1
|
Fu Y, Li SY, Chen Y, Chen YP, Guo JS, Liu SY, Yan P. Potential roles of quorum quenching in microbial aggregates during wastewater treatment. BIORESOURCE TECHNOLOGY 2025; 419:132027. [PMID: 39736339 DOI: 10.1016/j.biortech.2024.132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Quorum sensing-regulated microbial behaviors often negatively impact wastewater treatment, leading to issues such as biofouling in membrane bioreactors, filamentous bulking, and resistance gene transfer. Quorum quenching, which counteracts quorum sensing, offers a promising strategy to mitigate these problems. This review aims to highlight overlooked perspectives for its application in microbial aggregates during wastewater treatment. First, the review examines the quorum sensing network present in microbial aggregates and the regulatory role of different quorum sensing systems in bacterial function and behavior during wastewater treatment. The discussions cover hierarchical, parallel, and competitive quorum sensing systems to clarify the interactions among these pathways. A precise quorum quenching strategy is proposed to enhance efficiency based on the type of quorum sensing regulation. Additionally, a bridge is established between the physiological characteristics of quorum quenching bacteria and process parameters to achieve process control over bacterial function and behavior during wastewater treatment.
Collapse
Affiliation(s)
- Yi Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Song-Ya Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yang Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
2
|
Huang Y, Zheng X, Feng Y, Feng X, Xu F. Combining quorum quenching by Rhodococcus sp. BH4 and Acinetobacter sp. DKY-1 to control biofouling in membrane bioreactors. BIORESOURCE TECHNOLOGY 2025; 418:131981. [PMID: 39681273 DOI: 10.1016/j.biortech.2024.131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
This study investigates a novel approach to mitigate biofouling in membrane bioreactors (MBRs) using a combinational quorum quenching (QQ) strategy. Rhodococcus sp. BH4 and Acinetobacter sp. DKY-1 were employed to disrupt intraspecies N-acyl-homoserine lactones (AHL) and interspecies autoinducer-2 (AI-2) quorum sensing, respectively. BH4 and DKY-1 were immobilized independently and the antibiofouling effects of single QQ beads and 1: 1 mixed QQ beads, both with the same final doses, were compared. While both bead types exhibited high QQ activity, the mixed QQ beads more effectively inhibited microbial biofilm formation, delaying biofouling by two times compared to 1.5 and 1.7 times for the single species beads. Additionally, the mixed QQ MBR demonstrated significantly lower extracellular polymeric substances and a notable reduction in the genus Nitrospira. This combined QQ strategy presents a promising method for enhancing antibiofouling performance in MBRs through targeted disruption of microbial communication.
Collapse
Affiliation(s)
- Yanyao Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xueman Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yunshi Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xingtong Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Fangfang Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Liu X, Luo J, Xu Q, Lu Q, Ni BJ, Wang D. Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems. WATER RESEARCH 2025; 275:123190. [PMID: 39862801 DOI: 10.1016/j.watres.2025.123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency. The review begins by exploring the pathways and characteristics of QS in key functional microorganisms involved in AD. We analyze the response mechanisms of QS to key environmental variables and their effects on the structure and function of microbe communities and extracellular polymeric substances secretion. Potential applications of QS in engineered AD systems are discussed, with a focus on promoting system startup, improving operational efficiency, and enhancing resistance and stability. The use of exogenous signaling molecules and quorum quenching reagents to optimize AD performance is also evaluated. Additionally, the ecological significance of QS in natural environments, such as seafloor sediments and wetlands, is explored, emphasizing its role in regulating AD-related microorganisms within complex microbial communities. Finally, the review identifies current knowledge gaps and outlines future research directions in AD, including QS database development, QS-engineered bacteria excavation, and advanced analytical methods assistants. This comprehensive review aims to bridge existing gaps in QS-related knowledge in AD and provide fresh perspectives for studying microbial communication and collaboration through QS.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Jianying Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Zhang X, Sun B, Xi T, Zhao J, Yang K, Sun S, Yang C. Quorum quenching as a mechanism for Cu-bearing stainless steel to conduct nonbiocidal retardation of biofilm development. CHEMICAL ENGINEERING JOURNAL 2024; 499:155996. [DOI: 10.1016/j.cej.2024.155996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
|
6
|
Luo Y, Qiu R, Zhang X, Li F. Biofouling behaviors of reverse osmosis membrane in the presence of trace plasticizer for circulating cooling water treatment: Characteristics and mechanisms. WATER RESEARCH 2024; 260:121937. [PMID: 38878313 DOI: 10.1016/j.watres.2024.121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Reverse osmosis (RO) system has been increasingly applied for circulating cooling water (CCW) reclamation. Plasticizers, which may be dissolved into CCW system in plastic manufacturing industry, cannot be completely removed by the pretreatment prior to RO system, possibly leading to severe membrane biofouling. Deciphering the characteristics and mechanisms of RO membrane biofouling in the presence of trace plasticizers are of paramount importance to the development of effective fouling control strategies. Herein, we demonstrate that exposure to a low concentration (1 - 10 μg/L) of three typical plasticizers (Dibutyl phthalate (DBP), Tributyl phosphate (TBP) and 2,2,4-Trimethylpentane-1,3-diol (TMPD)) detected in pretreated real CCW promoted Escherichia coli biofilm formation. DBP, TBP and TMPD showed the highest stimulation at 5 or 10 μg/L with biomass increasing by 55.7 ± 8.2 %, 35.9 ± 9.5 % and 32.2 ± 14.7 % respectively, relative to the unexposed control. Accordingly, the bacteria upon exposure to trace plasticizers showed enhanced adenosine triphosphate (ATP) activity, stimulated extracellular polymeric substances (EPS) excretion and suppressed intracellular reactive oxygen species (ROS) induction, causing by upregulation of related genes. Long-term study further showed that the RO membranes flowing by the pretreated real CCW in a polypropylene plant exhibited a severer biofouling behavior than exposed control, and DBP and TBP parts played a key role in stimulation effects on bacterial proliferation. Overall, we demonstrate that RO membrane exposure to trace plasticizers in pretreated CCW can upregulate molecular processes and physiologic responses that accelerate membrane biofouling, which provides important implications for biofouling control strategies in membrane-based CCW treatment systems.
Collapse
Affiliation(s)
- Yi Luo
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Riji Qiu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China.
| | - Fang Li
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Xu B, Su Q, Yang Y, Huang S, Yang Y, Shi X, Choo KH, Ng HY, Lee CH. Quorum Quenching in Membrane Bioreactors for Fouling Retardation: Complexity Provides Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012227 DOI: 10.1021/acs.est.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yuxin Yang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Yue Yang
- Corporate Sustainability Office, TÜV SÜD, Westendstr. 199, 80686 München, Germany
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Park J, Park H, Jang JU, Kim H, Park H, Iqbal T, Oh HS, Choo KH, Lee K. Benefits of fungal-to-bacterial quorum quenching as anti-biofouling strategy in membrane bioreactors for wastewater treatment and water reuse. BIORESOURCE TECHNOLOGY 2024; 403:130848. [PMID: 38761868 DOI: 10.1016/j.biortech.2024.130848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This study addresses membrane biofouling in membrane bioreactors (MBRs) by exploring fungal-to-bacterial quorum quenching (QQ) strategies. While most research has been focused on bacterial-to-bacterial QQ tactics, this study identified fungal strain Vanrija sp. MS1, which is capable of degrading N-acyl-homoserine lactones (signaling molecules of Gram-negative bacteria). To determine the benefits of fungal over bacterial strains, after immobilization on fluidizing spherical beads in an MBR, MS1 significantly reduced the fouling rate by 1.8-fold compared to control MBR, decreased extracellular polymeric substance levels in the biofilm during MBR operation, and favorably changed microbial community and bacterial network, resulting in biofouling mitigation. It is noteworthy that, unlike Rhodococcus sp. BH4, MS1 enhanced QQ activity when switching from neutral to acidic conditions. These results suggest that MS1 has the potential for the effective treatment of acidic industrial wastewater sources such as semiconductor and secondary battery wastewater using MBRs.
Collapse
Affiliation(s)
- Jeongmi Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeyeon Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-U Jang
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyunjung Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeona Park
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tahir Iqbal
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Kwang-Ho Choo
- Advanced Institute of Water Industry, Kyungpook National University, Daegu 41566, Republic of Korea; School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kibaek Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
10
|
Fu Y, Wu J, Wu Y, Yang B, Wang X, Xu R, Meng F. Development of a novel membrane-based quorum-quenching microbial isolator for biofouling control: Process performance and microbial mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130817. [PMID: 38723725 DOI: 10.1016/j.biortech.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Quorum quenching (QQ) can mitigate biofouling in membrane bioreactors (MBRs) by inhibiting cell-to-cell communication. However, it is difficult to maintain long-term QQ activity. Here, a novel microbial isolator composed of tubular microfiltration membranes was developed to separate QQ bacteria (Rhodococcus sp. BH4) from sludge. The time to reach a transmembrane pressure of 50 kPa was delayed by 69.55 % (p = 0.002, Student's t test) in MBR with QQ microbial isolator (MBR-Q), compared to that in the control MBR (MBR-C) during stable operation. The concentration of proteins in the extracellular polymeric substances of sludge was reduced by 20.61 % in MBR-Q relative to MBR-C. The results of the bacterial community analyses indicated less enrichment of fouling-associated bacteria (e.g., Acinetobacter) but a higher abundance of QQ enzymes in MBR-Q than in MBR-C. This environmentally friendly technique can decrease the cleaning frequency and increase the membrane lifespan, thus improving the sustainability of MBR technology.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Jiajie Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| |
Collapse
|
11
|
Wang X, Yi K, Pang H, Liu Z, Li X, Zhang W, Zhang C, Liu S, Huang J, Zhang C. An overview of quorum sensing in shaping activated sludge forms: Mechanisms, applications and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171886. [PMID: 38531459 DOI: 10.1016/j.scitotenv.2024.171886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Activated sludge method is an effective method for the wastewater treatment and has been widely applied. Activated sludge usually exists in various forms such as activated sludge floc, biofilm and granule. Due to the different character and function for each sludge type, the role and mechanism in the wastewater treatment process are also different, but all were crucial. The quorum sensing (QS) /quorum quenching (QQ) have been demonstrated and proved to regulate the group behavior by secreting signaling molecules among microorganisms and thus affect the manifestation of sludge. However, the complex mechanisms and regulatory strategies of QS/QQ in sludge forms have not been systematically summarized. This review provided an overview on the mechanism of QS/QQ shaping sludge forms from macro to micro (Explore it through signaling molecules, extracellular polymeric substances and microorganisms). In addition, the application and challenges of QS/QQ regulating sludge forms in various wastewater treatment processes including biofilm batch reactor, granule sludge and membrane bioreactor were discussed. Finally, some suggestions for further research and development of effective and economical QS/QQ strategies are put forward.
Collapse
Affiliation(s)
- Xia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Kaixin Yi
- College of Materials and Environmental Engineering, Changsha University, Changsha 410003, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xue Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
12
|
Ge S, Yang H, Li Y, Chen X, Yang R, Dong X. Mitigation of biofouling in membrane bioreactors by quorum-quenching bacteria during the treatment of metal-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32126-32135. [PMID: 38649608 DOI: 10.1007/s11356-024-33336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Quorum quenching (QQ) is an efficient way to mitigate membrane biofouling in a membrane bioreactor (MBR) during wastewater treatment. A QQ bacterium, Lysinibacillus sp. A4, was isolated and used to mitigate biofouling in an MBR during the treatment of wastewater containing metals. A QQ enzyme (named AilY) was cloned from A4 and identified as a metallo-β-lactamase-like lactonase. The QQ activity of A4 and that of Escherichia coli BL21 (DE3) overexpressing AilY could be promoted by Fe2+, Mn2+, and Zn2+ while remaining unaffected by other metals tested. The two bacteria effectively mitigated biofouling by reducing the transmembrane pressure from around 30 to 20 kPa without negative influence on the COD, NH4+-N, or total phosphorus of the effluent. The relative abundance of Lysinibacillus sp. A4 increased greatly from 0.04 to 8.29% in the MBR with metal-containing wastewater, suggesting that Lysinibacillus sp. A4 could multiply quickly and adapt to this environment. Taken together, the findings suggested that A4 could tolerate metal to a certain degree, and this property could allow A4 to adapt well to metal-containing wastewater, making it a valuable strain for mitigating biofouling in MBR during the treatment of metal-containing wastewater.
Collapse
Affiliation(s)
- Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Huiting Yang
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yaru Li
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Xiaohui Chen
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Ruixue Yang
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China.
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Kalvapalle PB, Sridhar S, Silberg JJ, Stadler LB. Long-duration environmental biosensing by recording analyte detection in DNA using recombinase memory. Appl Environ Microbiol 2024; 90:e0236323. [PMID: 38551351 PMCID: PMC11022584 DOI: 10.1128/aem.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024] Open
Abstract
Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure. These biosensors sense the analyte and trigger the expression of a recombinase enzyme which flips a segment of DNA, creating a genetic memory, and initiates fluorescent protein expression. The initial designs failed over time due to unintended DNA flipping in the absence of the analyte and loss of the flipped state after exposure to the analyte. Biosensor performance was improved by decreasing recombinase expression, removing the fluorescent protein output, and using quantitative PCR to read out stored information. Application of memory biosensors in wastewater isolates achieved memory of analyte exposure in an uncharacterized Pseudomonas isolate. By returning these engineered isolates to their native environments, recombinase-memory systems are expected to enable longer duration and in situ investigation of microbial signaling, cross-feeding, community shifts, and gene transfer beyond the reach of traditional environmental biosensors.IMPORTANCEMicrobes mediate ecological processes over timescales that can far exceed the half-lives of transient metabolites and signals that drive their collective behaviors. We investigated strategies for engineering microbes to stably record their transient exposure to a chemical over many generations through DNA rearrangements. We identify genetic architectures that improve memory biosensor performance and characterize these in wastewater isolates. Memory biosensors are expected to be useful for monitoring cell-cell signals in biofilms, detecting transient exposure to chemical pollutants, and observing microbial cross-feeding through short-lived metabolites within cryptic methane, nitrogen, and sulfur cycling processes. They will also enable in situ studies of microbial responses to ephemeral environmental changes, or other ecological processes that are currently challenging to monitor non-destructively using real-time biosensors and analytical instruments.
Collapse
Affiliation(s)
| | - Swetha Sridhar
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
14
|
Sompiyachoke K, Elias MH. Engineering quorum quenching acylases with improved kinetic and biochemical properties. Protein Sci 2024; 33:e4954. [PMID: 38520282 PMCID: PMC10960309 DOI: 10.1002/pro.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Many Gram-negative bacteria use N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as AHL acylases, chemically degrade these molecules which prevents signal reception by bacteria and inhibits undesirable biofilm-related traits. These capabilities make acylases appealing candidates for controlling microbes, yet candidates with high activity levels and substrate specificity and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to generate these improved properties using the Protein One-Stop Shop Server. The engineering of acylases is complicated by low-throughput enzymatic assays. Alleviating this challenge, we report a time-course kinetic assay for AHL acylases that monitors the real-time production of homoserine lactone. Using the assay, we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2°C, which translated into high resistance against organic solvents and increased compatibility with material coatings. While the MacQ mutants were unexpectedly destabilized, they had considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
- Biotechnology InstituteSt. PaulMinnesotaUSA
| |
Collapse
|
15
|
Lv L, Wei Z, Li W, Chen J, Tian Y, Gao W, Wang P, Sun L, Ren Z, Zhang G, Liu X, Ngo HH. Regulation of extracellular polymers based on quorum sensing in wastewater biological treatment from mechanisms to applications: A critical review. WATER RESEARCH 2024; 250:121057. [PMID: 38157601 DOI: 10.1016/j.watres.2023.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Extracellular polymeric substances (EPS) regulated by quorum sensing (QS) could directly mediate adhesion between microorganisms and form tight microbial aggregates. Besides, EPS have redox properties, which can facilitate electron transfer for promoting electroactive bacteria. Currently, the applications research on improving wastewater biological treatment performance based on QS regulated EPS have been widely reported, but reviews on the level of QS regulated EPS to enhance EPS function in microbial systems are still lacking. This work proposes the potential mechanisms of EPS synthesis by QS regulation from the viewpoint of material metabolism and energy metabolism, and summarizes the effects of QS on EPS synthesis. By synthesizing the role of QS in EPS regulation, we further point out the applications of QS-regulated EPS in wastewater biological treatment, which involve a series of aspects such as strengthening microbial colonization, mitigating membrane biofouling, improving the shock resistance of microbial metabolic systems, and strengthening the electron transfer capacity of microbial metabolic systems. According to this comprehensive review, future research on QS-regulated EPS should focus on the exploration of the micro-mechanisms, and economic regulation strategies for QS-regulated EPS should be developed, while the stability of QS-regulated EPS in long-term production experimental research should be further demonstrated.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ziyin Wei
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Jiarui Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China.
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
16
|
Ham S, Ryoo HS, Jang Y, Lee SH, Lee JY, Kim HS, Lee JH, Park HD. Isolation of a quorum quenching bacterium effective to various acyl-homoserine lactones: Its quorum quenching mechanism and application to a membrane bioreactor. CHEMOSPHERE 2024; 347:140735. [PMID: 37977541 DOI: 10.1016/j.chemosphere.2023.140735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Biofouling, caused by microbial biofilm formation on the membrane surface and in pores, is a major operational problem in membrane bioreactors (MBR). Many quorum quenching (QQ) bacteria have been isolated and applied to MBR to reduce biofouling. However, for more effective MBR biofouling control, novel approaches for isolating QQ bacteria and applying them in MBR are needed. Therefore, Listeria grayi (HEMM-2) was isolated using a mixture of different N-acyl homoserine lactones (AHLs). HEMM-2 degraded various AHLs, regardless of the length and oxo group in the carbon chain, with quorum sensing (QS) inhibition ratios of 47-61%. This QQ activity was attributed to extracellular substances in HEMM-2 cell-free supernatant (CFS). Furthermore, the HEMM-2 CFS negatively regulated QS-related gene expression, inhibiting Pseudomonas aeruginosa and activated sludge-biofilm formation by 53-75%. Surprisingly, when the HEMM-2 CFS was directly injected into a laboratory-scale MBR system, biofouling was not significantly affected. Biofouling was only controlled by cell suspension (CS) of HEMM-2, indicating the importance of QQ bacteria in MBR. The HEMM-2 CS increased operation time to reach 0.4 bar, a threshold transmembrane pressure for complete biofouling, from 315 h to 371 h. Taken together, HEMM-2, which is effective in the degradation of various AHLs, and its applicable method to MBR may be considered a potent approach for controlling biofouling and understanding the behavior of QQ bacteria in MBR systems.
Collapse
Affiliation(s)
- Soyoung Ham
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen, 72076, Germany
| | - Hwa-Soo Ryoo
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sang-Hoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Yoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Jeong-Hoon Lee
- Eco Lab Center, SK Ecoplant Co.,Ltd., 19, Yulgok-ro 2-gil, Jongro-gu, Seoul, 03143, Republic of Korea
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Anburajan P, Cayetano RD, Prohim YM, Thau NT, Kim S, Kim H, Ko JH, Oh HS. Role of quorum sensing and quorum quenching in anaerobic digestion: A scoping review. ENVIRONMENTAL RESEARCH 2023; 239:117413. [PMID: 37839533 DOI: 10.1016/j.envres.2023.117413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion (AD) is a biological process that employs anaerobic microorganisms to degrade organic material, yielding biogas and biofertilizers. Understanding quorum sensing (QS) signaling in mixed microbial systems provides valuable insights into microbial behavior and functions. This review aims to examine recent studies on the roles of QS and QQ in the AD processes. A QS signal molecule, N-acyl homoserine lactone (AHL), induce the production of extraceluller polymers, promoting biofilm formation and bacterial aggregation, thereby the efficiency of AD process. QS-assisted granule formation fosters syntrophy between acetogens and methanogens, leading to increased organic removal and methane production. Specific AHLs were shown to be correlated with the abundance of hydrolytic bacteria and acidogens, further benefiting methane production. QQ was shown to effectively control membrane fouling in anaerobic membrane bioreactors, yet its impact on methane productivity remains unclear. This review shed lights on the existing literature gaps regarding the mechanisms of QS and QQ in AD systems, which will play a vital role in advancing AD applications in the future.
Collapse
Affiliation(s)
- Parthiban Anburajan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea; Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul, South Korea
| | - Roent Dune Cayetano
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea; Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul, South Korea
| | - You Mit Prohim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Nguyen Tang Thau
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Sungmi Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Je Hyeon Ko
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea; Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul, South Korea.
| |
Collapse
|
18
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
19
|
Xue YM, Wang YC, Lin YT, Jiang GY, Chen R, Qin RL, Jia XQ, Wang C. Engineering a Pseudomonas putida as living quorum quencher for biofilm formation inhibition, benzenes degradation, and environmental risk evaluation. WATER RESEARCH 2023; 246:120690. [PMID: 37804807 DOI: 10.1016/j.watres.2023.120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Bacterial communication interruption based on quorum quenching (QQ) has been proven its potential in biofilm formation inhibition and biofouling control. However, it would be more satisfying if QQ could be combined with the efficient degradation of contaminants in environmental engineering. In this study, we engineered a biofilm of Pseudomonas putida through introducing a QQ synthetic gene, which achieved both biofilm formation inhibition and efficient degradation of benzene series in wastewater. The aiiO gene introduced into the P. putida by heat shock method was highly expressed to produce QQ enzyme to degrade AHL-based signal molecules. The addition of this engineered P. putida reduced the AHLs concentration, quorum sensing gene expression, and connections of the microbial community network in activated sludge and therefore inhibited the biofilm formation. Meanwhile, the sodium benzoate degradation assay indicated an enhanced benzene series removal ability of the engineering bacteria on activated sludge. Besides, we also demonstrated a controllable environmental risk of this engineered bacteria through monitoring its abundance and horizontal gene transfer test. Overall, the results of this study suggest an alternative strategy to solve multiple environmental problems through genetic engineering means and provide support for the application of engineered bacteria in environmental biotechnology.
Collapse
Affiliation(s)
- Yi-Mei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Rui Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ruo-Lin Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Qiang Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
20
|
Xu F, Liao J, Hu J, Feng Y, Huang Y, Feng X, Li S. Biofouling mitigation and microbial community dynamics in the membrane bioreactor by the indigenous quorum quenching bacterium Delftia sp. JL5. BIORESOURCE TECHNOLOGY 2023; 388:129753. [PMID: 37696340 DOI: 10.1016/j.biortech.2023.129753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The quorum quenching (QQ) strategy has attracted increasing attention in membrane bioreactor (MBR) fouling control. However, the applicable QQ strain remains limited. This study investigated the antibiofouling performance of a new indigenous QQ bacterium, Delftia sp. JL5 (JL5) in MBR. JL5 produces intracellular acylase that irreversibly degrades N-acylhomoserine lactones (AHL), inhibited biofilm formation of quorum-sensing bacteria from activated sludge. During 120 days of operation, immobilized JL5 substantially delayed MBR biofouling by 2.1 and 2.9 times, at a flux rate of 30 L/(m2·h) and 20 L/(m2·h), respectively. A slower flux rate was favorable for effective mitigation of JL5 biofouling. JL5 reduced the AHL and extracellular polymeric substances of biocake without affecting the efficiency of waste removal. The presence of JL5 significantly changed the microbial structure of the membrane biocake, but not the activated sludge. Collectively, high activity, durability, and acid tolerance credited JL5 as a promising strain for QQ-MBR.
Collapse
Affiliation(s)
- Fangfang Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jialong Liao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Forigin Research Center, Fairylands Environmental Sci-Tech (Shenzhen) Co. Ltd., Shenzhen 518055, China
| | - Jinchen Hu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yunshi Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yanyao Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xingtong Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Lee K, Park YJ, Iqbal T, Park H, Jung Y, Shin JH, Choo KH. Does quorum quenching matter to microbial community dynamics in long-term membrane bioreactor operation? WATER RESEARCH 2023; 244:120473. [PMID: 37604018 DOI: 10.1016/j.watres.2023.120473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Quorum quenching (QQ) has effectively prevented biofouling in membrane bioreactors (MBRs) employing isolated QQ bacterial strains. However, the influence of QQ on the microbial population still needs to be fully understood. This research aims to analyze the microbial population in MBRs over an extended period (>250 days) under different conditions, such as varying aeration intensities and doses of QQ bacteria, QQ media, and types of feed. Results show that no significant changes occurred in the structure and diversity of the microbial community in the mixed liquor and biofilm due to QQ treatment. Canonical correspondence analysis did reveal that the microbial communities were strongly influenced by feed types and phases. The microbial community composition varied between bacterial habitats (i.e., mixed liquor and biofilm), showing the two dominant phyla Proteobacteria and Bacteroidota in the former and Proteobacteria and Chloroflexi in the latter. The co-occurrence network analysis indicated that the biofilm (with 163 edges) in the MBR fed with real wastewater exhibited a more intricate network than the biofilm (with 53 edges) in the MBR fed with synthetic wastewater. With QQ, the biofilm exhibited more positive edges than negative ones. The phylogenetic investigation of communities showed that QQ barely affects functional gene-related quorum sensing (e.g., bacterial chemotaxis, motility proteins, and secretion) in mixed liquor but in biofilms at relatively large QQ doses (> 75 mg/L BH4). This research sheds light on the bacterial QQ's role in reducing MBR biofouling and provides crucial insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Kibaek Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea; Advanced Institute of Water Industry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tahir Iqbal
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeona Park
- Advanced Institute of Water Industry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - YeonGyun Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang-Ho Choo
- Advanced Institute of Water Industry, Kyungpook National University, Daegu 41566, Republic of Korea; School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
22
|
Sompiyachoke K, Elias MH. Engineering Quorum Quenching Acylases with Improved Kinetic and Biochemical Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555929. [PMID: 37693529 PMCID: PMC10491313 DOI: 10.1101/2023.09.01.555929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many Gram-negative bacteria respond to N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as acylases, chemically degrade AHL signals, prevent signal reception by bacteria, and inhibit undesirable traits related to biofilm. These capabilities make these enzymes appealing candidates for controlling microbes. Yet, enzyme candidates with high activity levels, high substrate specificity for specific interference, and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to obtain improved acylase variants. The engineering of acylase is complicated by low-throughput enzymatic assays. To alleviate this challenge, we report a time-course kinetic assay for AHL acylase that tracks the real-time production of homoserine lactone. Using the protein one-stop shop server (PROSS), we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2 °C, which translated into high resistance against organic solvents and increased compatibility with material coatings. We also generated mutants of MacQ with considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. In fact, the variants presented here exhibit unique combinations of stability and activity levels. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
| | - Mikael H. Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
- University of Minnesota, Biotechnology Institute, St. Paul, MN, 55108, USA
| |
Collapse
|
23
|
Maddela NR, Abiodun AS, Zhang S, Prasad R. Biofouling in Membrane Bioreactors-Mitigation and Current Status: a Review. Appl Biochem Biotechnol 2023; 195:5643-5668. [PMID: 36418712 DOI: 10.1007/s12010-022-04262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departmento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Aransiola Sesan Abiodun
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Ogbomoso, Nigeria
| | - Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
24
|
Wang Y, Li J, Zhu J. Comparative analysis of membrane fouling mechanisms induced by operation modes of membrane bioreactors with aerobic granular sludge. Heliyon 2023; 9:e17973. [PMID: 37539310 PMCID: PMC10395347 DOI: 10.1016/j.heliyon.2023.e17973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
This experimental work investigated fouling characteristics induced by two different configurations of membrane bioreactor (MBR), which are submerged MBR and sidestream MBR with aerobic granular sludge. Submerged membrane bioreactor with granular sludge (Sub-MGSBR) ran the longest operation time 61 days with a steady overall TMP increase rate; Sidestream membrane bioreactor with granular sludge (SS-MGSBR) performed only 39 days, which exhibited Sub-MGSBR had more efficiently retarding membrane fouling. In both membrane bioreactors with flocculent sludge (MFSBRs) as a control, membrane foulants were compact, and cake resistance was the dominant fouling factor. In MGSBRs, however, pore blocking resistance turned out the key fouling factor. Especially in Sub-MGSBR, it went beyond 75%, and there was the most conglomeration of microorganisms of foulants with the highest porosity. Extracellular polymeric substances (EPS) content of foulants proved membrane fouling was hardly just for granules accumulation into cake but microorganisms' growth in MGSBRs.
Collapse
Affiliation(s)
- Yaqin Wang
- School of Hydraulic Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, PR China
| | - Jianwei Li
- School of Hydraulic Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, PR China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
25
|
Tong Z, Wang YC, Jiang GY, Hu XR, Xue YM, Wang C. A method establishment and application for biofilm quorum quenching activity assay. CHEMOSPHERE 2023; 328:138549. [PMID: 37001755 DOI: 10.1016/j.chemosphere.2023.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The existence of quorum sensing (QS) and quorum quenching (QQ) plays important roles in biofilm formation. However, direct detection of QS ability is difficult due to the low concentrations of signal molecules inside the biofilm. Therefore, QQ activity is typically used to indicate the attribution of QS/QQ to the biofilm. Nevertheless, current detection methods of QQ activity based on biosensors present undesirable operability and accuracy. In this study, the 96-well plate assay based on a specific biosensor, Agrobacterium tumefaciens A136, and a colorimetric substance, X-gal was established. The reliable fitting results were obtained by standardizing the composition of the A136 X-gal assay solution and optimizing the operating conditions. This method improved the accuracy of QQ activity detection and reduced time and cost consumption. Finally, the 96-well plate assay was successfully applied to detect the QQ activities of biofilm samples and explore possible environmental influencing factors. In general, this study provided a new strategy for understanding the QQ effect in biofilm systems.
Collapse
Affiliation(s)
- Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China.
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Yi-Mei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China.
| |
Collapse
|
26
|
Chen W, Wang B, Wang Y, Li J. Understanding the cometabolic degradation of sulfadiazine by an enriched ammonia oxidizing bacteria culture from both extracellular and intracellular perspectives. CHEMOSPHERE 2023:139244. [PMID: 37330061 DOI: 10.1016/j.chemosphere.2023.139244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Antibiotics are widely used drugs in the world and pose serious threats to ecosystems and human health. Although it has been reported that ammonia oxidizing bacteria (AOB) can cometabolize antibiotics, little has been reported on how AOB would respond to the exposure of antibiotics on extracellular and enzymatic levels, as well as the impact of antibiotics on the bioactivity of AOB. Therefore, in this study, a typical antibiotic, sulfadiazine (SDZ), was selected, and a series short-term batch tests using enriched AOB sludge were conducted to investigate the intracellular and extracellular responses of AOB along the cometabolic degradation process of SDZ. The results showed the cometabolic degradation of AOB made the main contribution to SDZ removal. When the enriched AOB sludge was exposed to SDZ, ammonium oxidation rate, ammonia monooxygenase activity, adenosine triphosphate concentration and dehydrogenases activity were negatively affected. The amoA gene abundance increased 1.5 folds within 24 h, which may enhance the uptake and utilization of substrates and maintain stable metabolic activity. In the tests with and without ammonium, the concentration of total EPS increased from 264.9 to 231.1 mg/gVSS to 607.7 and 538.2 mg/gVSS, respectively, under the exposure to SDZ, which was mainly contributed by the increase of proteins in tightly bound extracellular polymeric substances (EPS) and polysacharides in tightly bound EPS and soluble microbial products. The proportion of tryptophan-like protein and humic acid-like organics in EPS also increased. Moreover, SDZ stress stimulated the secretion of three quorum sensing signal molecules, C4-HSL (from 140.3 to 164.9 ng/L), 3OC6-HSL (from 17.8 to 42.4 ng/L) and C8-HSL (from 35.8 to 95.9 ng/L) in the enriched AOB sludge. Among them, C8-HSL may be a key signal molecule that promoted the secretion of EPS. The findings of this study could shed more light on the cometabolic degradation of antibiotics by AOB.
Collapse
Affiliation(s)
- Weiping Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bingzheng Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yaqing Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
27
|
Naga NG, El-Badan DE, Ghanem KM, Shaaban MI. It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Commun Signal 2023; 21:133. [PMID: 37316831 DOI: 10.1186/s12964-023-01154-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dalia E El-Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Khaled M Ghanem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Wang Q, Lin W, Chou S, Dai P, Huang X. Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. WATER RESEARCH 2023; 236:119943. [PMID: 37054608 DOI: 10.1016/j.watres.2023.119943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Membrane technologies have been widely applied in water treatment over the past few decades. However, membrane fouling remains a hinderance for the widespread use of membrane processes because it decreases effluent quality and increases operating costs. To mitigate membrane fouling, researchers have been exploring effective anti-fouling strategies. Recently, patterned membranes are gaining attention as a novel non-chemical membrane modification for membrane fouling control. In this paper, we review the research on patterned membranes used in water treatment over the past 20 years. In general, patterned membranes show superior anti-fouling performances, which mainly results from two aspects: hydrodynamic effects and interaction effects. Due to the introduction of diversified topographies onto the membrane surface, patterned membranes yield dramatic improvements on hydrodynamic properties, e.g., shear stress, velocity field and local turbulence, restraining concentration polarization and foulants' deposition on the membrane surface. Besides, the membrane-foulant and foulant-foulant interactions play an important role in the mitigation of membrane fouling. Due to the existence of surface patterns, the hydrodynamic boundary layer is destroyed and the interaction force as well as the contact area between foulants and surface are decreased, which contributes to the fouling suppression. However, there are still some limitations in the research and application of patterned membranes. Future research is suggested to focus on the development of patterned membranes appropriate for different water treatment scenarios, the insights into the interaction forces affected by surface patterns, and the pilot-scale and long-term studies to verify the anti-fouling performances of patterned membranes in practical applications.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Shuren Chou
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Pan Dai
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Liu J, Wang L, Lu D, Wu D, Zhang P, Zhou Y. Quorum quenching enhanced methane production in anaerobic systems - performance and mechanisms. WATER RESEARCH 2023; 235:119841. [PMID: 36913812 DOI: 10.1016/j.watres.2023.119841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In our previous study, quorum quenching (QQ) bacteria can effectively enhance methane production in an anaerobic membrane bioreactor (AnMBR) while mitigating membrane biofouling. However, the mechanism of such enhancement is unclear. In this study, we analyzed the potential effects from separated hydrolysis, acidogenesis, acetogenesis and methanogenesis steps. The cumulative methane production improved by 26.13%, 22.54%, 48.70% and 44.93% at QQ bacteria dosage of 0.5, 1, 5 and 10 mg strain/g beads, respectively. It was found that the presence of QQ bacteria enhanced acidogenesis step resulting in higher volatile fatty acids (VFA) production, while it had no obvious influence on hydrolysis, acetogenesis and methanogenesis steps. The substrate (glucose) conversion efficiency in acidogenesis step was also accelerated (1.45 folds vs control within first eight hours). The abundance of hydrolytic fermentation gram-positive bacteria and several acidogenic bacteria, such as Hungateiclostridiaceae, was promoted in QQ amended culture, which enhanced VFA production and accumulation. Although the abundance of acetoclastic methanogen Methanosaeta reduced by 54.2% on the 1st day of QQ beads addition, the overall performance of methane production was not affected. This study revealed that QQ had a greater impact on the acidogenesis step in the anaerobic digestion process, though the microbial community in acetogenesis and methanogenesis steps was altered. This work can provide a theoretical basis for using QQ technology to slow down the rate of membrane biofouling in anaerobic membrane bioreactors while increasing methane production and maximizing economic benefits.
Collapse
Affiliation(s)
- Jianbo Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dan Wu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
30
|
Pang H, Huang J, Li X, Yi K, Li S, Liu Z, Zhang W, Zhang C, Liu S, Gu Y. Enhancing quorum quenching media with 3D robust electrospinning coating: A novel biofouling control strategy for membrane bioreactors. WATER RESEARCH 2023; 234:119830. [PMID: 36889086 DOI: 10.1016/j.watres.2023.119830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Bacterial quorum quenching (QQ) is an effective strategy for controlling biofouling in membrane bioreactor (MBR) by interfering the releasing and degradation of signal molecules during quorum sensing (QS) process. However, due to the framework feature of QQ media, the maintenance of QQ activity and the restriction of mass transfer threshold, it has been difficult to design a more stable and better performing structure in a long period of time. In this research, electrospun fiber coated hydrogel QQ beads (QQ-ECHB) were fabricated by using electrospun nanofiber coated hydrogel to strengthen layers of QQ carriers for the first time. The robust porous PVDF 3D nanofiber membrane was coated on the surface of millimeter-scale QQ hydrogel beads. Biocompatible hydrogel entrapping quorum quenching bacteria (sp.BH4) was employed as the core of the QQ-ECHB. In MBR with the addition of QQ-ECHB, the time to reach transmembrane pressure (TMP) of 40 kPa was 4 times longer than conventional MBR. The robust coating and porous microstructure of QQ-ECHB contributed to keeping a lasting QQ activity and stable physical washing effect at a very low dosage (10g beads/5L MBR). Physical stability and environmental-tolerance tests also verified that the carrier can maintain the structural strength and keep the core bacteria stable when suffering long-term cyclic compression and great fluctuations in sewage quality.
Collapse
Affiliation(s)
- Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xue Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Suzhou Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
31
|
Nabi M, Liang H, Zhou Q, Cao J, Gao D. In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161262. [PMID: 36586290 DOI: 10.1016/j.scitotenv.2022.161262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a promising treatment technique for various types of wastewaters, and is preferred over other conventional aerobic and anaerobic methods. However, membrane fouling is considered a bottleneck in AnMBR system, which technically blocks membrane pores by numerous inorganics, organics, and other microbial substances. Various materials can be added in AnMBR to control membrane fouling and improve anaerobic digestion, and studies reporting the materials addition for this purpose are hereby systematically reviewed. The mechanism of membrane fouling control including compositional changes in extracellular polymeric substances (EPSs) and soluble microbial products (SMPs), materials properties, stimulation of antifouling microbes and alteration in substrate properties by material addition are thoroughly discussed. Nonetheless, this study opens up new research prospects to control membrane fouling of AnMBR, engineered by material, including compositional changes of microbial products (EPS and SMP), replacement of quorum quenching (QQ) by materials, and overall improvement of reactor performance. Regardless of the great research progress achieved previously in membrane fouling control, there is still a long way to go for material-mediated AnMBR applications to be undertaken, particularly for materials coupling, real scale application and molecular based studies on EPSs and SMPs, which were proposed for future researches.
Collapse
Affiliation(s)
- Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
32
|
Wang WQ, Feng XC, Shi HT, Wang YM, Jiang CY, Xiao ZJ, Xu YJ, Zhang X, Yuan Y, Ren NQ. Biofilm inhibition based on controlling the transmembrane transport and extracellular accumulation of quorum sensing signals. ENVIRONMENTAL RESEARCH 2023; 221:115218. [PMID: 36608761 DOI: 10.1016/j.envres.2023.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The regulation of bacterial quorum sensing (QS) has been used to inhibit biofouling in wastewater treatment plants and the formation of biofilms. In contrast to traditional QS regulation strategies, this study aimed to obstruct the transmembrane transport process of QS signals to decrease their extracellular accumulation. Three phytochemicals, astragaloside IV, eugenol, and baicalin were selected, their effects on biofilm formation by Pseudomonas aeruginosa PA14 were studied, and the mechanisms determined. The inhibition efficiency of biofilm formation by 50 mg/L astragaloside IV, 1 mg/L eugenol, and 1 mg/L baicalin were 37%, 26%, and 26%, respectively. Confocal laser scanning microscopy and analysis of extracellular polymeric substances indicated that the three inhibitors affected the structure and composition of the biofilms. Furthermore, bacterial motility and a variety of QS-related virulence factors were suppressed by the inhibitor treatment due to changes in bacterial QS. Notably, the three inhibitors all decreased the extracellular concentration of the QS signaling molecule 3-oxo-C12-homoseine lactone by affecting the function of efflux pump MexAB-OprM. This indirectly interfered with the bacterial QS system and thus inhibited biofilm formation. In conclusion, this study revealed the inhibitory effects and inhibition mechanism of three phytochemicals on efflux pump and QS of P. aeruginosa and realized the inhibition on biofilm formation. We update the efflux pump inhibitor library and provide a new way for biofilm contamination control.
Collapse
Affiliation(s)
- Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Yong-Mei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Yu-Jie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing, 10076, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
33
|
Li Z, Cun S, Han G, Guo X, Liu B, Huang T, Hou D, Liu R, Liu X. New insight into soluble extracellular metabolites during sludge bulking process based on excitation-emission matrix spectroscopy and ultrahigh-performance liquid chromatography-mass spectrometry. ENVIRONMENTAL RESEARCH 2023; 219:115161. [PMID: 36580981 DOI: 10.1016/j.envres.2022.115161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Soluble extracellular metabolites (SEM) produced by microorganisms might significantly change during sludge bulking, which is a major operational problem caused by the excessive growth of filamentous bacteria. However, knowledge remains limited about the dynamics and potential role of SEM in the bulking of sludge. In this study, filamentous bulking was simulated in a laboratory-scale reactor and changes to SEM characteristics during the bulking process were investigated using excitation-emission matrix spectroscopy and ultrahigh-performance liquid chromatography-mass spectrometry. SEM components changed significantly at different phases of sludge bulking. Changes in SEM were closely correlated with the structure of the bacterial community. Based on the EEM profiles, significant increases in fulvic acid-like and humic acid-like substances in SEM were observed with the development of filamentous bulking. The degree of humification in SEM showed a clear increasing trend. Untargeted extracellular metabolomic analysis showed that the intensity of berberine and isorhamnetin in SEM increased significantly during the bulking phase, which might synergistically facilitate the development of filamentous bulking.
Collapse
Affiliation(s)
- Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Cun
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Ganghua Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Ting Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Deyin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Zeng X, Hu H. Potential roles of acyl homoserine lactones (AHLs) in nitrifying bacteria survival under certain adverse circumstances. Sci Rep 2023; 13:705. [PMID: 36747059 PMCID: PMC9902454 DOI: 10.1038/s41598-022-23123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 02/08/2023] Open
Abstract
Potential roles of quorum sensing (QS) in nitrifying bacteria activity and ecology, particularly under adverse circumstances have been rarely reported. Herein, eight lab-scale nitrification sequencing batch reactors, with or without adding acyl homoserine lactones (AHLs) were operated under adverse circumstances respectively. The results indicated that the introduction of AHLs significantly enhanced the nitrogen removal efficiency in the presence of nitrification inhibitors (dicyandiamide, DCD), accelerated the low temperature (10 °C) group into stable stage, and improved the utilization efficiency of AHLs in these two groups. Community analysis and qPCR further confirmed that AHLs significantly increased the abundance of nitrifying bacteria in low temperature group and DCD group, especially AOB. For normal condition (28 °C, pH = 8) or low pH level (5.5), however, the AHLs had no significant effect. Canonical correspondence analysis showed that nitrifying bacteria positively responded to AHLs, indicating that adding AHLs was an effective strategy to regulate nitrification process. However, under acid conditions, the effect of this regulatory mechanism was not significant, indicating that the influence of pH on the system was greater than that of AHLs. This study demonstrated that exogenous AHLs could enhance the competitiveness of nitrifying bacteria to utilize more resource and occupy space under some adverse environmental conditions.
Collapse
Affiliation(s)
- Xiangguo Zeng
- Wuhan Planning and Design Co., LTD, Wuhan, 430010, China
| | - Huizhi Hu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China. .,Hubei Key Laboratory of Regional Development and Environmental Response, Wuhan, 430062, China.
| |
Collapse
|
35
|
Ramos P, Honda R, Hoek EMV, Mahendra S. Carbon/nitrogen ratios determine biofilm formation and characteristics in model microbial cultures. CHEMOSPHERE 2023; 313:137628. [PMID: 36565767 DOI: 10.1016/j.chemosphere.2022.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The influence of growth medium water chemistry, specifically carbon/nitrogen (C/N) molar ratios, on the characteristics and development of biofilms of the model microorganism Pseudomonas aeruginosa was investigated. C/N = 9 had a unique effect on biofilm composition as well as quorum sensing (QS) pathways, with higher concentrations of carbohydrates and proteins in the biofilm and a significant upregulation of the QS gene lasI in planktonic cells. The effect of C/N ratio on total attached biomass was negligible. Principal component analysis revealed a different behavior of most outputs such as carbohydrates and QS chemicals at C/N = 9, and pointed to correlations between parameters of biofilm formation and steady state distribution of cells and extracellular components. C/N ratio was also shown to influence organic compound utilization by both planktonic and sessile organisms, with a maximum chemical oxygen demand (COD) removal of 83% achieved by biofilms at C/N = 21. Planktonic cells achieved higher COD removal rates, but greater overall rates after six days occurred in biofilms. The development of a dual-species biofilm of P. aeruginosa and Nitrobacter winogradskyi was also influenced by C/N, with increase in the relative abundance of the slower-growing N. winogradskyi above C/N = 9. These results indicate that altering operational parameters related to C/N would be relevant for mitigating or promoting biofilm formation and function depending on the desired industrial application or treatment configuration.
Collapse
Affiliation(s)
- Pia Ramos
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA.
| |
Collapse
|
36
|
Waheed H, Mehmood CT, Li Y, Du Y, Xiao Y. Biofouling control potential of quorum quenching anaerobes in lab-scale anaerobic membrane bioreactors: Foulants profile and microbial dynamics. CHEMOSPHERE 2023; 315:137760. [PMID: 36610508 DOI: 10.1016/j.chemosphere.2023.137760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Indigenously isolated anaerobes encoding four quorum quenching (QQ) enzymes were applied in immobilized- and bioaugmented forms for their implications on membrane foulants, microbial taxa, and biofouling control. Two identical anaerobic membrane bioreactors (AnMBRs) with different immobilizing media, i.e. silica-alginate (AnMBR-Si) and hollow fiber-alginate (AnMBR-Hf), were sequentially operated for two conventional and three QQ based phases. The synergistic addition of QQ anaerobes in free cells and the immobilized form prolonged the membrane filtration operation by 172 ± 29% and 284 ± 12% in AnMBR-Si and AnMBR-Hf, respectively. Biocake with low surface coverage was prominent during QQ application compared to conventional phases. Despite the better control of AHLs (3OC6-, C6-, 3OC8, C8, and C10-HSL) and AI-2 at various points of QQ phases, the QQ consortium could not maintain a low concentration of signals for longer period. Therefrom, quenching of targeted signal molecules instigate the dominance of microbial species bearing non-targeted quorum sensing mechanism. The QQ significantly altered the biofilm-forming community in mixed liquor, while the members with robust signal transduction systems became dominant to counteract the QQ mechanism and were the ultimate cause of biofouling. The improved methane content in biogas and increased methanogens composition during QQ phases demonstrated the synergism of exogenous and immobilized QQ as the most viable option for long-term AnMBR operation.
Collapse
Affiliation(s)
- Hira Waheed
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Ch Tahir Mehmood
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | - Yiwei Li
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Ying Du
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
37
|
Zhu X, Chen WJ, Bhatt K, Zhou Z, Huang Y, Zhang LH, Chen S, Wang J. Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1063393. [PMID: 36714722 PMCID: PMC9878147 DOI: 10.3389/fpls.2022.1063393] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
With the increasing resistance exhibited by undesirable bacteria to traditional antibiotics, the need to discover alternative (or, at least, supplementary) treatments to combat chemically resistant bacteria is becoming urgent. Quorum sensing (QS) refers to a novel bacterial communication system for monitoring cell density and regulation of a network of gene expression that is mediated by a group of signaling molecules called autoinducers (AIs). QS-regulated multicellular behaviors include biofilm formation, horizontal gene transfer, and antibiotic synthesis, which are demonstrating increasing pathogenicity to plants and aquacultural animals as well as contamination of wastewater treatment devices. To inhibit QS-regulated microbial behaviors, the strategy of quorum quenching (QQ) has been developed. Different quorum quenchers interfere with QS through different mechanisms, such as competitively inhibiting AI perception (e.g., by QS inhibitors) and AI degradation (e.g., by QQ enzymes). In this review, we first introduce different signaling molecules, including diffusible signal factor (DSF) and acyl homoserine lactones (AHLs) for Gram-negative bacteria, AIPs for Gram-positive bacteria, and AI-2 for interspecies communication, thus demonstrating the mode of action of the QS system. We next exemplify the QQ mechanisms of various quorum quenchers, such as chemical QS inhibitors, and the physical/enzymatic degradation of QS signals. We devote special attention to AHL-degrading enzymes, which are categorized in detail according to their diverse catalytic mechanisms and enzymatic properties. In the final part, the applications and advantages of quorum quenchers (especially QQ enzymes and bacteria) are summarized in the context of agricultural/aquacultural pathogen biocontrol, membrane bioreactors for wastewater treatment, and the attenuation of human pathogenic bacteria. Taken together, we present the state-of-the-art in research considering QS and QQ, providing theoretical evidence and support for wider application of this promising environmentally friendly biocontrol strategy.
Collapse
Affiliation(s)
- Xixian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junxia Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Singh SK, Maiti A, Pandey A, Jain N, Sharma C. Fouling limitations of osmotic pressure‐driven processes and its remedial strategies: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Satish Kumar Singh
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Aaditya Pandey
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Nishant Jain
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Chhaya Sharma
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| |
Collapse
|
39
|
Mit Prohim Y, Cayetano RDA, Anburajan P, Tang Thau N, Kim S, Oh HS. Enhancement of biomethane recovery from batch anaerobic digestion by exogenously adding an N-acyl homoserine lactone cocktail. CHEMOSPHERE 2023; 312:137188. [PMID: 36400188 DOI: 10.1016/j.chemosphere.2022.137188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Biomethane recovered through anaerobic digestion (AD) is a renewable, sustainable, and cost-effective alternative energy source that has the potential to help address rising energy demands. Efficient bioconversion during AD depends on the symbiotic relationship between hydrolytic bacteria and methanogenic archaea. Interactions between microorganisms occur in every biological system via a phenomenon known as quorum sensing (QS), in which signaling molecules are simultaneously transmitted and detected as a mode of cell-to-cell communication. However, there's still a lack of understanding on how QS works in the AD system, where diverse bacteria and archaea interact in a complex manner. In this study, different concentrations (0.5 and 5 μM) of signaling molecules in the form of an N-acyl homoserine lactone cocktail (C6-, C8-, C10-, and 3-oxo-C6-HSL) were prepared and introduced into anaerobic batch reactors to clearly assess how QS affects AD systems. It was observed that the methane yield increased with the addition of AHLs: a 5 μM AHL cocktail improved the methane yield (341.9 mL/g-COD) compared to the control without AHLs addition (285.9 mL/g-COD). Meanwhile, evidence of improved microbial growth and cell aggregation was noticed in AHLs-supplemented systems. Our findings also show that exogenously adding AHLs alters the microbial community structure by increasing the overall bacterial and archaeal population counts while favoring the growth of the methanogenic archaea group, which is essential in biomethane synthesis.
Collapse
Affiliation(s)
- You Mit Prohim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Roent Dune A Cayetano
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Parthiban Anburajan
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Nguyen Tang Thau
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Sungmi Kim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
40
|
New insights into biofilm control and inhibitory mechanism analysis based on the novel quorum quenching bacterium Acinetobacter pittii HITSZ001. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Zhang X, Ma J, Guo Y, Luo Y, Li F, Wang Z. Induced mazEF-mediated programmed cell death contributes to antibiofouling properties of quaternary ammonium compounds modified membranes. WATER RESEARCH 2022; 227:119319. [PMID: 36368087 DOI: 10.1016/j.watres.2022.119319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Functionalized antibiofouling membranes have attracted increasing attention in water and wastewater treatment. Among them, contact-killing antibiofouling membranes deliver a long-lasting effect with no leaching or release, thus providing distinctive advantages. However, the antibiofouling mechanism especially in the vicinity of the membrane surface remains unclear. Herein, we demonstrate that mazEF-mediated programmed cell death (PCD) is critical for the antibiofouling behaviors of quaternary ammonium compounds modified membranes (QM). The viability of wild type Escherichia coli (WT E. coli) upon exposure to QM for 1 h was decreased dramatically (31.5 ± 1.4% of the control). In contrast, the bacterial activity of E. coli with the knockout of mazEF gene (KO E. coli) largely remained (85.8 ± 5.2%). Through addition of quorum sensing factor, i.e., extracellular death factor (EDF), the antibacterial activity was significantly enhanced in a dilute culture, indicating that the density-dependent bacterial communication played an important role in the mazEF-mediated PCD system in biofouling control. Long-term study further showed that QM exhibited a better antibiofouling performance to treat feedwater containing WT E. coli, especially when EDF was dosed. Results of this study suggested that the bacteria on the membrane surface subject to contact killing could modulate the population growth in the vicinity via quorum-sensing mazEF-mediated PCD, paving a way to develop efficient antibiofouling materials based on contact-killing scenarios.
Collapse
Affiliation(s)
- Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Textile pollution controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Guo
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yi Luo
- College of Environmental Science and Engineering, Textile pollution controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Fang Li
- College of Environmental Science and Engineering, Textile pollution controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
42
|
Ugarte P, Ramo A, Quílez J, Bordes MDC, Mestre S, Sánchez E, Peña JÁ, Menéndez M. Low-cost ceramic membrane bioreactor: Effect of backwashing, relaxation and aeration on fouling. Protozoa and bacteria removal. CHEMOSPHERE 2022; 306:135587. [PMID: 35798148 DOI: 10.1016/j.chemosphere.2022.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Membrane biological reactors (MBR) constitute an alternative to conventional wastewater treatments for improved recovery, reuse, and recycling of water. MBRs have a smaller footprint, provide better biotreatment and achieve a high-quality effluent. This work analyses the use of MBRs innovative low-cost ceramic membranes for wastewater treatment. We propose low-cost ceramic membranes as an alternative to the more expensive commercial ceramic membranes. Low-cost membranes were made of clay, calcium carbonate, potato starch, almond shell and chamotte. We synthesized two different selective layers, from clay and/or TiO2. We characterized the membranes (pore diameter and water permeance) and their performance in a laboratory scale MBR. To mitigate membrane fouling and preserve the continued operation along time, the effect of different operating cycles was measured, considering two physical cleaning strategies: relaxation and backwashing. Cycles of 9 min of operation, 30 s of relaxation and 1 min of backwashing provided the lowest fouling rate. We investigated the effect of air scouring on fouling by operating with different air flow rates. Once experimental conditions were optimized, the overall performance of the different ceramic membranes was tested. The membrane with a TiO2 thin layer provided the best resistance to fouling, as well as a good retention capacity of E. coli, Cryptosporidium oocysts and Giardia cysts.
Collapse
Affiliation(s)
- Patricia Ugarte
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain
| | - Ana Ramo
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013, Zaragoza, Spain
| | | | - Sergio Mestre
- University Institute of Ceramic Technology, University Jaume I, 12006, Castellon, Spain
| | - Enrique Sánchez
- University Institute of Ceramic Technology, University Jaume I, 12006, Castellon, Spain
| | - José Ángel Peña
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain
| | - Miguel Menéndez
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
43
|
Shah SSA, Park H, Park HJ, Kim J, Mameda N, Choo KH. The relationship between quorum sensing dynamics and biological performances during anaerobic membrane bioreactor treatment. BIORESOURCE TECHNOLOGY 2022; 363:127930. [PMID: 36261999 DOI: 10.1016/j.biortech.2022.127930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) enhance carbon neutrality with biomethane recovery from wastewater; however, microbial signaling, which may affect biological performances, was poorly understood. Here, we thus evaluate quorum sensing (QS) dynamics while monitoring acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2) levels during long-term AnMBR operations after sludge inoculation. Significant organic removal and methane production were achieved with the reactor startup. Signal molecule levels varied with transient organic loading rates, depending on their types. A starving condition may cause an increase in short- and medium-chain AHLs and AI-2. Biopolymers, biosolids, volatile fatty acids, and alkalinity levels had positive correlations with short- and medium-chain AHLs and AI-2, whereas methane production had positive correlations with long-chain AHLs. The principal component analysis of QS signal composition and biological performance data explains their interconnectivity. The findings of this study help to understand that QS signals regulate metabolic pathways in addition to microbial group behaviors.
Collapse
Affiliation(s)
- Syed Salman Ali Shah
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyeona Park
- Advanced Institute of Water Industry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyung-June Park
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jinwoo Kim
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Naresh Mameda
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Department of Chemistry, Collage of Engineering, Koneru Lakshmaih Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Kwang-Ho Choo
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Advanced Institute of Water Industry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
44
|
Wen Z, Shang Y, Song K, Liu G, Hou J, Lyu L, Tao H, Li S, He C, Shi Q, He D. Composition of dissolved organic matter (DOM) in lakes responds to the trophic state and phytoplankton community succession. WATER RESEARCH 2022; 224:119073. [PMID: 36113235 DOI: 10.1016/j.watres.2022.119073] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM), a heterogeneous mixture of diverse compounds with different molecular weights, is crucial for the lake carbon cycle. The properties and concentration of DOM in lakes are closely related to anthropogenic activities, terrigenous input, and phytoplankton growth. Thus, the lake's trophic state, along with the above factors, has an important effect on DOM. We determined the DOM sources and molecular composition in six lakes along a trophic gradient during and after phytoplankton bloom by combining optical techniques and the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). CDOM pools in eutrophic lakes may be more biologically refractory than in oligotrophic and mesotrophic lakes. Molecular formulas of DOM were positively correlated with the TSI (trophic state index) value (R2 = 0.73), with the nitrogen-containing compounds (CHON) being the most abundant formulas in all studied lakes. Eutrophication modified the molecular formulas of DOM to have less CHO% and more heteroatom S-containing compounds (CHOS% and CHNOS%), and this was the synactic result of the anthropogenic perturbation and phytoplankton proliferation. In eutrophic lakes, summer DOM showed higher molecular lability than in autumn, which was related to the seasonal phytoplankton community succession. Although the phytoplankton-derived DOM is highly bioavailable, we detected a simpler and more fragile phytoplankton community ecosystem in autumn, which may be accompanied by a lower phytoplankton production and metabolic activity. Therefore, we concluded that the lake eutrophication increased the allochthonous DOM accumulation along with sewage and nutrient input, and subsequently increased its release with phytoplankton bloom. Eutrophication and phytoplankton growth are accompanied by more highly unsaturated compounds, O3S+O5S compounds, and carboxylic-rich alicyclic compounds (CRAMs), which are the biotransformation product of phytoplankton-derived DOM. Eutrophication may be a potential source of refractory DOM compounds for biodegradation and photodegradation. Our results can clarify the potential role of water organic matter in the future global carbon cycle processes, considering the increasing worldwide eutrophication of inland waters.
Collapse
Affiliation(s)
- Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yingxin Shang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Kaishan Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Environment and Planning, Liaocheng University, Liaocheng 252000, China.
| | - Ge Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Junbin Hou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lili Lyu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Tao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sijia Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Ding He
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
45
|
Wang YC, Lin YT, Wang C, Tong Z, Hu XR, Lv YH, Jiang GY, Han MF, Deng JG, Hsi HC, Lee CH. Microbial community regulation and performance enhancement in gas biofilters by interrupting bacterial communication. MICROBIOME 2022; 10:150. [PMID: 36117217 PMCID: PMC9484056 DOI: 10.1186/s40168-022-01345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Controlling excess biomass accumulation and clogging is important for maintaining the performance of gas biofilters and reducing energy consumption. Interruption of bacterial communication (quorum quenching) can modulate gene expression and alter biofilm properties. However, whether the problem of excess biomass accumulation in gas biofilters can be addressed by interrupting bacterial communication remains unknown. RESULTS In this study, parallel laboratory-scale gas biofilters were operated with Rhodococcus sp. BH4 (QQBF) and without Rhodococcus sp. BH4 (BF) to explore the effects of quorum quenching (QQ) bacteria on biomass accumulation and clogging. QQBF showed lower biomass accumulation (109 kg/m3) and superior operational stability (85-96%) than BF (170 kg/m3; 63-92%) at the end of the operation. Compared to BF, the QQBF biofilm had lower adhesion strength and decreased extracellular polymeric substance production, leading to easier detachment of biomass from filler surface into the leachate. Meanwhile, the relative abundance of quorum sensing (QS)-related species was found to decrease from 67 (BF) to 56% (QQBF). The QS function genes were also found a lower relative abundance in QQBF, compared with BF. Moreover, although both biofilters presented aromatic compounds removal performance, the keystone species in QQBF played an important role in maintaining biofilm stability, while the keystone species in BF exhibited great potential for biofilm formation. Finally, the possible influencing mechanism of Rhodococcus sp. BH4 on biofilm adhesion was demonstrated. Overall, the results of this study achieved excess biomass control while maintaining stable biofiltration performance (without interrupting operation) and greatly promoted the use of QQ technology in bioreactors. Video Abstract.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China.
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
46
|
Yu Z, Huang Y, Gan Z, Meng Y, Meng F. State-Space-Based Framework for Predicting Microbial Interaction Variability in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12765-12777. [PMID: 35943816 DOI: 10.1021/acs.est.2c02844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Substantial attempts have been made to control microbial communities for environmental integrity, biosystem performance, and human health. However, it is difficult to manipulate microbial communities in practice due to the varying and nonlinear nature of interspecific interaction networks. Here, we develop a manifold-based framework to investigate the patterns of microbial interaction variability in wastewater treatment plants using manifold geometric properties and design a simple control strategy to manipulate the microbes in nonlinear communities. We validate our framework using the readily available and nonsequential microbiome profiles of wastewater treatment plants. Our results show that some microbes in the activated sludge and anammox communities display deterministic rival or cooperative relationships and constitute a stable subnetwork within the whole nonlinear community network. We further use a simulation to demonstrate that these microbes can be used to drive a microbe in a target direction regardless of the community dynamics. Overall, our framework can provide a time-efficient solution to select effective control inputs for reliable manipulation in varying microbial networks, opening up new possibilities across a range of biological fields, including wastewater treatment plants.
Collapse
Affiliation(s)
- Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Huang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
47
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
48
|
Huang S, Xu B, Ng TCA, He M, Shi X, Ng HY. Feasibility of implementing quorum quenching technology to mitigate membrane fouling in MBRs treating phenol-rich pharmaceutical wastewater: Application of Rhodococcus sp. BH4 and quorum quenching consortium. BIORESOURCE TECHNOLOGY 2022; 358:127389. [PMID: 35636678 DOI: 10.1016/j.biortech.2022.127389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to implement quorum quenching (QQ) to mitigate membrane fouling in membrane bioreactors (MBRs) treating phenol-rich pharmaceutical wastewater using Rhodococcus sp. BH4 and isolated QQ consortium (QQcs) from activated sludge. Neither BH4 nor QQcs impacted the removal efficiency of chemical oxygen demand (COD) (>94%), phenol (>99%), and ammonium (>99%), indicating that QQ did not have adverse impact on treatment performance. In addition, both BH4 and QQcs effectively retarded membrane fouling, which could be attributed to the reduction of soluble microbial products (SMP). Interestingly, the TMP increase was delayed 68.7% by Rhodococcus sp. BH4, while 31.3% was achieved by QQcs. This difference may be due to the relatively higher degradation for short- and medium-chain N-acyl-homoserine lactones (AHLs) by BH4 compared to the QQcs. Furthermore, the possible presence of quorum sensing (QS) bacteria within QQcs also could have contributed to the less effective fouling control than that of BH4.
Collapse
Affiliation(s)
- Shujuan Huang
- NUS Environmental Research Institute, National University of Singapore, Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Road, Huangdao District, Qingdao, 266520, PR China
| | - Boyan Xu
- NUS Environmental Research Institute, National University of Singapore, Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Tze Chiang Albert Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Meibo He
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, Faculty of Engineering, Block E1A, #07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Road, Huangdao District, Qingdao, 266520, PR China
| | - How Yong Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore; Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, Faculty of Engineering, Block E1A, #07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
49
|
Exploiting Biofilm Characteristics to Enhance Biological Nutrient Removal in Wastewater Treatment Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Biological treatments are integral processes in wastewater treatment plants (WWTPs). They can be carried out using sludge or biofilm processes. Although the sludge process is effective for biological wastewater systems, it has some drawbacks that make it undesirable. Hence, biofilm processes have gained popularity, since they address the drawbacks of sludge treatments, such as the high rates of sludge production. Although biofilms have been reported to be essential for wastewater, few studies have reviewed the different ways in which the biofilm properties can be explored, especially for the benefit of wastewater treatment. Thus, this review explores the properties of biofilms that can be exploited to enhance biological wastewater systems. In this review, it is revealed that various biofilm properties, such as the extracellular polymeric substances (EPS), quorum sensing (Qs), and acylated homoserine lactones (AHLs), can be enhanced as a sustainable and cost-effective strategy to enhance the biofilm. Moreover, the exploitation of other biofilm properties such as the SOS, which is only reported in the medical field, with no literature reporting it in the context of wastewater treatment, is also recommended to improve the biofilm technology for wastewater treatment processes. Additionally, this review further elaborates on ways that these properties can be exploited to advance biofilm wastewater treatment systems. A special emphasis is placed on exploiting these properties in simultaneous nitrification and denitrification and biological phosphorus removal processes, which have been reported to be the most sensitive processes in biological wastewater treatment.
Collapse
|
50
|
Cui F, Li T, Wang D, Yi S, Li J, Li X. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128597. [PMID: 35247736 DOI: 10.1016/j.jhazmat.2022.128597] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
The prevalence of bacterial pathogens among humans has increased rapidly and poses a great threat to health. Two-thirds of bacterial infections are associated with biofilms. Recently, nanomaterials have emerged as anti-biofilm agents due to their enormous potential for combating biofilm-associated infections and infectious disease management. Among these, relatively high biocompatibility and unique physicochemical properties of carbon-based nanomaterials (CBNs) have attracted wide attention. This review presented the current advances in anti-biofilm CBNs. Different kinds of CBNs and their physicochemical characteristics were introduced first. Then, the various potential mechanisms underlying the action of anti-biofilm CBNs during different stages were discussed, including anti-biofouling activity, inhibition of quorum sensing, photothermal/photocatalytic inactivation, oxidative stress, and electrostatic and hydrophobic interactions. In particular, the review focused on the pivotal role played by CBNs as anti-biofilm agents and delivery vehicles. Finally, it described the challenges and outlook for the development of more efficient and bio-safer anti-biofilm CBNs.
Collapse
Affiliation(s)
- Fangchao Cui
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Dangfeng Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Xuepeng Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|