1
|
Green CS, Morris JM, Magnuson JT, Leads RR, Lay CR, Gielazyn M, Rosman L, Schlenk D, Roberts AP. Exposure to the Polychlorinated biphenyl mixture Aroclor 1254 elicits neurological and cardiac developmental effects in early life stage zebrafish (Danio rerio). CHEMOSPHERE 2025; 371:144023. [PMID: 39724984 DOI: 10.1016/j.chemosphere.2024.144023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The goal of this study was to compare the bioaccumulation of the PCB mixture Aroclor 1254 in zebrafish to cardiac and neurologic outcomes. The establishment of effect concentrations (ECs) for cardiac and neurotoxic effects of PCBs in early life stage fish is challenging due to a lack of measured PCB concentrations in test media (e.g., fish tissue), the lack of standard exposure methods, and the propensity of PCBs to adsorb to test glassware and materials resulting in discrepancies in ECs from different studies with similar endpoints. Reporting tissue concentrations in test organisms will allow for standardization across different tests and thus may improve estimations of effect thresholds. Early life stage zebrafish (Danio rerio) are a common environmental toxicological model well represented within the literature, making them ideal for comparisons across multiple studies. Embryos were exposed at 6 h post fertilization (hpf) to aqueous Aroclor 1254 for 96 h with or without renewal in addition to a PCB 126 positive control for cardiotoxicity. PCB concentrations were measured in both exposure solutions and tissue samples. Measured concentrations of Aroclor 1254 in test solutions ranged from 8.7% to 870% of nominal concentrations. Heart rate, pericardial edema, and neurological endpoints (eye tremors) were measured in 102 hpf larvae. Pericardial edema was not present in Aroclor 1254-treated zebrafish but was observed in those exposed to PCB-126. Concentration-dependent bradycardia was observed in zebrafish exposed to Aroclor 1254 and PCB-126. Similarly, a concentration-dependent increase in eye tremor behavior was observed in embryos exposed to Aroclor 1254. Data produced by this study demonstrate novel toxicological effects of Aroclor 1254 and highlight the importance of measuring PCBs in both exposure and receptor media.
Collapse
Affiliation(s)
- Corey S Green
- Eastern New Mexico University, Department of Biological Sciences, 1500 Ave. K, Portales, NM, 88130, USA.
| | | | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA.
| | - Rachel R Leads
- Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, 48825, USA.
| | | | - Michel Gielazyn
- National Oceanic and Atmospheric Administration, Assessment and Restoration Division, St. Petersburg, FL, 33701, USA.
| | - Lisa Rosman
- National Oceanic and Atmospheric Administration, Assessment and Restoration Division, New York, NY, 10278, USA.
| | - Daniel Schlenk
- University of California Riverside, Department of Environmental Science, Riverside, CA, 92521, USA.
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, Denton, TX, 76203, USA.
| |
Collapse
|
2
|
Zhang L, Yao T, Luo J, Yi H, Han X, Pan W, Xue Q, Liu X, Fu J, Zhang A. ChemNTP: Advanced Prediction of Neurotoxicity Targets for Environmental Chemicals Using a Siamese Neural Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22646-22656. [PMID: 39661815 DOI: 10.1021/acs.est.4c10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Environmental chemicals can enter the human body through various exposure pathways, potentially leading to neurotoxic effects that pose significant health risks. Many such chemicals have been identified as neurotoxic, but the molecular mechanisms underlying their toxicity, including specific binding targets, remain unclear. To address this, we developed ChemNTP, a predictive model for identifying neurotoxicity targets of environmental chemicals. ChemNTP integrates a comprehensive representation of chemical structures and biological targets, improving upon traditional methods that are limited to single targets and mechanisms. By leveraging these structural representations, ChemNTP enables rapid screening across 199 potential neurotoxic targets or key molecular initiating events (MIEs). The model demonstrates robust predictive performance, achieving an area under the receiver operating characteristic curve (AUCROC) of 0.923 on the test set. Additionally, ChemNTP's attention mechanism highlights critical residues in binding targets and key functional groups or atoms in molecules, offering insights into the structural basis of interactions. Experimental validation through in vitro enzyme activity assays and molecular docking confirmed the binding of eight polybrominated diphenyl ethers (PBDEs) to acetylcholinesterase (AChE). We also provide a user-friendly software interface to facilitate the rapid identification of neurotoxicity targets for emerging environmental pollutants, with potential applications in studying MIEs for more types of toxicity.
Collapse
Affiliation(s)
- Lingjing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Tingji Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiaqi Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hang Yi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaoxiao Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
3
|
Muir T, Michalek JE, Palmer RF. Determination of safe levels of persistent organic pollutants in toxicology and epidemiology. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:401-408. [PMID: 35506713 DOI: 10.1515/reveh-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
We reviewed published manuscripts from toxicology and epidemiology reporting harmful health effects and doses of persistent organic pollutants (POPs), published between 2000 and 2021. We found 42 in vitro, 32 in vivo, and 74 epidemiological studies and abstracted the dose associated with harm in a common Molar unit. We hypothesized that the dose associated with harm would vary between animal and human studies. To test this hypothesis, for each of several POPs, we assessed the significance of variation in the dose associated with a harmful effect [categorized as non-thyroid endocrine (NTE), developmental neurotoxicity (DNT), and Thyroid] with study type (in vitro, in vivo, and Epidemiology) using a linear model after adjustment for basis (lipid weight, wet weight). We created a Calculated Safety Factor (CSF) defined as the toxicology dose divided by epidemiology dose needed to exhibit significant harm. Significant differences were found between study types ranging from <1 to 5.0 orders of magnitude in the dose associated with harm. Our CSFs in lipid weight varied from 12.4 (95% confidence interval (CI) 3.3, 47) for NTE effects in Epidemiology relative to in vivo studies to 6,244 (95% CI 2510, 15530) for DNT effects in Epidemiology relative to in vitro in wet weight representing 12.4 to 6.2 thousand-fold more sensitivity in people relative to animals, and mechanistic models, respectively. In lipid weight, all CSF 95% CI lower bounds across effect categories were less than 6.5. CIs for CSFs ranged from less than one to four orders of magnitude for in vivo, and two to five orders of magnitude for in vitro vs. Epidemiology. A global CSF for all Epidemiology vs. all Toxicology was 104.6 (95% CI 72 to 152), significant at p<0.001.
Collapse
Affiliation(s)
- Tom Muir
- Environment Canada, 70 Townsend Ave, Burlington, ON, Canada
| | - Joel E Michalek
- Department of Population Health Sciences, UT Health San Antonio, San Antonio TX, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, UT Health San Antonio, San Antonio TX, USA
| |
Collapse
|
4
|
Pan C, Zhao H, Du Q, Xu Y, Tian D, Xiao S, Wang H, Wei X, Wu C, Ruan Y, Zhao C, Tao G, Zheng W. Path Analysis Reveals the Direct Effect of PCB28 Exposure on Cognitive Dysfunction in Older Chinese Females. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19126958. [PMID: 35742207 PMCID: PMC9222330 DOI: 10.3390/ijerph19126958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
Background: Research indicates that exposure to polychlorinated biphenyls (PCBs) can cause neurobehavioral impairments in neonates and adults, but the way specific PCBs’ congeners impact cognition functions at a low exposure level in a real-life co-exposure system remains poorly understood. This study aimed to investigate the association of PCBs burden with cognition function among elderly adults. Methods: Based on the Weitang Geriatric Diseases study (2014−2015), the current study measured the plasma concentrations of six indicator-PCBs by GC-MS/MS and assessed the cognitive dysfunction (CoD) via an Abbreviated Mental Test in 266 participants (ages 61−90). Sequential logistic regression was used to analyze the effects of PCBs on cognition functions. Female participants aged less than or equal to 80 years were selected, and path analysis was used to determine the direct or indirect impacts of co-exposure PCBs on CoD by structural equation modeling. Results: After sequential adjustments to potential confounding factors and correction by the Bonferroni, no statistically significant correlation between PCBs exposure and CoD was found in participants (p > 0.05). However, in the co-exposure system, after controlling for co-exposures and confounders, exposure to PCB28 had a direct effect on CoD in females aged between 61 and 80, with a factor load of 0.670. Conclusions: After adjusting for the co-exposures and confounders, exposure to PCB28 can directly increase the risk of cognitive impairment in older Chinese females.
Collapse
Affiliation(s)
- Chenwei Pan
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (C.P.); (Y.X.)
| | - Huijuan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, No. 130 Dongan Road, Shanghai 200032, China;
- Key Laboratory of Health Technology Assessment, National Health Commission of the People’s Republic of China, Fudan University, Shanghai 200032, China
| | - Qiaoling Du
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China;
| | - Yong Xu
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China; (C.P.); (Y.X.)
| | - Dajun Tian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, 3545 Lafayette Ave, St. Louis, MO 63104, USA;
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ 08854, USA;
| | - Haiyin Wang
- Department of Health Technology Assessment, Shanghai Health Development Research Center, Shanghai 200032, China;
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Chunfeng Wu
- Shanghai Municipal Center for Disease Control & Prevention, No. 1380 West Zhongshan Road, Shanghai 200336, China;
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chunhua Zhao
- Education and Training Department, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
- Technology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 26 Daoqian Street, Suzhou 215001, China
- Correspondence: (C.Z.); (G.T.); (W.Z.); Tel./Fax: +86-021-54237229 (G.T.)
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control & Prevention, No. 1380 West Zhongshan Road, Shanghai 200336, China;
- Correspondence: (C.Z.); (G.T.); (W.Z.); Tel./Fax: +86-021-54237229 (G.T.)
| | - Weiwei Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, No. 130 Dongan Road, Shanghai 200032, China;
- Key Laboratory of Health Technology Assessment, National Health Commission of the People’s Republic of China, Fudan University, Shanghai 200032, China
- Correspondence: (C.Z.); (G.T.); (W.Z.); Tel./Fax: +86-021-54237229 (G.T.)
| |
Collapse
|
5
|
Brun NR, Panlilio JM, Zhang K, Zhao Y, Ivashkin E, Stegeman JJ, Goldstone JV. Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Commun Biol 2021; 4:1129. [PMID: 34561524 PMCID: PMC8463681 DOI: 10.1038/s42003-021-02626-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.
Collapse
Affiliation(s)
- Nadja R Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jennifer M Panlilio
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Evgeny Ivashkin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
6
|
Latchney SE, Majewska AK. Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Dev Neurobiol 2021; 81:623-652. [PMID: 33851516 DOI: 10.1002/dneu.22825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
The developing nervous system is sensitive to environmental and physiological perturbations in part due to its protracted period of prenatal and postnatal development. Epidemiological and experimental studies link developmental exposures to persistent organic pollutants (POPs) including polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polybrominated diphenyl ethers, and benzo(a)pyrene to increased risk for neurodevelopmental disorders in children. Mechanistic studies reveal that many of the complex cellular processes that occur during sensitive periods of rapid brain development are cellular targets for developmental neurotoxicants. One area of research interest has focused on synapse formation and plasticity, processes that involve the growth and retraction of dendrites and dendritic spines. For each chemical discussed in this review, we summarize the morphological and electrophysiological data that provide evidence that developmental POP exposure produces long-lasting effects on dendritic morphology, spine formation, glutamatergic and GABAergic signaling systems, and synaptic transmission. We also discuss shared intracellular mechanisms, with a focus on calcium and thyroid hormone homeostasis, by which these chemicals act to modify synapses. We conclude our review highlighting research gaps that merit consideration when characterizing synaptic pathology elicited by chemical exposure. These gaps include low-dose and nonmonotonic dose-response effects, the temporal relationship between dendritic growth, spine formation, and synaptic activity, excitation-inhibition balance, hormonal effects, and the need for more studies in females to identify sex differences. By identifying converging pathological mechanisms elicited by POP exposure at the synapse, we can define future research directions that will advance our understanding of these chemicals on synapse structure and function.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.,Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Tukker AM, Bouwman LMS, van Kleef RGDM, Hendriks HS, Legler J, Westerink RHS. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α 1β 2γ 2L GABA A receptor and spontaneous neuronal network function in vitro. Sci Rep 2020; 10:5311. [PMID: 32210279 PMCID: PMC7093421 DOI: 10.1038/s41598-020-62152-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 11/28/2022] Open
Abstract
Concerns about the neurotoxic potential of polyfluoroalkyl substances (PFAS) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) increase, although their neurotoxic mechanisms of action remain debated. Considering the importance of the GABAA receptor in neuronal function, we investigated acute effects of PFAS on this receptor and on spontaneous neuronal network activity. PFOS (Lowest Observed Effect Concentration (LOEC) 0.1 µM) and PFOA (LOEC 1 µM) inhibited the GABA-evoked current and acted as non-competitive human GABAA receptor antagonists. Network activity of rat primary cortical cultures increased following exposure to PFOS (LOEC 100 µM). However, exposure of networks of human induced pluripotent stem cell (hiPSC)-derived neurons decreased neuronal activity. The higher sensitivity of the α1β2γ2L GABAA receptor for PFAS as compared to neuronal networks suggests that PFAS have additional mechanisms of action, or that compensatory mechanisms are at play. Differences between rodent and hiPSC-derived neuronal networks highlight the importance of proper model composition. LOECs for PFAS on GABAA receptor and neuronal activity reported here are within or below the range found in blood levels of occupationally exposed humans. For PFOS, LOECs are even within the range found in human serum and plasma of the general population, suggesting a clear neurotoxic risk.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Lianne M S Bouwman
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Hester S Hendriks
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Juliette Legler
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Klocke C, Sethi S, Lein PJ. The developmental neurotoxicity of legacy vs. contemporary polychlorinated biphenyls (PCBs): similarities and differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8885-8896. [PMID: 31713823 PMCID: PMC7220795 DOI: 10.1007/s11356-019-06723-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/07/2019] [Indexed: 05/11/2023]
Abstract
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans.
Collapse
Affiliation(s)
- Carolyn Klocke
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
10
|
Ostertag SK, Shaw AC, Basu N, Chan HM. Molecular and neurochemical biomarkers in Arctic beluga whales (Delphinapterus leucas) were correlated to brain mercury and selenium concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11551-11559. [PMID: 25171565 DOI: 10.1021/es501369b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) concentrations have increased in western Arctic beluga whales (Delphinapterus leucas) since the industrial revolution. Methylmercruy (MeHg) is a known neurotoxicant, yet little is known about the risk of exposure for beluga whales. Selenium (Se) has been linked to demethylation of MeHg in cetaceans, but its role in attenuating Hg toxicity in beluga whales is poorly understood. The objective of this study is to explore relationships between Hg and Se concentrations and neurochemical biomarkers in different brain regions of beluga whales in order to assess potential neurotoxicological risk of Hg exposure in this population. Brain tissue was sampled from hunter-harvested beluga whales from the western Canadian Arctic in 2008 and 2010. Neurochemical and molecular biomarkers were measured with radioligand binding assays and quantitative PCR, respectively. Total Hg (HgT) concentration ranged from 2.6-113 mg kg(-1) dw in temporal cortex. Gamma-amminobutyric acid type A receptor (GABAA-R) binding in the cerebellum was negatively associated with HgT, MeHg and total Se (SeT) concentrations (p ≤ 0.05). The expression of mRNA for GABAA-R subunit α2 was negatively associated with HgT and MeHg (p ≤ 0.05). Furthermore, GABAA-R binding was positively correlated to mRNA expression for GABAA-R α2 subunit, and negatively correlated to the expression of mRNA for GABAA-R α4 subunit (p ≤ 0.05). The expression of N-methyl-d-aspartate receptor (NMDA-R) subunit 2b mRNA expression was negatively associated with iHglabile concentration in the cerebellum (p ≤ 0.05). Variation of molecular and/or biochemical components of the GABAergic and glutamatergic signaling pathways were associated with MeHg exposure in beluga whales. Our results show that MeHg exposure is associated with neurochemical variation in the cerebellum of beluga whales and Se may partially protect from MeHg-associated neurotoxicity.
Collapse
Affiliation(s)
- Sonja K Ostertag
- Natural Resources and Environmental Studies, University of Northern British Columbia , Prince George, British Columbia Canada , V2N 4Z9
| | | | | | | |
Collapse
|
11
|
Westerink RHS. Modulation of cell viability, oxidative stress, calcium homeostasis, and voltage- and ligand-gated ion channels as common mechanisms of action of (mixtures of) non-dioxin-like polychlorinated biphenyls and polybrominated diphenyl ethers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6373-6383. [PMID: 23686757 DOI: 10.1007/s11356-013-1759-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that exert neurodevelopmental and neurobehavioral effects in vivo in humans and animals. Acute in vitro neurotoxic effects include changes in cell viability, oxidative stress, and basal intracellular calcium levels. Though these acute cellular effects could partly explain the observed in vivo effects, other mechanisms, such as effects on calcium influx and neurotransmitter receptor function, likely contribute to the disturbance in neurotransmission. This concise review combines in vitro data on cell viability, oxidative stress and basal calcium levels with recent data that clearly demonstrate that (hydroxylated) PCBs and (hydroxylated) PBDEs can exert acute effects on voltage-gated Ca(2+) channels as well as on excitatory and inhibitory neurotransmitter receptors in vitro. These novel mechanisms of action are shared by NDL-PCBs, OH-PBDEs, and some other persistent organic pollutants, such as tetrabromobisphenol-A, and could have profound effects on neurodevelopment, neurotransmission, and neurobehavior in vivo.
Collapse
Affiliation(s)
- Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, 3508 TD, Utrecht, The Netherlands,
| |
Collapse
|
12
|
De Boever P, Wens B, Boix J, Felipo V, Schoeters G. Perinatal Exposure to Purity-Controlled Polychlorinated Biphenyl 52, 138, or 180 Alters Toxicogenomic Profiles in Peripheral Blood of Rats after 4 Months. Chem Res Toxicol 2013; 26:1159-67. [DOI: 10.1021/tx300510v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Patrick De Boever
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek,
Belgium
| | - Britt Wens
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
| | - Jordi Boix
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Avenida
Autopista del Saler 16, 46012 Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Avenida
Autopista del Saler 16, 46012 Valencia, Spain
| | - Greet Schoeters
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp,
Belgium
- Department of Environmental
Medicine, University of Southern Denmark, J.B. Winslowsvej 17A, 5100 Odense, Denmark
| |
Collapse
|
13
|
Delistraty D. Ecotoxicity and risk to human fish consumers of polychlorinated biphenyls in fish near the Hanford Site (USA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:14-21. [PMID: 23314118 DOI: 10.1016/j.scitotenv.2012.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to quantify three groups of polychlorinated biphenyl (PCB) congeners (i.e., dioxin-like toxic equivalents [TEQ], non-dioxin-like PCBs, total PCBs) in fish in several species, tissues, and locations in the Columbia River near the Hanford Site. For TEQ and total PCBs, fish ecotoxicity and risk to human fish consumers were also evaluated. Non-dioxin-like PCBs were not assessed for toxicity, due to lack of available benchmarks. In sturgeon liver, TEQ was significantly higher (P<0.05) within the Hanford Site study areas, relative to upriver. However, this same spatial relationship in sturgeon liver did not attain statistical significance for non-dioxin-like PCBs and total PCBs. Non-dioxin-like PCBs and total PCBs were significantly higher (P<0.05) in whitefish fillet than in other species (except carp) and significantly higher (P<0.05) in carp fillet, relative to bass. All PCB residues in carcass were significantly elevated (P<0.005) in comparison to fillet. In addition to PCB source, many factors (e.g., dietary composition, tissue lipid content, fish mobility and home range, age, toxicokinetic processes, seasonal adaptations) influence patterns in PCB bioaccumulation across species, tissues, and locations. TEQ and total PCB residues in liver, fillet, and carcass, observed in this study, were below corresponding no effect residues for TEQ and Aroclors in the literature for fish survival, growth, and reproduction. In contrast, TEQ and total PCBs in fillet in this study exceeded USEPA tissue screening levels for cancer (1E-6 risk) and noncancer (hazard quotient [HQ]=1) toxicity for human fish consumers. Key uncertainties in these comparisons to assess toxicity relate to variation in fish species sensitivity to PCBs and use of Aroclor data in the literature to represent total PCBs.
Collapse
Affiliation(s)
- Damon Delistraty
- Washington State Department of Ecology, N. 4601 Monroe Street, Spokane, WA 99205, USA.
| |
Collapse
|
14
|
de Cock M, Maas YGH, van de Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr 2012; 101:811-8. [PMID: 22458970 DOI: 10.1111/j.1651-2227.2012.02693.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM To provide an overview of studies on perinatal exposure in humans to endocrine disrupting chemicals (EDCs) in relation to autism spectrum (ASD) and attention deficit hyperactivity (ADHD) disorders. METHODS A review of the literature (PubMed) was performed. Exposure-related keywords, including various chemicals, were matched with keywords describing outcome. Animal studies as well as publications not written in English were excluded. In total, 834 titles were retrieved. The final selection included 21 publications. RESULTS Positive associations were found for ASD in relation to exposure to all chemicals investigated, which included hazardous air pollutants, pesticides and bisphenol A (BPA). Increased risks of ADHD or positive associations were found for exposure to polychlorinated biphenyls (PCBs), dialkyl phosphate (DAP) and chlorpyrifos. BPA, polybrominated diphenylethers (PBDEs) and low molecular weight (LMW) phthalates were positively associated with externalizing behaviour. Five of 17 studies did not find any association between exposure and ADHD. CONCLUSION Perinatal exposure to EDCs appears to be associated with the occurrence of ASD as well as ADHD. Disruption of thyroid hormone function and gamma-aminobutyric acid (GABA)ergic mechanisms may offer an explanation for the observed relations; though, conclusive evidence in humans is limited.
Collapse
Affiliation(s)
- Marijke de Cock
- Department of Health and Life Sciences, VU University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Hendriks HS, van Kleef RGDM, Westerink RHS. Modulation of human α4β2 nicotinic acetylcholine receptors by brominated and halogen-free flame retardants as a measure for in vitro neurotoxicity. Toxicol Lett 2012; 213:266-74. [PMID: 22750351 DOI: 10.1016/j.toxlet.2012.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022]
Abstract
Brominated flame retardants (BFRs) are abundant persistent organic pollutants with well-studied toxicity. The toxicological and ecological concern associated with BFRs argues for replacement by safer alternatives. However, the (neuro)toxic potential of alternative halogen-free flame retardants (HFFRs) is unknown. Previous research identified the nervous system as a sensitive target organ for BFRs, with modulation of excitatory nicotinic acetylcholine (nACh) receptors as one of the modes of action. Since it is essential to assess the (neuro)toxic potential of HFFRs before large scale use, we measured the effects of three BFRs and 13 HFFRs on the function of human α(4)β(2) nACh receptors, expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique. The results demonstrate that some BFRs (TBBPA and to a lesser extent BDE-209) and HFFRs (TPP, Alpi, APP, MMT and to a lesser extent ATH, ATO, MHO, MPP, RDP and ZHS) act as nACh receptor antagonists. Contrary, BPS, BDP, DOPO and ZS were unable to modulate nACh receptors. Despite the lack of toxicological data on HFFRs and the need for additional studies to perform a full (neuro)toxic risk assessment, the current data on antagonistic effects on nACh receptors could be an important step in prioritizing viable HFFRs for substitution of BFRs.
Collapse
Affiliation(s)
- Hester S Hendriks
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands
| | | | | |
Collapse
|
16
|
Hendriks HS, van Kleef RGDM, van den Berg M, Westerink RHS. Multiple novel modes of action involved in the in vitro neurotoxic effects of tetrabromobisphenol-A. Toxicol Sci 2012; 128:235-46. [PMID: 22547355 DOI: 10.1093/toxsci/kfs136] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neurotoxicological data on the widely used brominated flame retardant tetrabromobisphenol-A (TBBPA) is limited. Since recent studies indicated that inhibitory GABA(A) and excitatory α(4)β(2) nicotinic acetylcholine (nACh) receptors are sensitive targets for persistent organic pollutants, we investigated the effects of TBBPA on these receptors, expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique. Our results demonstrate that TBBPA acts as full (≥ 10 μM) and partial (≥ 0.1 μM) agonist on human GABA(A) receptors, whereas it acts as antagonist (≥ 10 μM) on human α(4)β(2) nACh receptors. Next, neuronal B35 cells were used to further study the effects of TBBPA on calcium-permeable nACh receptors using single-cell fluorescent calcium imaging. These results demonstrate that TBBPA (≥ 1 μM) inhibits acetylcholine (ACh) receptors as evidenced by a reduction in the ACh-evoked increases in the intracellular calcium concentration ([Ca(2+)](i)). Additionally, TBBPA (> 1 μM) induced a strong and concentration-dependent increase in basal [Ca(2+)](i) in B35 cells. Similarly, TBBPA (> 1 μM) increases basal [Ca(2+)](i) in dopaminergic PC12 cells. This increase is also evident under calcium-free conditions, indicating it originates from intracellular calcium stores. Moreover, depolarization-evoked increases in [Ca(2+)](i) are strongly reduced by TBBPA (≥ 1 μM), indicating TBBPA-induced inhibition of voltage-gated calcium channels. Our in vitro studies thus demonstrate that TBBPA exerts several adverse effects on functional neurotransmission endpoints with effect concentrations that are only two orders of magnitude below the highest cord serum concentrations. Although epidemiological proof for adverse TBBPA effects is lacking, our data justify the quest for flame retardants with reduced neurotoxic potential.
Collapse
Affiliation(s)
- Hester S Hendriks
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | | | | | | |
Collapse
|
17
|
Brunelli L, Llansola M, Felipo V, Campagna R, Airoldi L, De Paola M, Fanelli R, Mariani A, Mazzoletti M, Pastorelli R. Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls. J Proteomics 2012; 75:2417-30. [PMID: 22387315 DOI: 10.1016/j.jprot.2012.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 01/20/2023]
Abstract
Recent studies showed that food-contaminant non-dioxin-like polychlorinated biphenyls (NDL-PCBs) congeners (PCB52, PCB138, PCB180) have neurotoxic potential, but the cellular and molecular mechanisms underlying neuronal damage are not entirely known. The aim of this study was to assess whether in-vitro exposure to NDL-PCBs may alter the proteome profile of primary cerebellar neurons in order to expand our knowledge on NDL-PCBs neurotoxicity. Comparison of proteome from unexposed and exposed rat cerebellar neurons was performed using state-of-the-art label-free semi-quantitative mass-spectrometry method. We observed significant changes in the abundance of several proteins, that fall into two main classes: (i) novel targets for both PCB138 and 180, mediating the dysregulation of CREB pathways and ubiquitin-proteasome system; (ii) different congeners-specific targets (alpha-actinin-1 for PCB138; microtubule-associated-protein-2 for PCB180) that might lead to similar deleterious consequences on neurons cytoskeleton organization. Interference of the PCB congeners with synaptic formation was supported by the increased expression of pre- and post-synaptic proteins quantified by western blot and immunocytochemistry. Expression alteration of synaptic markers was confirmed in the cerebellum of rats developmentally exposed to these congeners, suggesting an adaptive response to neurodevelopmental toxicity on brain structures. As such, our work is expected to lead to new insights into the mechanisms of NDL-PCBs neurotoxicity.
Collapse
Affiliation(s)
- Laura Brunelli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mitra PS, Ghosh S, Zang S, Sonneborn D, Hertz-Picciotto I, Trnovec T, Palkovicova L, Sovcikova E, Ghimbovschi S, Hoffman E, Dutta SK. Analysis of the toxicogenomic effects of exposure to persistent organic pollutants (POPs) in Slovakian girls: correlations between gene expression and disease risk. ENVIRONMENT INTERNATIONAL 2012; 39:188-99. [PMID: 22208759 PMCID: PMC3259908 DOI: 10.1016/j.envint.2011.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 05/20/2023]
Abstract
The chemical composition of persistent organic pollutants (POPs) in the environment is not uniform throughout the world, and these contaminants contain many structurally different lipophilic compounds. In a well-defined study cohort in the Slovak Republic, the POP chemicals present in the peripheral blood of exposed children were chemically analyzed. The chemical analysis data revealed that the relative concentration and profile of structurally different organic pollutants, including polychlorinated biphenyls (PCBs), 2,2'-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), 2,2'-bis(4-chlorophenyl)-1,1,1-trichloro-ethane (p,p'-DDT), hexachlorobenzene (HCB) and β-hexachlorocyclohexane (β-HCH), may vary from individual to individual, even within the same exposure area. These chemicals can be broadly classified into two groups. The first group, the PCB congeners, primarily originated from industrial compounds and their byproducts. The second group of compounds originated from or was commonly used in the agricultural sector (e.g., DDT, HCB). The objective of this study was to examine the effects of the two POP exposure profiles on gene expression. For the study population, we selected pre-pubertal girls (mean age of 46.2±1.4 months) with high POP concentrations in their blood (>75% tile of total POP) and classified them in the high 'PCB' group when the total PCB concentration was significantly higher than the total concentration of other POP components and in the 'Other Than PCB' (OTP) group, when the total PCB concentration was significantly lower than the concentration of the other major POP constituents. A matched control group of girls (<25% tile of total POP) was selected for comparison purpose (n=5 per group). Our aims were to determine whether there were any common effects of high POP exposure at a toxicogenomic level and to investigate how exposure may affect physiological functions of the children in two different exposure scenarios. Global gene expression analysis using a microarray (Affymetrix Gene Chip Human genome U133 Plus 2.0 Array) platform was conducted on the total RNA of peripheral blood mononuclear cells from the girls. The results were analyzed by Partek GS, Louis, MI, which identified twelve genes (ATAD2B, BIVM, CD96, CXorf39, CYTH1 ETNK1, FAM13A, HIRA, INO80B, ODG1, RAD23B, and TSGA14) and two unidentified probe sets, as regulated differentially in both the PCB and OTP groups against the control group. The qRT-PCR method was used to validate the microarray results. The Ingenuity Pathway Analysis (IPA) software package identified the possible molecular impairments and disease risks associated with each gene set. Connective tissue disorders, genetic disorders, skeletal muscular disorders and neurological diseases were associated with the 12 common genes. The data therefore identified the potential molecular effects of POP exposure on a genomic level. This report underscores the importance of further study to validate the results in a random population and to evaluate the use of the identified genes as biomarkers for POP exposure.
Collapse
Affiliation(s)
| | | | - Shizhu Zang
- Howard University, Washington, DC, United States of America
| | - Dean Sonneborn
- University of California Davis, Davis, Davis, CA, United States of America
| | | | | | | | | | | | - Eric Hoffman
- Children’s National Medical Center, Washington, DC, United States of America
| | - Sisir K. Dutta
- Howard University, Washington, DC, United States of America
- Corresponding Author: 415 College Street, NW, Room 335, EE Just Hall, Washington, DC 20059, TEL: +1(202)-806-6942; FAX: +1(202) 806-5138;
| |
Collapse
|
19
|
Stenberg M, Hamers T, Machala M, Fonnum F, Stenius U, Lauy AA, van Duursen MBM, Westerink RHS, Fernandes ECA, Andersson PL. Multivariate toxicity profiles and QSAR modeling of non-dioxin-like PCBs--an investigation of in vitro screening data from ultra-pure congeners. CHEMOSPHERE 2011; 85:1423-1429. [PMID: 21890175 DOI: 10.1016/j.chemosphere.2011.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
The non-dioxin-like PCBs (NDL-PCBs) found in food and human samples have a complex spectrum of adverse effects, but lack a detailed risk assessment. The toxicity profiles of 21 carefully selected PCBs (19 NDL-PCBs) were identified by in vitro screening in 17 different assays on specific endpoints related to neurotoxicity, endocrine disruption and tumor promotion. To ensure that the test results were not affected by polychlorinated dioxins, dibenzofurans or DL-PCB contaminants, the NDL-PCB congeners were thoroughly purified before testing. Principal component analysis (PCA) was used to derive general toxicity profiles from the in vitro screening data. The toxicity profiles indicated different structure-activity relationships (SAR) and distinct mechanisms of action. The analysis also indicated that the NDL-PCBs could be divided into two groups. The first group included generally smaller, ortho-substituted congeners, comprising PCB 28, 47, 51, 52, 53, 95, 100, 101, 104 and 136, with PCB 95, 101 and 136 as generally being most active. The second group comprising PCB 19, 74, 118, 122, 128, 138, 153, 170, 180 and 190 had lower biological activity in many of the assays, except for three endocrine-related assays. The most abundant congeners, PCB 138, 153, 170, 180 and 190, cluster in the second group, and thereby show similar SAR. Two quantitative structure-activity relationship (QSAR) models could be developed that added information to the SAR and could aid in risk assessments of NDL-PCBs. The QSAR models predicted a number of congeners as active and among these e.g., PCB 18, 25, 45 and 49 have been found in food or human samples.
Collapse
Affiliation(s)
- Mia Stenberg
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Taferner B, Schuehly W, Huefner A, Baburin I, Wiesner K, Ecker GF, Hering S. Modulation of GABAA-receptors by honokiol and derivatives: subtype selectivity and structure-activity relationship. J Med Chem 2011; 54:5349-61. [PMID: 21699169 DOI: 10.1021/jm200186n] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 31 analogues of the neolignan honokiol (a major constituent of Magnolia officinalis) was synthesized, and their effects on GABA(A) receptors expressed in Xenopus oocytes were investigated. Honokiol enhanced chloride currents (I(GABA)) through GABA(A) receptors of seven different subunit compositions with EC(50) values ranging from 23.4 μM (α(5)β(2)) to 59.6 μM (α(1)β(3)). Honokiol was most efficient on α(3)β(2) (maximal I(GABA) enhancement 2386%) > α(2)β(2) (1130%) > α(1)β(2) (1034%) > α(1)β(1) (260%)). On α(1)β(2)-receptors, N-substituted compounds were most active with 3-acetylamino-4'-O-methylhonokiol (31), enhancing I(GABA) by 2601% (EC(50) (α(1)β(2)) = 3.8 μM). Pharmacophore modeling gave a model with an overall classification accuracy of 91% showing three hydrophobic regions, one acceptor and one donor region. Unlike honokiol, 31 was most efficient on α(2)β(2)- (5204%) > α(3)β(2)- (3671%) > α(1)β(2)-receptors (2601%), suggesting a role of the acetamido group in subunit-dependent receptor modulation.
Collapse
Affiliation(s)
- Barbara Taferner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Boix J, Cauli O, Leslie H, Felipo V. Differential long-term effects of developmental exposure to polychlorinated biphenyls 52, 138 or 180 on motor activity and neurotransmission. Gender dependence and mechanisms involved. Neurochem Int 2010; 58:69-77. [PMID: 21056608 DOI: 10.1016/j.neuint.2010.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/26/2022]
Abstract
Developmental exposure to polychlorinated biphenyls (PCBs) induces motor alterations in humans by unknown mechanisms. It remains unclear whether: (a) all non-dioxin-like (NDL) PCBs are neurotoxic or it depends on the grade of chlorination; (b) they have different neurotoxicity mechanisms; (c) they affect differently males and females. The aims of this work were to assess: (1) whether perinatal exposure to 3 NDL-PCBs with different grades of chlorination, (PCBs 52, 138 or 180) affects differentially motor activity in adult rats; (2) whether the effects are different in males or females and (3) the mechanisms involved in impaired motor activity. Rats were exposed to PCBs from gestational day 7 to post-natal day 21. Experiments were performed when the rats were 4 months-old. PCB52 did not affect motor activity, PCB180 reduced it in males but not in females and PCB138 reduced activity both in males and females. PCB52 or 138 did not affect extracellular dopamine in nucleus accumbens (NAcc). PCB180 increased it both in males and females. Extracellular glutamate in NAcc was reduced by the three PCBs. Activation of metabotropic glutamate receptors (mGluRs) in NAcc increased extracellular dopamine in control rats and in those exposed to PCB52 and reduced dopamine in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs increases dopamine in females and reduces it in males. The opposite changes were observed for glutamate. mGluRs activation reduced extracellular glutamate in control rats and in those exposed to PCB52 and increased glutamate in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs reduces glutamate in females and increases it in males. The data support that different NDL-PCBs affect differently motor activity. Increased glutamate release in NAcc following activation of mGluRs would be involved in reduced dopamine release and reduced motor activity in rats exposed to PCB138 or 180.
Collapse
Affiliation(s)
- Jordi Boix
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
22
|
Hendriks HS, Antunes Fernandes EC, Bergman A, van den Berg M, Westerink RHS. PCB-47, PBDE-47, and 6-OH-PBDE-47 differentially modulate human GABAA and alpha4beta2 nicotinic acetylcholine receptors. Toxicol Sci 2010; 118:635-42. [PMID: 20861069 DOI: 10.1093/toxsci/kfq284] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) and the structurally related polybrominated diphenyl ethers (PBDEs) are abundant persistent organic pollutants that exert several comparable neurotoxic effects. Importantly, hydroxylated metabolites of PCBs and PBDEs have an increased neurotoxic potency. Recently, we demonstrated that PCBs can act as (partial) agonist on GABA(A) neurotransmitter receptors, with PCB-47 being the most potent congener. It is, however, unknown whether PBDE-47 and its metabolite 6-OH-PBDE-47 exert similar effects and if these effects are limited to GABA(A) receptors only. We therefore investigated effects of PCB-47, PBDE-47, and 6-OH-PBDE-47 on the inhibitory GABA(A) and excitatory α(4)β(2) nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Since human exposure is generally not limited to individual compounds, experiments with binary mixtures were also performed. The results demonstrate that PCB-47 and 6-OH-PBDE-47 act as full and partial agonist on the GABA(A) receptor. However, both congeners act as antagonist on the nACh receptor. PBDE-47 does not affect either type of receptor. Binary mixtures of PCB-47 and 6-OH-PBDE-47 induced an additive activation as well as potentiation of GABA(A) receptors, whereas this mixture resulted in an additive inhibition of nACh receptors. Binary mixtures of PBDE-47 and 6-OH-PBDE-47 yielded similar effects as 6-OH-PBDE-47 alone. These findings demonstrate that GABA(A) and nACh receptors are affected differently by PCB-47 and 6-OH-PBDE-47, with inhibitory GABA(A)-mediated signaling being potentiated and excitatory α(4)β(2) nACh-mediated signaling being inhibited. Considering these opposite actions and the additive interaction of the congeners, these effects are likely to be augmented in vivo.
Collapse
Affiliation(s)
- Hester S Hendriks
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, NL-3508 TD Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Antunes Fernandes EC, Hendriks HS, van Kleef RGDM, Reniers A, Andersson PL, van den Berg M, Westerink RHS. Activation and Potentiation of Human GABAA Receptors by Non-Dioxin–Like PCBs Depends on Chlorination Pattern. Toxicol Sci 2010; 118:183-90. [DOI: 10.1093/toxsci/kfq257] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|