg mixing model showed that lake-specific mean emission fluxes from water surfaces were 2.1-4.1 ng m-2 h-1 and deposition fluxes to water surfaces were 1.2-2.3 ng m-2 h-1 at the three lakes. Results from the this study indicate that atmospheric Hg(0) deposition to water surfaces indeed plays an important role in Hg cycling between atmosphere and water bodies.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xian Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianwen Deng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihui Tang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H5T4, Ontario, Canada
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zhou Z, Wang H, Li Y. Mercury stable isotopes in the ocean: Analytical methods, cycling, and application as tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162485. [PMID: 36858226 DOI: 10.1016/j.scitotenv.2023.162485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) has seven stable isotopes that can be utilized to trace the sources of Hg and evaluate the importance of transport and transformation processes in the cycling of Hg in the environment. The ocean is an integral part of the Earth and plays an important role in the global mercury cycle. However, there is a lack of a systematic review of Hg stable isotopes in marine environments. This review is divided into four sections: a) advances in Hg stable isotope analysis, b) the isotope ratios of Hg in various marine environmental matrices (seawater, sediment, and organisms), c) processes governing stable Hg isotope ratios in the ocean, and d) application of Hg stable isotopes to understand biotic uptake and migration. Mercury isotopes have provided much useful information on marine Hg cycling that cannot be given by Hg concentrations alone. This includes (i) sources of Hg in coastal or estuarine environments, (ii) transformation pathways and mechanisms of different forms of Hg in marine environments, (iii) trophic levels and feeding guilds of marine fish, and (iv) migration/habitat changes of marine fish. With the improvement of methods for seawater Hg isotope analysis (especially species-specific methods) and the measurement of Hg isotope fractionation during natural biogeochemical processes in the ocean, Hg stable isotopes will advance our understanding of the marine Hg cycle in the future, e.g., mercury exchange at the sea-atmosphere interface and seawater-sediment interface, contributions of different water masses to Hg in the ocean, fractionation mechanisms of Hg and MeHg transformation in seawater.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huiling Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
13
|
Wang K, Liu G, Cai Y. Effects of natural particles on photo-reduction of divalent mercury in everglades waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121327. [PMID: 36822309 DOI: 10.1016/j.envpol.2023.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Photo-reduction of divalent mercury (Hg(II)) in waters plays an important role in the air-water exchange of Hg and biogeochemical cycle of Hg in general. As previous studies on photo-reduction of Hg(II) have mainly focused on dissolved Hg species, the effects of natural particles on photo-reduction of Hg(II) remain largely unknown, except the presumed light attenuating effect through light absorption and scattering. Considering the prevalence of particulate Hg due to adsorption of divalent and elemental Hg species on aquatic particles that are often photochemically active, natural particles may play a more direct role in Hg photo-reduction. By using incubation experiments with Everglades waters and additions of isotopically labelled Hg(II), we studied the effects of particles on photo-reduction of Hg(II) in natural waters. The effect of natural particles on Hg(II) photo-reduction was not observed between filtered or unfiltered Everglades waters, probably because of the low particle concentrations (<3 mg/L). When suspended particles isolated from original water was used to amend its concentration to 6.9 times the ambient Everglades waters, photo-reduction of Hg(II) was significantly enhanced. Given that the particles in Everglades waters are often semiconducting in nature, particulate Hg(II) may undergo heterogenous photo-reduction and lead to higher Hg(II) photo-reduction. However, in Everglades waters with both suspended and settling particles, high concentrations (∼100 mg/L) of particles did not result in enhanced Hg(II) photo-reduction. In this case, the enhancing effects of particles on Hg(II) photo-reduction were likely offset by inhibiting effects due to the higher irradiation attenuation and lower Hg(II) partition coefficients of the settling particles with larger sizes. This study highlights the direct involvements of particles in photoreaction of Hg species in natural waters and calls for more mechanistic research on heterogenous photo-reduction of Hg species on particles' surfaces.
Collapse
Affiliation(s)
- Kang Wang
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, USA
| | - Guangliang Liu
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, USA
| | - Yong Cai
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
14
|
Yuan W, Wang X, Lin CJ, Wu F, Luo K, Zhang H, Lu Z, Feng X. Mercury Uptake, Accumulation, and Translocation in Roots of Subtropical Forest: Implications of Global Mercury Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14154-14165. [PMID: 36150175 DOI: 10.1021/acs.est.2c04217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant roots are responsible for transporting large quantities of nutrients in forest ecosystems and yet are frequently overlooked in global assessments of Hg cycling budgets. In this study, we systematically determined the distribution of total Hg mass and its stable isotopic signatures in a subtropical evergreen forest to elucidate sources of Hg in plant root tissues and the associated translocation mechanisms. Hg stored in roots and its isotopic signatures show significant correlations to those found in surrounding soil at various soil depths. The odd mass-independent fractionation (MIF) of root Hg at a shallow soil depth displays a -0.10‰ to -0.50‰ negative transition compared to the values in aboveground woody biomass. The evidence suggests that root Hg is predominantly derived from surrounding soil, rather than translocation of atmospheric uptake via aboveground tissues. The cortex has a more negative mass-dependent fractionation (MDF) of -0.10‰ to -1.20‰ compared to the soil samples, indicating a preferential uptake of lighter isotopes by roots. The similar MDF and odd-MIF signals found in root components imply limited Hg transport in roots. This work highlights that Hg stored in plant roots is not a significant sink of atmospheric Hg. The heterogeneous distribution of Hg mass in roots of various sizes represents a significant uncertainty of current estimates of Hg pool size in forest ecosystems.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
15
|
Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156558. [PMID: 35710002 DOI: 10.1016/j.scitotenv.2022.156558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, can be formed, migrated and transformed in environmental compartments, accompanying with unique mass-dependent and mass-independent fractionation of mercury (Hg). These Hg isotope fractionation signals have great potential to probe the transformation and transport of MeHg in aquatic environments. However, the majority of studies to date have focused on total Hg isotopic composition, with less attention to the isotopic fractionation of MeHg due to technical difficulties in analysis, which severely hinders the understanding of MeHg isotopic fractionation and its applications. This review a) evaluates the reported analytical methods for Hg isotopic composition of MeHg, including online and offline measurement techniques; b) summarizes the extent and characteristics of Hg isotopic fractionation during MeHg transport and transformation, focusing on methylation, demethylation, trophic transfer and internal metabolism; and c) briefly discusses several applications of MeHg isotopic fractionation signatures in estimating the extent of photodemethylation, tracing the source of Hg species, and diagnosing reaction mechanisms. Additionally, the existing problems and future directions in MeHg isotope fractionation are highlighted to improve the analytical protocol for Hg isotope fractionation and deepen our understanding of Hg isotope fractionation in the biogeochemical cycling of MeHg.
Collapse
Affiliation(s)
- Lian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
16
|
Xia S, Yuan W, Lin L, Yang X, Feng X, Li X, Liu X, Chen P, Zeng S, Wang D, Su Q, Wang X. Latitudinal gradient for mercury accumulation and isotopic evidence for post-depositional processes among three tropical forests in Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128295. [PMID: 35074747 DOI: 10.1016/j.jhazmat.2022.128295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Tropical forest contributes to > 50% of global litterfall mercury (Hg) inputs and surface soil Hg storage, while with limited understanding of Hg biogeochemical processes. In this study, we displayed the 5-m resolution of Hg spatial distribution in three 1-ha tropical forest plots across the latitudinal gradient in Southwest China, and determined Hg isotopic signatures to understand factors driving Hg spatial distribution and sequestration processes. Our results show that tropical forest at the lowest latitude has the highest litterfall Hg input (74.95 versus 34.14-56.59 μg m-2 yr-1 at higher latitude plots), but the smallest surface soil Hg concentration (2-3 times smaller than at higher latitude sites). Hg isotopic evidence indicates that the decreasing climate mediated microbial Hg reduction in forest floor leads to the increasing Hg accumulation along the latitudinal gradient in three tropical forests. The terrain induced indirect effects by influencing litterfall Hg inputs, soil organic matters distribution and interplays between surface and deep soils drive the heterogeneity of surface soil Hg distribution within each sampling plot. Our results highlight though the elevated litterfall Hg inputs, the distinct post-depositional reductions induced Hg loss would remarkedly decrease atmospheric Hg net sink in tropical forest.
Collapse
Affiliation(s)
- Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; National Forest Ecosystem Research Station at Xishuangbanna, Mengla 666300, Yunnan, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xianming Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xu Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qizhao Su
- Mengla Institute of Conservation, Xishuangbanna Administration of Nature Reserves, Mengla 666300, Yunan, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
17
|
Zhu W, Fu X, Zhang H, Liu C, Skyllberg U, Sommar J, Yu B, Feng X. Mercury Isotope Fractionation during the Exchange of Hg(0) between the Atmosphere and Land Surfaces: Implications for Hg(0) Exchange Processes and Controls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1445-1457. [PMID: 34964623 DOI: 10.1021/acs.est.1c05602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atmosphere-surface exchange of elemental mercury (Hg(0)) is a vital component in global Hg cycling; however, Hg isotope fractionation remains largely unknown. Here, we report Hg isotope fractionation during air-surface exchange from terrestrial surfaces at sites of background (two) and urban (two) character and at five sites contaminated by Hg mining. Atmospheric Hg(0) deposition to soils followed kinetic isotope fractionation with a mass-dependent (MDF) enrichment factor of -4.32‰, and negligible mass-independent fractionation (MIF). Net Hg(0) emission generated average MDF enrichment factors (ε202Hg) of -0.91, -0.59, 1.64, and -0.42‰ and average MIF enrichment factors (E199Hg) of 0.07, -0.20, -0.14, and 0.21‰ for urban, background, and Hg mining soils and cinnabar tailing, respectively. Positive correlations between ε202Hg and ambient Hg(0) concentration indicate that the co-occurring Hg(0) deposition (accounting for 10-39%) in a regime of net soil emission grows with ambient Hg(0). The MIF of Hg(0) emission from soils (E199Hg range -0.27 to 0.14‰, n = 8) appears to be overall controlled by the photochemical reduction of kinetically constrained Hg(II) bonded to O ligands in background soils, while S ligands may have been more important in Hg mining area soils. In contrast, the small positive MIF of Hg(0) emission from cinnabar ore tailing (mean E199Hg = 0.21‰) was likely controlled by abiotic nonphotochemical reduction and liquid Hg(0) evaporation. This research provides critical observational constraints on understanding the Hg(0) isotope signatures released from and deposited to terrestrial surfaces and highlight stable Hg isotopes as a powerful tool for resolving atmosphere-surface exchange processes.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ben Yu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
18
|
Renedo M, Point D, Sonke JE, Lorrain A, Demarcq H, Graco M, Grados D, Gutiérrez D, Médieu A, Munaron JM, Pietri A, Colas F, Tremblay Y, Roy A, Bertrand A, Bertrand SL. ENSO Climate Forcing of the Marine Mercury Cycle in the Peruvian Upwelling Zone Does Not Affect Methylmercury Levels of Marine Avian Top Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15754-15765. [PMID: 34797644 DOI: 10.1021/acs.est.1c03861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Climate change is expected to affect marine mercury (Hg) biogeochemistry and biomagnification. Recent modeling work suggested that ocean warming increases methylmercury (MeHg) levels in fish. Here, we studied the influence of El Niño Southern Oscillations (ENSO) on Hg concentrations and stable isotopes in time series of seabird blood from the Peruvian upwelling and oxygen minimum zone. Between 2009 and 2016, La Niña (2011) and El Niño conditions (2015-2016) were accompanied by sea surface temperature anomalies up to 3 °C, oxycline depth change (20-100 m), and strong primary production gradients. Seabird Hg levels were stable and did not co-vary significantly with oceanographic parameters, nor with anchovy biomass, the primary dietary source to seabirds (90%). In contrast, seabird Δ199Hg, proxy for marine photochemical MeHg breakdown, and δ15N showed strong interannual variability (up to 0.8 and 3‰, respectively) and sharply decreased during El Niño. We suggest that lower Δ199Hg during El Niño represents reduced MeHg photodegradation due to the deepening of the oxycline. This process was balanced by equally reduced Hg methylation due to reduced productivity, carbon export, and remineralization. The non-dependence of seabird MeHg levels on strong ENSO variability suggests that marine predator MeHg levels may not be as sensitive to climate change as is currently thought.
Collapse
Affiliation(s)
- Marina Renedo
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - David Point
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280 France
| | - Hervé Demarcq
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Michelle Graco
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Daniel Grados
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Dimitri Gutiérrez
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Anaïs Médieu
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280 France
| | | | - Alice Pietri
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - François Colas
- LOCEAN IPSL (IRD/CNRS/SU/MNHN), 4 Place Jussieu, Paris 75252, France
| | - Yann Tremblay
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Amédée Roy
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Arnaud Bertrand
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | | |
Collapse
|
19
|
Zhao H, Meng B, Sun G, Lin CJ, Feng X, Sommar J. Chemistry and Isotope Fractionation of Divalent Mercury during Aqueous Reduction Mediated by Selected Oxygenated Organic Ligands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13376-13386. [PMID: 34520177 DOI: 10.1021/acs.est.1c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have investigated the chemistry and Hg isotope fractionation during the aqueous reduction of HgII by oxalic acid, p-quinone, quinol, and anthraquinone-2,6-disulfonate (AQDS), a derivate of anthraquinone (AQ) that is found in secondary organic aerosols (SOA) and building blocks of natural organic matter (NOM). Each reaction was examined for the effects of light, pH, and dissolved O2. Using an excess of ligand, UVB photolysis of HgII was seen to follow pseudo-first-order kinetics, with the highest rate of ∼10-3 s-1 observed for AQDS and oxalic acid. Mass-dependent fractionation (MDF) occurs by the normal kinetic isotope effect (KIE). Only the oxalate ion, rather than oxalic acid, is photoreactive when present in HgC2O4, which decomposes via two separate pathways distinguishable by isotope anomalies. Upon UVB photolysis, only the reduction mediated by AQDS results in a large odd number mass-independent fractionation (odd-MIF) signified by enrichment of odd isotopes in the reactant. Consistent with the rate, MDF, and odd-MIF reported for fulvic acid, our AQDS result confirms previous assumptions that quinones control HgII reduction in NOM-rich waters. Given the magnitude of odd-MIF triggered via a radical pair mechanism and the significant rate in the presence of air, reduction of HgII by photoproducts of AQDS may help explain the positive odd-MIF observed in ambient aerosols depleted of HgII.
Collapse
Affiliation(s)
- Huifang Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang 550025, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
20
|
Yuan W, Wang X, Lin CJ, Sommar JO, Wang B, Lu Z, Feng X. Quantification of Atmospheric Mercury Deposition to and Legacy Re-emission from a Subtropical Forest Floor by Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12352-12361. [PMID: 34449213 DOI: 10.1021/acs.est.1c02744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Air-soil exchange of elemental mercury vapor (Hg0) is an important component in the budget of the global mercury cycle. However, its mechanistic detail is poorly understood. In this study, stable Hg isotopes in air, soil, and pore gases are characterized in a subtropical evergreen forest to understand the mechanical features of the air-soil Hg0 exchange. Strong HgII reduction in soil releases Hg0 to pore gas during spring-autumn but diminishes in winter, limiting the evasion in cold seasons. Δ199Hg in air modified by the Hg0 efflux during flux chamber measurement exhibit seasonality, from -0.33 ± 0.05‰ in summer to -0.08 ± 0.05‰ in winter. The observed seasonal variation is caused by a strong pore-gas driven soil efflux caused by photoreduction in summer, which weakens significantly in winter. The annual Hg0 gross deposition is 42 ± 33 μg m-2 yr-1, and the corresponding Hg0 evasion from the forest floor is 50 ± 41 μg m-2 yr-1. The results of this study, although still with uncertainty, offer new insights into the complexity of the air-surface exchange of Hg0 over the forest land for model implementation in future global assessments.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Jonas Olof Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyun Lu
- National Forest Ecosystem Research Station at Ailaoshan, Jingdong, Yunnan 676209, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
21
|
Stable Isotope Fractionation Reveals Similar Atomic-Level Controls during Aerobic and Anaerobic Microbial Hg Transformation Pathways. Appl Environ Microbiol 2021; 87:e0067821. [PMID: 34232740 DOI: 10.1128/aem.00678-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in food webs as monomethylmercury (MeHg). The production of MeHg is driven by anaerobic and Hg redox cycling pathways, such as Hg reduction, which control the availability of Hg to methylators. Anaerobes play an important role in Hg reduction in methylation hot spots, yet their contributions remain underappreciated due to how challenging these pathways are to study in the absence of dedicated genetic targets and low levels of Hg0 in anoxic environments. In this study, we used Hg stable isotope fractionation to explore Hg reduction during anoxygenic photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. We show that cells preferentially reduce lighter Hg isotopes in both metabolisms, leading to mass-dependent fractionation, but mass-independent fractionation commonly induced by UV-visible light is absent. Due to the variability associated with replicate experiments, we could not discern whether dedicated physiological processes drive Hg reduction during photosynthesis and fermentation. However, we demonstrate that fractionation is affected by the interplay between pathways controlling Hg recruitment, accessibility, and availability alongside metabolic redox reactions. The combined contributions of these processes lead to isotopic enrichment during anoxygenic photosynthesis that is in between the values reported for anaerobic respiratory microbial Hg reduction and abiotic photoreduction. Isotope enrichment during fermentation is closer to what has been observed in aerobic bacteria that reduce Hg through dedicated detoxification pathways. Our work suggests that similar controls likely underpin diverse microbe-mediated Hg transformations that affect Hg's fate in oxic and anoxic habitats. IMPORTANCE Anaerobic and photosynthetic bacteria that reduce mercury affect mercury delivery to microbes in methylation sites that drive bioaccumulation in food webs. Anaerobic mercury reduction pathways remain underappreciated in the current view of the global mercury cycle because they are challenging to study, bearing no dedicated genetic targets to establish physiological mechanisms. In this study, we used stable isotopes to characterize the physiological processes that control mercury reduction during photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. The sensitivity of isotope analyses highlighted the subtle contribution of mercury uptake to the isotope signature associated with anaerobic mercury reduction. When considered alongside the isotope signatures associated with microbial pathways for which genetic determinants have been identified, our findings underscore the narrow range of isotope enrichment that is characteristic of microbial mercury transformations. This suggests that there are common atomic-level controls for biological mercury transformations across a broad range of geochemical conditions.
Collapse
|
22
|
Lu Z, Yuan W, Luo K, Wang X. Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115867. [PMID: 33160734 DOI: 10.1016/j.envpol.2020.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Litterfall mercury (Hg) deposition is the dominant source of soil Hg in forests. Identifying reduction processes and tracking the fate of legacy Hg on forest floor are challenging tasks. Interplays between isotopes of carbon (C) and nitrogen (N) may shed some lights on Hg biogeochemical processes because their biogeochemical cycling closely links with organic matters. Isotope measurements at the evergreen broadleaf forest floor at Mt. Ailao (Mountain Ailao) display that δ202Hg and Δ199Hg both significantly correlate with δ13C and δ15N in soil profiles. Data analysis results show that microbial reduction is the dominant process for the distinct δ202Hg shift (up to ∼1.0‰) between Oi and 0-10 cm surface mineral soil, and dark abiotic organic matter reduction is the main cause for the Δ199Hg shift (∼-0.18‰). Higher N in foliage leads to greater Hg concentration, and Hg0 re-emission via microbial reduction on forest floor is likely linked to N release and immobilization on forest floor. We thus suggest that the enhanced N deposition in global forest ecosystems can potentially influence Hg uptake by vegetation and litter Hg sequestration on forest floor.
Collapse
Affiliation(s)
- Zhiyun Lu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Luo
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Liu HW, Yu B, Yang L, Wang LL, Fu JJ, Liang Y, Bu D, Yin YG, Hu LG, Shi JB, Jiang GB. Terrestrial mercury transformation in the Tibetan Plateau: New evidence from stable isotopes in upland buzzards. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123211. [PMID: 32593022 DOI: 10.1016/j.jhazmat.2020.123211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Understanding the geochemical cycle of mercury (Hg) in the high-altitude Tibetan Plateau is of great value for studying the long-range transport of Hg. Herein, speciation and isotopic compositions of Hg in the muscle and feathers of upland buzzards (Buteo hemilasius) were studied to trace the terrestrial transformation of Hg in the Tibetan Plateau. Very low Hg content and relatively low δ202Hg values (feather: -0.77 ± 0.50‰, n = 9, muscle: -1.29 ± 0.29‰, n = 13, 1SD) were observed in upland buzzards. In contrast, the Δ199Hg values could be as high as 2.89‰ in collected samples. To our knowledge, this is the highest Δ199Hg value reported in avian tissues. Moreover, upland buzzards showed significantly different Δ199Hg values from fish collected from the same region, suggesting different generation and transformation processes of methylmercury (MeHg) in terrestrial and aquatic ecosystems. We speculated that different percentages of Hg undergoing photochemical reactions and contributions of atmospheric MeHg were possible reasons for observed differences. The results provide new clues for different circulation histories of Hg in terrestrial and aquatic ecosystems, which will be critical for further study of geochemical cycle and ecological risk of Hg in the environment.
Collapse
Affiliation(s)
- Hong-Wei Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jian-Jie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Duo Bu
- Science Faculty, Tibet University, Lhasa 850000, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian-Bo Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Gui-Bin Jiang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Orani AM, Vassileva E, Azemard S, Thomas OP. Comparative study on Hg bioaccumulation and biotransformation in Mediterranean and Atlantic sponge species. CHEMOSPHERE 2020; 260:127515. [PMID: 32682130 DOI: 10.1016/j.chemosphere.2020.127515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this work we present an assessment of mercury (Hg) and methyl mercury (MeHg) bioaccumulation in different species of marine sponges collected off the Northwestern Mediterranean and Northeastern Atlantic coasts. Overall the results showed significant accumulation of Hg in sponges, with the Mediterranean sponge Chondrilla nucula exhibiting the highest total Hg content (up to 0.5 mg kg-1) and bio-concentration factor (BCF) up to 23. A significant inter-species variability of Hg bioaccumulation was observed among species collected at the same site. The sponges, collected in marine environment contaminated with Hg show consistently higher Hg accumulation, meaning that the bioaccumulation is proportional to the Hg availability in the surrounding environment. Different extraction protocols were tested for MeHg analysis and, generally, a low MeHg ratio in Hg species (4% and 17% average for Mediterranean and Irish sponges respectively) was detected suggesting a possible demethylation process and therefore a promising role of sponges for Hg bioremediation Additionally, the Hg isotopic composition in these organisms was determined and it showed that MDF (mass dependent fractionation) is the main process in sponges, with the absence of significant MIF. This result suggests a dominant role of associated microbial population in the methylation and/or demethylation processes.
Collapse
Affiliation(s)
- Anna Maria Orani
- International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Emilia Vassileva
- International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
| | - Sabine Azemard
- International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, (NUI Galway), University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
25
|
Renedo M, Bustamante P, Cherel Y, Pedrero Z, Tessier E, Amouroux D. A "seabird-eye" on mercury stable isotopes and cycling in the Southern Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140499. [PMID: 33167295 DOI: 10.1016/j.scitotenv.2020.140499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 05/12/2023]
Abstract
Since mercury (Hg) biogeochemistry in the Southern Ocean is minimally documented, we investigated Hg stable isotopes in the blood of seabirds breeding at different latitudes in the Antarctic, Subantarctic and Subtropical zones. Hg isotopic composition was determined in adult penguins (5 species) and skua chicks (2 species) from Adélie Land (66°39'S, Antarctic) to Crozet (46°25'S, Subantarctic) and Amsterdam Island (37°47'S, Subtropical). Mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) Hg isotopic values separated populations geographically. Antarctic seabirds exhibited lower δ202Hg values (-0.02 to 0.79 ‰, min-max) than Subantarctic (0.88 to 2.12 ‰) and Subtropical (1.44 to 2.37 ‰) seabirds. In contrast, Δ199Hg values varied slightly from Antarctic (1.31 to 1.73 ‰) to Subtropical (1.69 to 2.04 ‰) waters. The extent of methylmercury (MeHg) photodemethylation extrapolated from Δ199Hg values was not significantly different between locations, implying that most of the bioaccumulated MeHg was of mesopelagic origin. The larger increase of MDF between the three latitudes co-varies with MeHg concentrations. This supports an increasing effect of specific biogenic Hg pathways from Antarctic to Subtropical waters, such as Hg biological transformations and accumulations. This "biogenic effect" among different productive southern oceanic regions can also be related to different mixed layer depth dynamics and biological productivity turnover that specifically influence the vertical transport between the mesopelagic and the photic zones. This study shows the first Hg isotopic data of the Southern Ocean at large scale and reveals how regional Southern Ocean dynamics and productivity control marine MeHg biogeochemistry and the exposure of seabirds to Hg contamination.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| |
Collapse
|
26
|
Renedo M, Amouroux D, Albert C, Bérail S, Bråthen VS, Gavrilo M, Grémillet D, Helgason HH, Jakubas D, Mosbech A, Strøm H, Tessier E, Wojczulanis-Jakubas K, Bustamante P, Fort J. Contrasting Spatial and Seasonal Trends of Methylmercury Exposure Pathways of Arctic Seabirds: Combination of Large-Scale Tracking and Stable Isotopic Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13619-13629. [PMID: 33063513 DOI: 10.1021/acs.est.0c03285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite the limited direct anthropogenic mercury (Hg) inputs in the circumpolar Arctic, elevated concentrations of methylmercury (MeHg) are accumulated in Arctic marine biota. However, the MeHg production and bioaccumulation pathways in these ecosystems have not been completely unraveled. We measured Hg concentrations and stable isotope ratios of Hg, carbon, and nitrogen in the feathers and blood of geolocator-tracked little auk Alle alle from five Arctic breeding colonies. The wide-range spatial mobility and tissue-specific Hg integration times of this planktivorous seabird allowed the exploration of their spatial (wintering quarters/breeding grounds) and seasonal (nonbreeding/breeding periods) MeHg exposures. An east-to-west increase of head feather Hg concentrations (1.74-3.48 μg·g-1) was accompanied by significant spatial trends of Hg isotope (particularly Δ199Hg: 0.96-1.13‰) and carbon isotope (δ13C: -20.6 to -19.4‰) ratios. These trends suggest a distinct mixing/proportion of MeHg sources between western North Atlantic and eastern Arctic regions. Higher Δ199Hg values (+0.4‰) in northern colonies indicate an accumulation of more photochemically impacted MeHg, supporting shallow MeHg production and bioaccumulation in high Arctic waters. The combination of seabird tissue isotopic analysis and spatial tracking helps in tracing the MeHg sources at various spatio-temporal scales.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | - Céline Albert
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sylvain Bérail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | | | - Maria Gavrilo
- Association of Maritime Heritage: Sustain and Explore, 199106 Saint Petersburg, Russia
| | - David Grémillet
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
- Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | | | - Dariusz Jakubas
- Faculty of Biology, Gdańsk University, 80-308 Gdańsk, Poland
| | - Anders Mosbech
- Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | | | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, 64000 Pau, France
| | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
27
|
Kurz AY, Blum JD, Gratz LE, Jaffe DA. Contrasting Controls on the Diel Isotopic Variation of Hg 0 at Two High Elevation Sites in the Western United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10502-10513. [PMID: 32786593 DOI: 10.1021/acs.est.0c01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The atmosphere is a significant global reservoir for mercury (Hg) and its isotopic characterization is important to understand sources, distribution, and deposition of Hg to the Earth's surface. To better understand Hg isotope variability in the remote background atmosphere, we collected continuous 12-h Hg0 samples for 1 week from two high elevation sites, Camp Davis, Wyoming (valley), and Mount Bachelor, Oregon (mountaintop). The samples collected at Camp Davis displayed strong diel variation in δ202Hg values of Hg0, but not in Δ199Hg or Δ200Hg values. We attribute this pattern to nightly atmospheric inversions trapping Hg in the valley and the subsequent nighttime uptake of Hg by vegetation, which depletes Hg from the atmosphere. At Mount Bachelor, the samples displayed diel variation in both δ202Hg and Δ199Hg, but not Δ200Hg. We attribute this pattern to differences in the vertical distribution of Hg in the atmosphere as Mount Bachelor received free tropospheric air masses on certain nights during the sampling period. Near the end of the sampling period at Mount Bachelor, the observed diel pattern dissipated due to the influence of a nearby forest fire. The processes governing the Hg isotopic fractionation differ across sites depending on mixing, topography, and vegetation cover.
Collapse
Affiliation(s)
- Aaron Y Kurz
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, Colorado Springs, Colorado 80903, United States
| | - Daniel A Jaffe
- School of Science, Technology, Engineering & Mathematics, University of Washington Bothell, Bothell, Washington 98011, United States
| |
Collapse
|
28
|
Yuan W, Wang X, Lin CJ, Wu C, Zhang L, Wang B, Sommar J, Lu Z, Feng X. Stable Mercury Isotope Transition during Postdepositional Decomposition of Biomass in a Forest Ecosystem over Five Centuries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8739-8749. [PMID: 32551609 DOI: 10.1021/acs.est.0c00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic soil is an important transient reservoir of mercury (Hg) in terrestrial ecosystems, but the fate of deposited Hg in organic forest soil is poorly understood. To understand the dynamic changes of deposited Hg on forest floor, the composition of stable Hg and carbon (C) isotopes in decomposing litters and organic soil layer was measured to construct the 500 year history of postdepositional Hg transformation in a subtropical evergreen broad-leaf forest in Southwest China. Using the observational data and a multiprocess isotope model, the contributions of microbial reduction, photoreduction, and dark reduction mediated by organic matter to the isotopic transition were estimated. Microbial reduction and photoreduction play a dominant role in the initial litter decomposition during first 2 years. Dark redox reactions mediated by organic matter become the predominant process in the subsequent 420 years. After that, the values of Hg mass dependent fractionation (MDF), mass independent fractionation (MIF), and Δ199Hg/Δ201Hg ratio do not change significantly, indicating sequestration and immobilization of Hg in soil. The linear correlations between the isotopic signatures of Hg and C suggest that postdepositional transformation of Hg is closely linked to the fate of natural organic matter (NOM). Our findings are consistent with the abiotic dark reduction driven by nuclear volume effect reported in boreal and tropical forests. We recommend that the dark reduction process be incorporated in future model assessment of the global Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Chuansheng Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Anhui 236037, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- National Forest Ecosystem Research Station at Ailaoshan, Yunnan 676209, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| |
Collapse
|
29
|
Tsui MTK, Blum JD, Kwon SY. Review of stable mercury isotopes in ecology and biogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135386. [PMID: 31839301 DOI: 10.1016/j.scitotenv.2019.135386] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the advent of cold vapor-multicollector-inductively coupled plasma mass spectrometry (CV-MC-ICP-MS) in the past two decades, many research groups studying mercury (Hg) biogeochemistry have integrated stable Hg isotopes into their research. Currently, >200 studies using this technique have been published and this has greatly enhanced our understanding of the Hg biogeochemical cycle beyond what Hg concentration and speciation analyses alone can provide. These studies are largely divided into two groups: (i) controlled experiments investigating fractionation of Hg isotopes and refining tools of isotopic analyses, and (ii) studies of natural variations of Hg isotopes. It is now known that Hg isotopes undergo both mass dependent fractionation (MDF; reported as the ratio of mass 202Hg to 198Hg) and mass independent fractionation (MIF), with MIF occurring at odd masses (199Hg, 201Hg) to a larger magnitude and at even masses (200Hg, 204Hg) to a much smaller magnitude. The two types of MIF are controlled by different photochemical processes. The range of isotopic variations of MDF, odd-MIF, and even-MIF are now well documented in a diverse set of environmental samples, and researchers are continuing to explore how the field of Hg isotope biogeochemistry can be further developed and taken to the next level of understanding. One application that has received considerable attention is the use of Hg isotopes to examine the environmental controls on the production and degradation of methylmercury (MeHg), the most toxic and bioaccumulative form of Hg. Since MeHg is efficiently assimilated and biomagnified along food chains, MeHg has the potential to be a robust ecological tracer. In this review, we give an updated overview of the field of Hg isotopes and focus on how Hg isotopes of MeHg can be used to address fundamental ecological questions, including energy transfer across ecosystem interfaces and as a tracer for animal movements.
Collapse
Affiliation(s)
- Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
30
|
Huang S, Jiang R, Song Q, Zhang Y, Huang Q, Su B, Chen Y, Huo Y, Lin H. Study of mercury transport and transformation in mangrove forests using stable mercury isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135928. [PMID: 31838299 DOI: 10.1016/j.scitotenv.2019.135928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Mangrove forests are important wetland ecosystems that are a sink for mercury from tides, rivers and precipitation, and can also be sources of mercury production and export. Natural abundance mercury stable isotope ratios have been proven to be a useful tool to investigate mercury behavior in various ecosystems. In this study, mercury isotopic data were collected from seawater, sediments, air, and plant tissues in two mangrove forests in Guangxi and Fujian provinces, China, to study the transport and transformation of mercury in mangrove sediments. The mangroves were primarily subject to mercury inputs from external sources, such as anthropogenic activities, atmospheric deposition, and the surrounding seawater. An isotope mixing model based on mass independent fractionation (MIF) estimated that the mangrove wetland ecosystems accounted for <40% of the mercury in the surrounding seawater. The mercury in plant root tissues was derived mainly from sediments and enriched with light mercury isotopes. The exogenous mercury inputs from the fallen leaves were diluted by seawater, leading to a positive Δ199Hg offset between the fallen leaves and sediments. Unlike river and lake ecosystems, mangrove ecosystems are affected by tidal action, and the δ202Hg and Δ199Hg values of sediments were more negative than that of the surrounding seawater. The isotopic signature differences between these environmental samples were partially due to isotope fractionation driven by various physical and chemical processes (e.g., sorption, photoreduction, deposition, and absorption). These results contribute to a better understanding of the biogeochemical cycling of mercury in mangrove wetland ecosystems.
Collapse
Affiliation(s)
- Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ronggen Jiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qingyong Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Qi Huang
- Guangxi Shankou Mangrove Nature Reserve, Beihai 536000, China
| | - Binghuan Su
- Guangxi Shankou Mangrove Nature Reserve, Beihai 536000, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
31
|
Meng M, Sun RY, Liu HW, Yu B, Yin YG, Hu LG, Chen JB, Shi JB, Jiang GB. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121379. [PMID: 31611019 DOI: 10.1016/j.jhazmat.2019.121379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) speciation and isotopic compositions in a large-scale food web and seawater from Chinese Bohai Sea were analyzed to investigate methylmercury (MeHg) sources and Hg cycling. The biota showed ∼5‰ variation in mass dependent fractionation (MDF, -4.57 to 0.53‰ in δ202Hg) and mostly positive odd-isotope mass independent fractionation (odd-MIF, -0.01 to 1.21‰ in Δ199Hg). Both MDF and odd-MIF in coastal biota showed significant correlations with their trophic levels and MeHg fractions, likely reflecting a preferential trophic transfer of MeHg with higher δ202Hg and Δ199Hg than inorganic Hg. The MDF and odd-MIF of biota were largely affected by their feeding habits and living territories, and MeHg in pelagic food web was more photodegraded than in coastal food web (21-31% vs. 9-11%). From the Hg isotope signatures of pelagic biota and extrapolated coastal MeHg, we suggest that MeHg in the food webs was likely derived from sediments. Interestingly, we observed complementary even-MIF (mainly negative Δ200Hg of -0.36 to 0.08‰ and positive Δ204Hg of -0.05 to 0.82‰) in the biota and a significant linear slope of -0.5 for Δ200Hg/Δ204Hg. This leads us to speculate that atmospheric Hg0 is an important source to bioaccumulated MeHg, although the exact source-receptor relationships need further investigation.
Collapse
Affiliation(s)
- Mei Meng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruo-Yu Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hong-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiu-Bin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
32
|
Fu X, Zhang H, Liu C, Zhang H, Lin CJ, Feng X. Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13748-13756. [PMID: 31721564 DOI: 10.1021/acs.est.9b05016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, isotopic compositions of atmospheric total gaseous mercury (TGM) were measured in the Mt. Changbai (MCB) temperate deciduous forest and the Mt. Ailao (MAL) subtropical evergreen forest over a 1-year period. Higher δ202HgTGM values were observed under the forest canopy than above the forest canopy in the MCB forest. The vertical gradients in δ202HgTGM and Δ199HgTGM are positively correlated with the satellite-based normalized difference vegetation index (NDVI, representing the vegetation photosynthetic activity), suggesting that a strong vegetation activity (high NDVI) induces both mass-dependent and mass-independent fractionation of TGM isotopes. The observed δ202HgTGM and Δ199HgTGM showed seasonal variations. Mean δ202HgTGM and Δ199HgTGM in summer were 0.35-0.99‰ and 0.06-0.09‰ higher than those in other seasons in the MCB forest. In contrast, the highest seasonal δ202HgTGM in the MAL forest was observed in winter at 0.07-0.40‰ higher than the values found in other seasons. The variability of δ202HgTGM and Δ199HgTGM in MCB was attributed to vegetation activities, whereas the seasonal δ202HgTGM in the MAL forest was driven by the exposure of air masses to anthropogenic emissions. Using the data in this study and in the literature, we concluded that vegetation activity and anthropogenic Hg release are the main drivers for the spatial variations in TGM isotopic compositions in the northern hemisphere.
Collapse
Affiliation(s)
- Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , Shaanxi 710061 , China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chen Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality , Lamar University , Beaumont , Texas 77710-0024 , United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , Shaanxi 710061 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
33
|
Wang X, Yuan W, Feng X, Wang D, Luo J. Moss facilitating mercury, lead and cadmium enhanced accumulation in organic soils over glacial erratic at Mt. Gongga, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112974. [PMID: 31376600 DOI: 10.1016/j.envpol.2019.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Moss is usually as an initial colonizer in alpine glacier retreated regions. We hypothesized that moss can significantly facilitate the toxic metals accumulation in alpine ecosystems based on its strong ability of absorption and the role in soil development. Hence, we investigated the trace element pool sizes and enrichment factors, especially for mercury (Hg) by using the Hg isotopic compositions to determine the source contributions in a moss-dominated ecosystem over glacial erratic in Eastern Tibetan Plateau. Results show that Hg, lead (Pb) and cadmium (Cd) are highly enriched in organic soils. Specifically, Cd concentration is 5-20 times higher than the safety limit of the acid soil (pH ≤ 5.5) in China. Atmospheric depositions dominantly contribute to the Pb and Cd sources in organic soils, and followed by the moraine particles influences. The lowering pH in organic soils increasing with glacial retreated time results in the desorption of Cd in organic soils. Atmospheric Hg0 uptake by moss predominantly contributes to the Hg sources in organic soils. The average Pb accumulation rate over last 125-year is about 5.6 ± 1.0 mg m-2 yr-1, and for Cd is 0.4 ± 0.1 mg m-2 yr-1, and for Hg0 is 27.6 ± 3.2 μg m-2 yr-1. These elevated accumulation rates are caused by the high moss biomass and elevated atmospheric Hg, Pb and Cd pollution levels in China and neighbouring regions. Our study indicates that the moss not only as the bioindicator, but also plays an important role in the hazardous metal biogeochemical cycling in alpine regions.
Collapse
Affiliation(s)
- Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ji Luo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu, 610041, China
| |
Collapse
|
34
|
Sun T, Ma M, Wang X, Wang Y, Du H, Xiang Y, Xu Q, Xie Q, Wang D. Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113065. [PMID: 31465902 DOI: 10.1016/j.envpol.2019.113065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Forest ecosystem has long been suggested as a vital component in the global mercury (Hg) biogeochemical cycling. However, there remains large uncertainties in understanding total Hg (THg) and methylmercury (MeHg) variations and their controlling factors during the whole hydrological processes in forest ecosystems. Here, we quantified Hg mass flow along hydrological processes of wet deposition, throughfall, stemflow, litter leachate, soil leachate, surface runoff, and stream, and litterfall Hg deposition, and air-forest floor elemental Hg (Hg0) exchange flux to set up a Hg mass balance in a subtropical forest of China. Results showed that THg concentration in stream was lower than that in wet deposition, while an opposite characteristic for MeHg concentration, and both THg and MeHg fluxes of stream were lower than those of wet deposition. Variations of THg and MeHg in throughfall and litter leachate had strong direct and indirect effects on controlling variations of THg and MeHg in surface runoff, soil leachate and stream, respectively. Especially, the net Hg methylation was suggested in the forest canopy and forest floor layers, and significant particulate bound Hg (PBM) filtration was observed in soil layers. The Hg mass balance showed that the litterfall Hg deposition was the main Hg input for forest floor Hg, and the elemental Hg vapor (Hg0) re-emission from forest floor was the dominant Hg output. Overall, we estimated the net THg input flux of 13.8 μg m-2 yr-1 and net MeHg input flux of 0.6 μg m-2 yr-1 within the forest ecosystem. Our results highlighted the important roles of forest canopy and forest floor to shape Hg in output flow, and the forest floor is a distinct sink of MeHg.
Collapse
Affiliation(s)
- Tao Sun
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Qinqin Xu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Qing Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China.
| |
Collapse
|
35
|
Li W, Gou W, Li W, Zhang T, Yu B, Liu Q, Shi J. Environmental applications of metal stable isotopes: Silver, mercury and zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1344-1356. [PMID: 31254892 DOI: 10.1016/j.envpol.2019.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
With developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), applications of metal stable isotopes received increasing attentions in the studies of source and fate of heavy metals in the environment. In light of the rapid progresses in this emerging field, we attempted to review the recent findings comprehensively in a way that environmental scientists can easily read. This review started with an introduction of basic terminologies in isotope geochemistry, followed with detailed descriptions of instrumentation and analytical procedures, and finally focused on the cases of three typical metal stable isotopes (Ag, Hg and Zn) to illustrate how they were applied to address environmental issues. Additionally, future perspectives on the applicability, opportunities, and limitations of metal stable isotope techniques as novel approaches in advancing environmental chemistry were discussed.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenxian Gou
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Weiqiang Li
- State Key Laboratory of Ore Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Tuoya Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
36
|
Štrok M, Baya PA, Dietrich D, Dimock B, Hintelmann H. Mercury speciation and mercury stable isotope composition in sediments from the Canadian Arctic Archipelago. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:655-665. [PMID: 30939318 DOI: 10.1016/j.scitotenv.2019.03.424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Total mercury (THg) and monomethylmercury (MMHg) concentrations as well as mercury (Hg) isotope ratios were determined in sediment cores sampled from six locations from the Canadian Arctic Archipelago (CAA). At most sites, THg concentrations showed a decreasing trend with depth, ranging from 5 to 61 ng/g, implicating possible increased Hg deposition and/or riverine inputs in top sediment layers. MMHg values showed large oscillations within the top 10 cm of the cores. This variability decreased at the bottom of the cores with MMHg concentrations ranging from less than12 to up to 1073 pg/g. Average concentrations of THg and MMHg in the top 10 cm were linearly correlated, whereas no correlation was observed with organic matter (loss on ignition). Mercury isotope ratios showed negative values for both δ202Hg (-1.59 to -0.55‰) and Δ199Hg (-0.62 to -0.01‰). δ202Hg values became more negative with depth, while the opposite was observed for Δ199Hg. The former is consistent with predicted historical atmospheric Hg trends as a result of increased coal burning worldwide. Hg isotope ratio measurements in CAA sediments offer additional opportunities to trace Hg processes and sources in the Arctic.
Collapse
Affiliation(s)
- Marko Štrok
- Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J7B8, Canada; Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Pascale Anabelle Baya
- Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J7B8, Canada
| | - Dörthe Dietrich
- Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J7B8, Canada; University of Münster, Inorganic and Analytical Chemistry, Corrensstrasse, 30, D-48149 Münster, Germany.
| | - Brian Dimock
- Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J7B8, Canada.
| | - Holger Hintelmann
- Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J7B8, Canada.
| |
Collapse
|
37
|
Yamakawa A, Takami A, Takeda Y, Kato S, Kajii Y. Emerging investigator series: investigation of mercury emission sources using Hg isotopic compositions of atmospheric mercury at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Japan. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:809-818. [PMID: 30942203 DOI: 10.1039/c8em00590g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study conducted mercury (Hg) isotopic analysis, which has been expected as a new indicator for understanding the behavior of atmospheric Hg. The dominant atmospheric Hg species, namely gaseous elemental mercury (GEM, Hg0), were collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan, for evaluating possible source(s) and transformation process(es) of Hg. The Hg isotopic compositions of GEM samples showed that the mass-dependent fractionation (MDF) of δ202Hg and the mass-independent fractionation (MIF) of Δ199Hg ranged from -2.15‰ to 0.79‰ and from -0.32‰ to 0.00‰, respectively. The results were classified into two groups: (1) negative δ202Hg and near-zero Δ199Hg in summer and (2) near-zero δ202Hg and negative Δ199Hg in the other season. According to the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the dominant air masses traveled from East Asia during winter and South and East Asia during summer. However, the air masses also traveled from mainland Japan and rotated around Okinawa before reaching CHAAMS. In contrast, clear positive correlations between δ202Hg values and CO and PM2.5 concentrations were observed during summer. A small peak of Ox concentration was observed at three atmospheric monitoring stations, namely Nago, Naha, and Miyako Island during summer. Since Miyako Island is located ∼370 km southwest of CHAAMS, the main emission source of GEM transported to CHAAMS was not from mainland Okinawa but traveled from the southwest during summer.
Collapse
Affiliation(s)
- A Yamakawa
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.
| | | | | | | | | |
Collapse
|
38
|
High-precision isotopic analysis sheds new light on mercury metabolism in long-finned pilot whales (Globicephala melas). Sci Rep 2019; 9:7262. [PMID: 31086275 PMCID: PMC6513992 DOI: 10.1038/s41598-019-43825-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Whales accumulate mercury (Hg), but do not seem to show immediate evidence of toxic effects. Analysis of different tissues (liver, kidney, muscle) and biofluids (blood, milk) from a pod of stranded long-finned pilot whales (Globicephala melas) showed accumulation of Hg as a function of age, with a significant decrease in the MeHg fraction. Isotopic analysis revealed remarkable differences between juvenile and adult whales. During the first period of life, Hg in the liver became isotopically lighter (δ202Hg decreased) with a strongly decreasing methylmercury (MeHg) fraction. We suggest this is due to preferential demethylation of MeHg with the lighter Hg isotopes and transport of MeHg to less sensitive organs, such as the muscles. Also changes in diet, with high MeHg intake in utero and during lactation, followed by increasing consumption of solid food contribute to this behavior. Interestingly, this trend in δ202Hg is reversed for livers of adult whales (increasing δ202Hg value), accompanied by a progressive decrease of δ202Hg in muscle at older ages. These total Hg (THg) isotopic trends suggest changes in the Hg metabolism of the long-finned pilot whales, development of (a) detoxification mechanism(s) (e.g., though the formation of HgSe particles), and Hg redistribution across the different organs.
Collapse
|
39
|
Iron Sulfide Minerals as Potential Active Capping Materials for Mercury-Contaminated Sediment Remediation: A Minireview. SUSTAINABILITY 2019. [DOI: 10.3390/su11061747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several innovative approaches have been proposed in recent years to remediate contaminated sediment to reduce human health and environmental risk. One of the challenges of sediment remediation stems from its unfeasible high cost, especially when ex situ strategies are selected. Therefore, in situ methods such as active capping have been emerging as possible options for solving sediment problems. Active capping methods have been extensively tested in field-scale sediment remediation for organic pollutants (e.g., PCBs, PAHs, DDT) contamination with good sequestration efficiency; however, these methods have not been widely tested for control of heavy metal pollutants, such as mercury (Hg). In this review, the potentials of using iron sulfide minerals to sequestrate Hg were discussed. Iron sulfide minerals are common in the natural environment and have shown good effectiveness in sequestrating Hg by adsorption or precipitation. Iron sulfides can also be synthesized in a laboratory and modified to enhance their sequestration ability for Hg. Some of the potential advantages of iron sulfides are pointed out here. Additional tests to understand the possibility of applying iron sulfides as active caps to remediate complicated environment systems should be conducted.
Collapse
|
40
|
Lee CS, Fisher NS. Microbial generation of elemental mercury from dissolved methylmercury in seawater. LIMNOLOGY AND OCEANOGRAPHY 2019; 64:679-693. [PMID: 31105337 PMCID: PMC6519744 DOI: 10.1002/lno.11068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Elemental mercury (Hg0) formation from other mercury species in seawater results from photoreduction and microbial activity, leading to possible evasion from seawater to overlying air. Microbial conversion of monomethylmercury (MeHg) to Hg0 in seawater remains unquantified. A rapid radioassay method was developed using gamma-emitting 203Hg as a tracer to evaluate Hg0 production from Hg(II) and MeHg in the low pM range. Bacterioplankton assemblages in Atlantic surface seawater and Long Island Sound water were found to rapidly produce Hg0, with production rate constants being directly related to bacterial biomass and independent of dissolved Hg(II) and MeHg concentrations. About 32% of Hg(II) and 19% of MeHg were converted to Hg0 in 4 d in Atlantic surface seawater containing low bacterial biomass, and in Long Island Sound water with higher bacterial biomass, 54% of Hg(II) and 8% of MeHg were transformed to Hg0. Decreasing temperatures from 24°C to 4°C reduced Hg0 production rates cell-1 from Hg(II) 3.3 times as much as from a MeHg source. Because Hg0 production rates were linearly related to microbial biomass and temperature, and microbial mercuric reductase was detected in our field samples, we inferred that microbial metabolic activities and enzymatic reactions primarily govern Hg0 formation in subsurface waters where light penetration is diminished.
Collapse
|
41
|
Zheng W, Demers JD, Lu X, Bergquist BA, Anbar AD, Blum JD, Gu B. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1853-1862. [PMID: 30371069 DOI: 10.1021/acs.est.8b05047] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) stable isotope fractionation has been widely used to trace Hg sources and transformations in the environment, although many important fractionation processes remain unknown. Here, we describe Hg isotope fractionation during the abiotic dark oxidation of dissolved elemental Hg(0) in the presence of thiol compounds and natural humic acid. We observe equilibrium mass-dependent fractionation (MDF) with enrichment of heavier isotopes in the oxidized Hg(II) and a small negative mass-independent fractionation (MIF) owing to nuclear volume effects. The measured enrichment factors for MDF and MIF (ε202Hg and E199Hg) ranged from 1.10‰ to 1.56‰ and from -0.16‰ to -0.18‰, respectively, and agreed well with theoretically predicted values for equilibrium fractionation between Hg(0) and thiol-bound Hg(II). We suggest that the observed equilibrium fractionation was likely controlled by isotope exchange between Hg(0) and Hg(II) following the production of the Hg(II)-thiol complex. However, significantly attenuated isotope fractionation was observed during the initial stage of Hg(0) oxidation by humic acid and attributed to the kinetic isotope effect (KIE). This research provides additional experimental constraints on interpreting Hg isotope signatures with important implications for the use of Hg isotope fractionation as a tracer of the Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Wang Zheng
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Jason D Demers
- Department of Earth and Environmental Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Bridget A Bergquist
- Department of Earth Sciences , University of Toronto , 22 Russell Street , Toronto , Ontario M5S 3B1 , Canada
| | | | - Joel D Blum
- Department of Earth and Environmental Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
42
|
Rua-Ibarz A, Bolea-Fernandez E, Maage A, Frantzen S, Sanden M, Vanhaecke F. Tracing Mercury Pollution along the Norwegian Coast via Elemental, Speciation, and Isotopic Analysis of Liver and Muscle Tissue of Deep-Water Marine Fish ( Brosme brosme). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1776-1785. [PMID: 30652479 DOI: 10.1021/acs.est.8b04706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liver and muscle tissue of tusks ( Brosme brosme) have been analyzed for their THg and MeHg concentrations and Hg isotopic signatures for tracing Hg pollution along the Norwegian coast. Clear differences between tissue types and locations were established. At five of the eight locations, the Hg concentration in muscle exceeded the maximum allowable level of 0.5 mg kg-1 wet weight. δ202Hg values in both tissue types indicated that Hg speciation affects the bulk Hg isotopic signature. Tusk liver seems to be more sensitive to immediate changes and to anthropogenic inorganic Hg, while the muscle rather reflects the Hg accumulated over a longer period of exposure. The δ202Hg values of liver and muscle also enabled different sources of Hg and exposure pathways to be distinguished. δ202Hgmuscle-δ202Hgliver showed a clear correlation with the % MeHg in tusk liver for the coastal waters, but not for the fjords. The absence of significant differences in Δ199Hg values between both tissues of tusk from the same location suggests that in vivo metabolic processes are the underlying reason for the differences in Hg speciation and in δ202Hg values. This work highlights the importance of selecting different tissues of marine fish in future Hg monitoring programs.
Collapse
Affiliation(s)
- Ana Rua-Ibarz
- Ghent University , Department of Chemistry, Atomic & Mass Spectrometry Research Unit , Campus Sterre, Krijgslaan 281-S12 , 9000 Ghent , Belgium
| | - Eduardo Bolea-Fernandez
- Ghent University , Department of Chemistry, Atomic & Mass Spectrometry Research Unit , Campus Sterre, Krijgslaan 281-S12 , 9000 Ghent , Belgium
| | - Amund Maage
- Institute of Marine Research , Postboks 1870 Nordnes , 5817 Bergen , Norway
| | - Sylvia Frantzen
- Institute of Marine Research , Postboks 1870 Nordnes , 5817 Bergen , Norway
| | - Monica Sanden
- Institute of Marine Research , Postboks 1870 Nordnes , 5817 Bergen , Norway
| | - Frank Vanhaecke
- Ghent University , Department of Chemistry, Atomic & Mass Spectrometry Research Unit , Campus Sterre, Krijgslaan 281-S12 , 9000 Ghent , Belgium
| |
Collapse
|
43
|
Chen G, Han J, Mu Y, Yu H, Qin L. Two-stage chromium isotope fractionation during microbial Cr(VI) reduction. WATER RESEARCH 2019; 148:10-18. [PMID: 30343194 DOI: 10.1016/j.watres.2018.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Chromium isotope fractionation analysis is a promising approach for the assessment of microbial Cr(VI) reduction in groundwater. Understanding the mechanisms and other parameters that control Cr isotope fractionation factors (between the product Cr(III) and reactant Cr (VI)) in microbial Cr(VI) reduction is critical to this application. To date, such studies are very limited. Here, the influence of critical factors on observed Cr isotope fractionation during Cr(VI) reduction by Shewanella oneidensis MR-1 under various conditions was investigated. The Cr(VI) concentration and Cr isotope ratio measurements were conducted on unreacted Cr(VI) remaining in solution to determine Cr isotope fractionation factors. The changes in ambient environmental conditions (e.g., pH, temperature) have limited influence on Cr isotope fractionation factors. However, as a result of Cr(VI) consumption as the experiments proceed, the change in bioavailability of Cr(VI) has a significant impact on Cr isotope fractionation factors. For example, in temperature-controlled experiments, Cr isotope fractionation showed two-stage behavior: during Stage I, the values of ε were -2.81 ± 0.19‰ and -2.60 ± 0.14‰ at 18 °C and 34 °C, respectively; during Stage II, as Cr(VI) reduction progressed, Cr isotope fractionation was significantly masked, and the ε values decreased to -0.98 ± 0.49‰ and -1.01 ± 0.11‰ at 18 °C and 34 °C, respectively. Similar two-stage isotope fractionation behaviors were observed in pH-controlled experiments (pH = 6.0 and 7.2) and in experiments with and without the addition of a competing electron acceptor (nitrate). Masking of isotope fractionation in Stage II indicated restrictions on the bioavailability of Cr(VI) and mass-transfer limitations. This study provides an explanation for the variation in Cr isotope fractionation factors during microbial Cr(VI) reduction in the environment, furthering the viability of Cr isotope ratio analysis as an approach in understanding Cr biogeochemical cycling.
Collapse
Affiliation(s)
- Guojun Chen
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Juncheng Han
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yang Mu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Huimin Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Liping Qin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Geological Processes and Mineral Resources, University of Geosciences, Beijing, China.
| |
Collapse
|
44
|
Guédron S, Amouroux D, Tessier E, Grimaldi C, Barre J, Berail S, Perrot V, Grimaldi M. Mercury Isotopic Fractionation during Pedogenesis in a Tropical Forest Soil Catena (French Guiana): Deciphering the Impact of Historical Gold Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11573-11582. [PMID: 30222337 DOI: 10.1021/acs.est.8b02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used natural mercury (Hg) stable isotopes to investigate the Hg cycle in a rainforest soil catena (French Guiana) partially gold-mined during the early 1950s. Litterfall showed homogeneous Δ199Hg values [-0.18 ± 0.05‰, i.e., a modern gaseous elemental Hg (GEM) isotopic signature]. After litter decomposition, Hg bound to organic matter (OM) is mixed with Hg from pristine (-0.55 ± 0.22‰) or gold-mined (-0.09 ± 0.16‰) mineral materials. Negative Δ199Hg values in deep pristine mineral horizons (-0.60 ± 0.16‰) suggest the transfer of Hg bound to dissolved OM depleted in odd isotopes due to mass-independent fractionation during Hg abiotic reduction. Perennial palm tree leaves collected above gold-mined and pristine soil recorded contrasting Δ199Hg signatures likely resulting from GEM re-emission processes from soils and leaf surfaces. Upslope, soil δ202Hg signatures showed a negative shift (ε ∼ -1‰) with depth attributed to mass-dependent fractionation during Hg sorption and complexation onto iron oxides and dissolved OM. Downslope, higher δ202Hg values in soils resulted from hydromorphy [lower humification, greater Hg(II) reduction, etc.]. The unique Hg isotopic signatures of Amazonian soils probably result in multistep fractionation processes during pedogenesis (millions of years) and in a potentially different Hg isotopic signature of preanthropogenic background GEM.
Collapse
Affiliation(s)
- S Guédron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble , France
| | - D Amouroux
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - E Tessier
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - C Grimaldi
- UMR SAS, INRA, Agrocampus Ouest, 35000 Rennes , France
| | - J Barre
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - S Berail
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - V Perrot
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble , France
| | - M Grimaldi
- Sorbonne Universities, Science Faculty, Paris 06, IRD, CNRS, INRA, UPEC, Univ Paris Diderot, Institute of Ecology and Environmental Sciences, iEES Paris, 75005 Paris , France
- Institut de Recherche pour le Développement, Centre IRD de Cayenne, 97323 Cayenne cedex, France
| |
Collapse
|
45
|
Wang Z, Sun T, Driscoll CT, Yin Y, Zhang X. Mechanism of Accumulation of Methylmercury in Rice ( Oryza sativa L.) in a Mercury Mining Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9749-9757. [PMID: 30129363 DOI: 10.1021/acs.est.8b01783] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rice consumption is the primary pathway for methylmercury (MeHg) exposure at inland mercury (Hg) mining areas of China. The sources and processes of formation and translocation for MeHg in rice plant are complex and remain largely unknown. In this study, rice ( Oryza sativa L.) was exposed to isotopically labeled dimethylmercury (DMe199Hg) in field experiments using open top chambers to explore the response of MeHg accumulation in rice tissues to different levels of DMe199Hg in air. Rice leaves assimilated DMeHg from air, which was subsequently largely stored in aboveground tissues, including the rice grain, with only a small amount reaching the root. Combining these experimental results with field investigations of DMeHg concentrations in air beneath the rice canopy in a Hg mining area, we estimate that 15.5%, 10.8%, and 8.50% MeHg in the brown rice, the leaf, and the upper stalk, respectively, could be derived from atmospheric sources of DMeHg, while 99.5% of MeHg in rice root originated from the rice soil-water system. These findings help refine the mechanism of MeHg accumulation in rice that, in addition to soil, a fraction of MeHg in rice plants can be derived from DMeHg emissions from flooded rice paddies in Hg mining areas.
Collapse
Affiliation(s)
- Zhangwei Wang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , No. 18 Shuangqing Road , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ting Sun
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , No. 18 Shuangqing Road , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering , Syracuse University , 151 Link Hall , Syracuse , New York 13244 , United States
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , No. 18 Shuangqing Road , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoshan Zhang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , No. 18 Shuangqing Road , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
46
|
Jackson TA. Isotopic and chemical characteristics of mercury in organs and tissues of fish in a mercury-polluted lake: Evidence for fractionation of mercury isotopes by physiological processes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:515-529. [PMID: 28926123 DOI: 10.1002/etc.3987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/10/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Organs and tissues of whitefish and trout from mercury (Hg)-polluted Lake Ontario were analyzed for Hg isotopes, methylmercury (CH3 Hg+ ), and inorganic Hg to investigate possible mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes by physiological processes of the fish. Isotope signatures of different body parts were defined by δ-values of 198 Hg/202 Hg, 199 Hg/202 Hg, 200 Hg/202 Hg, and 201 Hg/202 Hg ratios and by Δ-values representing effects of MIF on 199 Hg/202 Hg and 201 Hg/202 Hg ratios. The research yielded the following evidence for MDF and MIF, including MIF of isotopes with even as well as odd mass numbers, by metabolic activities: 1) anomalously low δ-values for whitefish kidneys but not for trout kidneys; 2) widely varying differences between the δ-values of different body parts of whitefish but practically uniform differences for those of trout; 3) different relationships between Δ199 Hg and Δ201 Hg for whitefish than for trout; 4) nonlinear correlation between δ198 Hg and δ200 Hg for whitefish but linear correlation for trout; 5) an inverse correlation between the δ199 Hg values and CH3 Hg+ concentrations of whitefish and trout; 6) an inverse correlation between the δ201 Hg/δ199 Hg and CH3 Hg+ /inorganic Hg ratios of trout kidneys and gills (and lipids of trout near the sources of pollution) but a positive correlation for muscle, liver, and gut; and 7) inverse correlations between Δ199 Hg and the CH3 Hg+ /inorganic Hg ratio for trout liver, kidneys, and gut. Environ Toxicol Chem 2018;37:515-529. © 2017 SETAC.
Collapse
Affiliation(s)
- Togwell A Jackson
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario, Canada
| |
Collapse
|
47
|
Li P, Du B, Maurice L, Laffont L, Lagane C, Point D, Sonke JE, Yin R, Lin CJ, Feng X. Mercury Isotope Signatures of Methylmercury in Rice Samples from the Wanshan Mercury Mining Area, China: Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12321-12328. [PMID: 28958148 DOI: 10.1021/acs.est.7b03510] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice consumption is the primary pathway of methylmercury (MeHg) exposure for residents in mercury-mining areas of Guizhou Province, China. In this study, compound-specific stable isotope analysis (CSIA) of MeHg was performed on rice samples collected in the Wanshan mercury mining area. An enrichment of 2.25‰ in total Hg (THg) δ202Hg was observed between rice and human hair, and THg Δ199Hg in hair was 0.12‰ higher than the value in rice. Rice and human hair samples in this study show distinct Hg isotope signatures compared to those of fish and human hair of fish consumers collected in China and other areas. Distinct Hg isotope signatures were observed between IHg and MeHg in rice samples (in mean ± standard deviation: δ202HgIHg at -2.30‰ ± 0.49‰, Δ199HgIHg at -0.08‰ ± 0.04‰, n = 7; δ202HgMeHg at -0.80‰ ± 0.25‰, Δ199HgMeHg at 0.08‰ ± 0.04‰, n = 7). Using a binary mixing model, it is estimated that the atmospheric Hg contributed 31% ± 16% of IHg and 17% ± 11% of THg in the rice samples and the IHg in soil caused by past mining activities contributed to the remaining Hg. This study demonstrated that Hg stable isotopes are good tracers of human MeHg exposure to fish and rice consumption, and the isotope data can be used for identifying the sources of IHg and MeHg in rice.
Collapse
Affiliation(s)
| | - Buyun Du
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Laurence Maurice
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS , 31400 Toulouse, France
| | - Laure Laffont
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS , 31400 Toulouse, France
| | - Christelle Lagane
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS , 31400 Toulouse, France
| | - David Point
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS , 31400 Toulouse, France
| | - Jeroen E Sonke
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS , 31400 Toulouse, France
| | | | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University , Beaumont, Texas 77710, United States
| | | |
Collapse
|
48
|
Perrot V, Masbou J, Pastukhov MV, Epov VN, Point D, Bérail S, Becker PR, Sonke JE, Amouroux D. Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury. Metallomics 2016; 8:170-8. [PMID: 26680232 DOI: 10.1039/c5mt00286a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.
Collapse
Affiliation(s)
- Vincent Perrot
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM UMR-5254, CNRS-UPPA, Hélioparc, 2 Avenue du Président Pierre Angot, Pau, 64053, France.
| | - Jeremy Masbou
- Laboratoire Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées CNRS-IRD-Université de Toulouse 3, 14 avenue Edouard Belin, Toulouse, 31400, France
| | - Mikhail V Pastukhov
- Laboratory of Geochemical Mapping and Monitoring, Institute of Geochemistry SB RAS, 1A Favorskogo Street, PB-304, Irkutsk, 664033, Russia
| | - Vladimir N Epov
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM UMR-5254, CNRS-UPPA, Hélioparc, 2 Avenue du Président Pierre Angot, Pau, 64053, France.
| | - David Point
- Laboratoire Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées CNRS-IRD-Université de Toulouse 3, 14 avenue Edouard Belin, Toulouse, 31400, France
| | - Sylvain Bérail
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM UMR-5254, CNRS-UPPA, Hélioparc, 2 Avenue du Président Pierre Angot, Pau, 64053, France.
| | - Paul R Becker
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Jeroen E Sonke
- Laboratoire Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées CNRS-IRD-Université de Toulouse 3, 14 avenue Edouard Belin, Toulouse, 31400, France
| | - David Amouroux
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM UMR-5254, CNRS-UPPA, Hélioparc, 2 Avenue du Président Pierre Angot, Pau, 64053, France.
| |
Collapse
|
49
|
Lim JC, Thevarajoo S, Selvaratnam C, Goh KM, Shamsir MS, Ibrahim Z, Chong CS. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure. J Basic Microbiol 2016; 57:151-161. [PMID: 27859397 DOI: 10.1002/jobm.201600494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/23/2016] [Indexed: 01/15/2023]
Abstract
Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L-1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.
Collapse
Affiliation(s)
- Jia Chun Lim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Suganthi Thevarajoo
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chitra Selvaratnam
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zaharah Ibrahim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chun Shiong Chong
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
50
|
Yu B, Fu X, Yin R, Zhang H, Wang X, Lin CJ, Wu C, Zhang Y, He N, Fu P, Wang Z, Shang L, Sommar J, Sonke JE, Maurice L, Guinot B, Feng X. Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9262-9. [PMID: 27485289 DOI: 10.1021/acs.est.6b01782] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The isotopic composition of atmospheric total gaseous mercury (TGM) and particle-bound mercury (PBM) and mercury (Hg) in litterfall samples have been determined at urban/industrialized and rural sites distributed over mainland China for identifying Hg sources and transformation processes. TGM and PBM near anthropogenic emission sources display negative δ(202)Hg and near-zero Δ(199)Hg in contrast to relatively positive δ(202)Hg and negative Δ(199)Hg observed in remote regions, suggesting that different sources and atmospheric processes force the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) in the air samples. Both MDF and MIF occur during the uptake of atmospheric Hg by plants, resulting in negative δ(202)Hg and Δ(199)Hg observed in litter-bound Hg. The linear regression resulting from the scatter plot relating the δ(202)Hg to Δ(199)Hg data in the TGM samples indicates distinct anthropogenic or natural influences at the three study sites. A similar trend was also observed for Hg accumulated in broadleaved deciduous forest foliage grown in areas influenced by anthropogenic emissions. The relatively negative MIF in litter-bound Hg compared to TGM is likely a result of the photochemical reactions of Hg(2+) in foliage. This study demonstrates the diagnostic stable Hg isotopic composition characteristics for separating atmospheric Hg of different source origins in China and provides the isotopic fractionation clues for the study of Hg bioaccumulation.
Collapse
Affiliation(s)
- Ben Yu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
| | - Runsheng Yin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Che-Jen Lin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
- Department of Civil and Environmental Engineering, Lamar University , Beaumont, Texas United States
| | - Chuansheng Wu
- University of Chinese Academy of Sciences , Beijing 100049, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences , Mengla, 666303, China
| | - Yiping Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences , Mengla, 666303, China
| | - Nannan He
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
| | - Jeroen E Sonke
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier , 14 Avenue Edouard-Belin, 31400 Toulouse, France
| | - Laurence Maurice
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier , 14 Avenue Edouard-Belin, 31400 Toulouse, France
| | - Benjamin Guinot
- Laboratoire d'Aérologie, Université de Toulouse , CNRS, UPS, 14 Avenue Edouard-Belin, 31400 Toulouse, France
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
| |
Collapse
|