1
|
Lyagin I, Aslanli A, Domnin M, Stepanov N, Senko O, Maslova O, Efremenko E. Metal Nanomaterials and Hydrolytic Enzyme-Based Formulations for Improved Antifungal Activity. Int J Mol Sci 2023; 24:11359. [PMID: 37511117 PMCID: PMC10379199 DOI: 10.3390/ijms241411359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Active research of metal-containing compounds and enzymes as effective antifungal agents is currently being conducted due to the growing antifungal resistance problem. Metals are attracting special attention due to the wide variety of ligands that can be used for them, including chemically synthesized and naturally obtained variants as a result of the so-called "green synthesis". The main mechanism of the antifungal action of metals is the triggering of the generation and accumulation of reactive oxygen species (ROS). Further action of ROS on various biomolecules is nonspecific. Various hydrolytic enzymes (glucanases and proteases), in turn, exhibit antifungal properties by affecting the structural elements of fungal cells (cell walls, membranes), fungal quorum sensing molecules, fungal own protective agents (mycotoxins and antibiotics), and proteins responsible for the adhesion and formation of stable, highly concentrated populations in the form of biofilms. A wide substrate range of enzymes allows the use of various mechanisms of their antifungal actions. In this review, we discuss the prospects of combining two different types of antifungal agents (metals and enzymes) against mycelial fungi and yeast cells. Special attention is paid to the possible influence of metals on the activity of the enzymes and the possible effects of proteins on the antifungal activity of metal-containing compounds.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Maksim Domnin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
2
|
Efremenko E, Aslanli A, Lyagin I. Advanced Situation with Recombinant Toxins: Diversity, Production and Application Purposes. Int J Mol Sci 2023; 24:ijms24054630. [PMID: 36902061 PMCID: PMC10003545 DOI: 10.3390/ijms24054630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Today, the production and use of various samples of recombinant protein/polypeptide toxins is known and is actively developing. This review presents state-of-the-art in research and development of such toxins and their mechanisms of action and useful properties that have allowed them to be implemented into practice to treat various medical conditions (including oncology and chronic inflammation applications) and diseases, as well as to identify novel compounds and to detoxify them by diverse approaches (including enzyme antidotes). Special attention is given to the problems and possibilities of the toxicity control of the obtained recombinant proteins. The recombinant prions are discussed in the frame of their possible detoxification by enzymes. The review discusses the feasibility of obtaining recombinant variants of toxins in the form of protein molecules modified with fluorescent proteins, affine sequences and genetic mutations, allowing us to investigate the mechanisms of toxins' bindings to their natural receptors.
Collapse
Affiliation(s)
- Elena Efremenko
- Correspondence: ; Tel.: +7-(495)-939-3170; Fax: +7-(495)-939-5417
| | | | | |
Collapse
|
3
|
Egan ME, Pepin KM, Fischer JW, Hygnstrom SE, VerCauteren KC, Bastille‐Rousseau G. Social network analysis of white‐tailed deer scraping behavior: Implications for disease transmission. Ecosphere 2023. [DOI: 10.1002/ecs2.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Affiliation(s)
- Michael E. Egan
- Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| | - Kim M. Pepin
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Justin W. Fischer
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Scott E. Hygnstrom
- Wisconsin Center for Wildlife College of Natural Resources, University of Wisconsin‐Stevens Point Stevens Point Wisconsin USA
| | - Kurt C. VerCauteren
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Guillaume Bastille‐Rousseau
- Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| |
Collapse
|
4
|
Kuznetsova A, Cullingham C, McKenzie D, Aiken JM. Soil humic acids degrade CWD prions and reduce infectivity. PLoS Pathog 2018; 14:e1007414. [PMID: 30496301 PMCID: PMC6264147 DOI: 10.1371/journal.ppat.1007414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic wasting disease (CWD), an environmentally transmissible, fatal prion disease is endemic in North America, present in South Korea and has recently been confirmed in northern Europe. The expanding geographic range of this contagious disease of free-ranging deer, moose, elk and reindeer has resulted in increasing levels of prion infectivity in the environment. Soils are involved in CWD horizontal transmission, acting as an environmental reservoir, and soil mineral and organic compounds have the ability to bind prions. Upper horizons of soils are usually enriched with soil organic matter (SOM), however, the role of SOM in prion conservation and mobility remains unclear. In this study, we show that incubation of PrPCWD with humic acids (HA), a major SOM compound, affects both the molecular weight and recovery of PrPCWD. Detection of PrPCWD is reduced as HA concentration increases. Native HA extracted from pristine soils also reduces or entirely eliminates PrPCWD signal. Incubation of CWD prions with HA significantly increased incubation periods in tgElk mice demonstrating that HA can reduce CWD infectivity. Chronic wasting disease (CWD) is a contagious prion disease affecting several species of captive and wild cervids. Environmental prion contamination plays a major role in increasing incidence of CWD, with CWD infectivity being released into the environment by decaying carcasses, or shedding of biological fluids including urine, feces, and saliva. Horizontal transmission of CWD involves soils as an environmental reservoir of infectivity. Here, we tested the role of a soil organic matter compound, humic acid, for its ability to bind CWD prions and impact infectivity. A wide range of humic acid concentrations were examined representing the extensive spectrum of humic acid levels present in native soils. We found that incubation of CWD prions with high concentrations of humic acids (>2.5 g L-1) decreases the both CWD-prion signal and infectivity, whereas lower levels of humic acids did not significantly impact protein stability or infectivity. Our study provides new insights into soil-prion interactions, prions persistence in soil, and their bioavailability to grazing animals.
Collapse
Affiliation(s)
- Alsu Kuznetsova
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB, Canada
| | | | - Debbie McKenzie
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Judd M. Aiken
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
5
|
Dehydration of Prions on Environmentally Relevant Surfaces Protects Them from Inactivation by Freezing and Thawing. J Virol 2018; 92:JVI.02191-17. [PMID: 29386284 DOI: 10.1128/jvi.02191-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/24/2018] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is an emerging prion disease in North America. Recent identification of CWD in wild cervids from Norway raises the concern of the spread of CWD in Europe. CWD infectivity can enter the environment through live animal excreta and carcasses where it can bind to soil. Well-characterized hamster prion strains and CWD field isolates in unadsorbed or soil-adsorbed forms that were either hydrated or dehydrated were subjected to repeated rounds of freezing and thawing. We found that 500 cycles of repeated freezing and thawing of hydrated samples significantly decreased the abundance of PrPSc and reduced protein misfolding cyclic amplification (PMCA) seeding activity that could be rescued by binding to soil. Importantly, dehydration prior to freezing and thawing treatment largely protected PrPSc from degradation, and the samples maintained PMCA seeding activity. We hypothesize that redistribution of water molecules during the freezing and thawing process alters the stability of PrPSc aggregates. Overall, these results have significant implications for the assessment of prion persistence in the environment.IMPORTANCE Prions excreted into the environment by infected animals, such as elk and deer infected with chronic wasting disease, persist for years and thus facilitate horizontal transmission of the disease. Understanding the fate of prions in the environment is essential to control prion disease transmission. The significance of our study is that it provides information on the possibility of prion degradation and inactivation under natural weathering processes. This information is significant for remediation of prion-contaminated environments and development of prion disease control strategies.
Collapse
|
6
|
An in vitro model for assessing effective scrapie decontamination. Vet Microbiol 2017; 207:138-142. [DOI: 10.1016/j.vetmic.2017.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 05/20/2017] [Indexed: 11/17/2022]
|
7
|
Longitudinal Detection of Prion Shedding in Saliva and Urine by Chronic Wasting Disease-Infected Deer by Real-Time Quaking-Induced Conversion. J Virol 2015; 89:9338-47. [PMID: 26136567 DOI: 10.1128/jvi.01118-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic wasting disease (CWD) is an emergent, rapidly spreading prion disease of cervids. Shedding of infectious prions in saliva and urine is thought to be an important factor in CWD transmission. To help to elucidate this issue, we applied an in vitro amplification assay to determine the onset, duration, and magnitude of prion shedding in longitudinally collected saliva and urine samples from CWD-exposed white-tailed deer. We detected prion shedding as early as 3 months after CWD exposure and sustained shedding throughout the disease course. We estimated that the 50% lethal dose (LD50) for cervidized transgenic mice would be contained in 1 ml of infected deer saliva or 10 ml of urine. Given the average course of infection and daily production of these body fluids, an infected deer would shed thousands of prion infectious doses over the course of CWD infection. The direct and indirect environmental impacts of this magnitude of prion shedding on cervid and noncervid species are surely significant. IMPORTANCE Chronic wasting disease (CWD) is an emerging and uniformly fatal prion disease affecting free-ranging deer and elk and is now recognized in 22 U.S. states and 2 Canadian provinces. It is unique among prion diseases in that it is transmitted naturally through wild populations. A major hypothesis to explain CWD's florid spread is that prions are shed in excreta and transmitted via direct or indirect environmental contact. Here we use a rapid in vitro assay to show that infectious doses of CWD prions are in fact shed throughout the multiyear disease course in deer. This finding is an important advance in assessing the risks posed by shed CWD prions to animals as well as humans.
Collapse
|
8
|
Yuan Q, Eckland T, Telling G, Bartz J, Bartelt-Hunt S. Mitigation of prion infectivity and conversion capacity by a simulated natural process--repeated cycles of drying and wetting. PLoS Pathog 2015; 11:e1004638. [PMID: 25665187 PMCID: PMC4335458 DOI: 10.1371/journal.ppat.1004638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022] Open
Abstract
Prions enter the environment from infected hosts, bind to a wide range of soil and soil minerals, and remain highly infectious. Environmental sources of prions almost certainly contribute to the transmission of chronic wasting disease in cervids and scrapie in sheep and goats. While much is known about the introduction of prions into the environment and their interaction with soil, relatively little is known about prion degradation and inactivation by natural environmental processes. In this study, we examined the effect of repeated cycles of drying and wetting on prion fitness and determined that 10 cycles of repeated drying and wetting could reduce PrPSc abundance, PMCA amplification efficiency and extend the incubation period of disease. Importantly, prions bound to soil were more susceptible to inactivation by repeated cycles of drying and wetting compared to unbound prions, a result which may be due to conformational changes in soil-bound PrPSc or consolidation of the bonding between PrPSc and soil. This novel finding demonstrates that naturally-occurring environmental process can degrade prions. Prion diseases such as chronic wasting disease and scrapie are emerging in North America at an increasing rate. Infectious prions are introduced into the environment from both living and dead animals where they can bind to soil. Little information is available on the effect of prion inactivation under conditions that would be found in the natural environment. In this study, we exposed both unbound and soil-bound prions to repeated cycles of drying and wetting to simulate ambient environmental conditions. We found evidence of prion inactivation in both unbound and soil bound prions. The influence of repeated cycles of drying and wetting are dependent on the prion strain and soil type used and, interestingly, prions bound to soil were more susceptible to inactivation. This is the first report of natural environmental processes mitigating prion infectivity. This data suggests that the total environmental prion load is a balance between input and natural clearance.
Collapse
Affiliation(s)
- Qi Yuan
- Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska, United States of America
| | - Thomas Eckland
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Glenn Telling
- Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- * E-mail: (JB); (SBH)
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska, United States of America
- * E-mail: (JB); (SBH)
| |
Collapse
|
9
|
Xu S, Reuter T, Gilroyed BH, Mitchell GB, Price LM, Dudas S, Braithwaite SL, Graham C, Czub S, Leonard JJ, Balachandran A, Neumann NF, Belosevic M, McAllister TA. Biodegradation of prions in compost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6909-6918. [PMID: 24819143 DOI: 10.1021/es500916v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Composting may serve as a practical and economical means of disposing of specified risk materials (SRM) or animal mortalities potentially infected with prion diseases (transmissible spongiform encephalopathies, TSE). Our study investigated the degradation of prions associated with scrapie (PrP(263K)), chronic waste disease (PrP(CWD)), and bovine spongiform encephalopathy (PrP(BSE)) in lab-scale composters and PrP(263K) in field-scale compost piles. Western blotting (WB) indicated that PrP(263K), PrP(CWD), and PrP(BSE) were reduced by at least 2 log10, 1-2 log10, and 1 log10 after 28 days of lab-scale composting, respectively. Further analysis using protein misfolding cyclic amplification (PMCA) confirmed a reduction of 2 log10 in PrP(263K) and 3 log10 in PrP(CWD). Enrichment for proteolytic microorganisms through the addition of feather keratin to compost enhanced degradation of PrP(263K) and PrP(CWD). For field-scale composting, stainless steel beads coated with PrP(263K) were exposed to compost conditions and removed periodically for bioassays in Syrian hamsters. After 230 days of composting, only one in five hamsters succumbed to TSE disease, suggesting at least a 4.8 log10 reduction in PrP(263K) infectivity. Our findings show that composting reduces PrP(TSE), resulting in one 50% infectious dose (ID50) remaining in every 5600 kg of final compost for land application. With these considerations, composting may be a viable method for SRM disposal.
Collapse
Affiliation(s)
- Shanwei Xu
- Agriculture and Agri-Food Canada, Lethbridge Research Centre , Lethbridge, Alberta T1J 4B1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wyckoff AC, Lockwood KL, Meyerett-Reid C, Michel BA, Bender H, VerCauteren KC, Zabel MD. Estimating prion adsorption capacity of soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS). PLoS One 2013; 8:e58630. [PMID: 23484043 PMCID: PMC3587580 DOI: 10.1371/journal.pone.0058630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/05/2013] [Indexed: 11/25/2022] Open
Abstract
Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.
Collapse
Affiliation(s)
- A. Christy Wyckoff
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center, Fort Collins, Colorado, United States of America
- National Wildlife Research Center, Wildlife Services, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Krista L. Lockwood
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center, Fort Collins, Colorado, United States of America
| | - Crystal Meyerett-Reid
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center, Fort Collins, Colorado, United States of America
| | - Brady A. Michel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center, Fort Collins, Colorado, United States of America
| | - Heather Bender
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center, Fort Collins, Colorado, United States of America
| | - Kurt C. VerCauteren
- National Wildlife Research Center, Wildlife Services, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Mark D. Zabel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Prion Research Center, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Xu S, Reuter T, Gilroyed BH, Dudas S, Graham C, Neumann NF, Balachandran A, Czub S, Belosevic M, Leonard JJ, McAllister TA. Biodegradation of specified risk material and fate of scrapie prions in compost. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:26-36. [PMID: 23030385 DOI: 10.1080/10934529.2012.707599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Composting may be a viable alternative to rendering and land filling for the disposal of specified risk material (SRM) provided that infectious prion proteins (PrP(TSE)) are inactivated. This study investigated the degradation of SRM and the fate of scrapie prions (PrP(Sc)) over 28 days in laboratory-scale composters, with and without feathers in the compost matrices. Compost was mixed at day 14 to generate a second heating cycle, with temperatures exceeding 65°C in the first cycle and 50°C in the second cycle. Approximately 63% and 77% of SRM was degraded after the first and second cycles, respectively. Inclusion of feathers in the compost matrices did not alter compost properties during composting other than increasing (P < 0.05) total nitrogen and reducing (P < 0.05) the C/N ratio. However, addition of feathers enhanced (P < 0.05) SRM degradation by 10% upon completion of experiment. Scrapie brain homogenates were spiked into manure at the start of composting and extracted using sodium dodecyl sulphate followed by detection using Western blotting (WB). Prior to composting, PrP(Sc) was detectable in manure with 1-2 log(10) sensitivity, but was not observable after 14 or 28 days of composting. This may have been due to either biological degradation of PrP(Sc) or the formation of complexes with compost components that precluded its detection.
Collapse
Affiliation(s)
- Shanwei Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saunders SE, Bartelt-Hunt SL, Bartz JC. Resistance of soil-bound prions to rumen digestion. PLoS One 2012; 7:e44051. [PMID: 22937149 PMCID: PMC3427226 DOI: 10.1371/journal.pone.0044051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
Before prion uptake and infection can occur in the lower gastrointestinal system, ingested prions are subjected to anaerobic digestion in the rumen of cervids and bovids. The susceptibility of soil-bound prions to rumen digestion has not been evaluated previously. In this study, prions from infectious brain homogenates as well as prions bound to a range of soils and soil minerals were subjected to in vitro rumen digestion, and changes in PrP levels were measured via western blot. Binding to clay appeared to protect noninfectious hamster PrPc from complete digestion, while both unbound and soil-bound infectious PrPSc proved highly resistant to rumen digestion. In addition, no change in intracerebral incubation period was observed following active rumen digestion of unbound hamster HY TME prions and HY TME prions bound to a silty clay loam soil. These results demonstrate that both unbound and soil-bound prions readily survive rumen digestion without a reduction in infectivity, further supporting the potential for soil-mediated transmission of chronic wasting disease (CWD) and scrapie in the environment.
Collapse
Affiliation(s)
- Samuel E. Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| | - Shannon L. Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
- * E-mail:
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| |
Collapse
|
13
|
Abstract
The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than twenty lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.
Collapse
Affiliation(s)
- Cynthia M Rodriguez
- USGS National Wildlife Health Center; Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
14
|
Saunders SE, Bartelt-Hunt SL, Bartz JC. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerg Infect Dis 2012; 18:369-76. [PMID: 22377159 PMCID: PMC3309570 DOI: 10.3201/eid1803.110685] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal, transmissible prion disease that affects captive and free-ranging deer, elk, and moose. Although the zoonotic potential of CWD is considered low, identification of multiple CWD strains and the potential for agent evolution upon serial passage hinders a definitive conclusion. Surveillance for CWD in free-ranging populations has documented a continual geographic spread of the disease throughout North America. CWD prions are shed from clinically and preclinically affected hosts, and CWD transmission is mediated at least in part by the environment, perhaps by soil. Much remains unknown, including the sites and mechanisms of prion uptake in the naive host. There are no therapeutics or effective eradication measures for CWD-endemic populations. Continued surveillance and research of CWD and its effects on cervid ecosystems is vital for controlling the long-term consequences of this emerging disease.
Collapse
|
15
|
Wisniewski T, Goñi F. Could immunomodulation be used to prevent prion diseases? Expert Rev Anti Infect Ther 2012; 10:307-17. [PMID: 22397565 DOI: 10.1586/eri.11.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All prion diseases are currently without effective treatment and are universally fatal. The underlying pathogenesis of prion diseases (prionoses) is related to an autocatalytic conformational conversion of PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie) or PrP(Res) (Res for proteinase K resistant). The past experience with variant Creutzfeldt-Jakob disease, which originated from bovine spongiform encephalopathy, as well as the ongoing epidemic of chronic wasting disease has highlighted the necessity for effective prophylactic and/or therapeutic approaches. Human prionoses are most commonly sporadic, and hence therapy is primarily directed to stop progression; however, in animals the majority of prionoses are infectious and, as a result, the emphasis is on prevention of transmission. These infectious prionoses are most commonly acquired via the alimentary tract as a major portal of infectious agent entry, making mucosal immunization a potentially attractive method to produce a local immune response that can partially or completely prevent prion entry across the gut barrier, while at the same time producing a modulated systemic immunity that is unlikely to be associated with toxicity. A critical factor in any immunomodulatory methodology that targets a self-antigen is the need to delicately balance an effective humoral immune response with potential autoimmune inflammatory toxicity. The ongoing epidemic of chronic wasting disease affecting the USA and Korea, with the potential to spread to human populations, highlights the need for such immunomodulatory approaches.
Collapse
Affiliation(s)
- Thomas Wisniewski
- New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
16
|
Saunders SE, Bartz JC, Bartelt-Hunt SL. Soil-mediated prion transmission: is local soil-type a key determinant of prion disease incidence? CHEMOSPHERE 2012; 87:661-667. [PMID: 22265680 DOI: 10.1016/j.chemosphere.2011.12.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/23/2011] [Accepted: 12/28/2011] [Indexed: 05/31/2023]
Abstract
Prion diseases, including chronic wasting disease (CWD) and scrapie, can be transmitted via indirect environmental routes. Animals habitually ingest soil, and results from laboratory experiments demonstrate prions can bind to a wide range of soils and soil minerals, retain the ability to replicate, and remain infectious, indicating soil could serve as a reservoir for natural prion transmission and a potential prion exposure route for humans. Preliminary epidemiological modeling suggests soil texture may influence the incidence of prion disease. These results are supported by experimental work demonstrating variance in prion interactions with soil, including variance in prion soil adsorption and soil-bound prion replication with respect to soil type. Thus, local soil type may be a key determinant of prion incidence. Further experimental and epidemiological work is required to fully elucidate the dynamics of soil-mediated prion transmission, an effort that should lead to effective disease management and mitigation strategies.
Collapse
Affiliation(s)
- Samuel E Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182, USA
| | | | | |
Collapse
|
17
|
An enzymatic treatment of soil-bound prions effectively inhibits replication. Appl Environ Microbiol 2011; 77:4313-7. [PMID: 21571886 DOI: 10.1128/aem.00421-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) and scrapie can be transmitted through indirect environmental routes, possibly via soil, and a practical decontamination strategy for prion-contaminated soil is currently unavailable. In the laboratory, an enzymatic treatment under environmentally relevant conditions (22°C, pH 7.4) can degrade soil-bound PrPSc below the limits of Western blot detection. We developed and used a quantitative serial protein misfolding cyclic amplification (PMCA) protocol to characterize the amplification efficiency of treated soil samples relative to controls of known infectious titer. Our results suggest large (10(4)- to >10(6)-fold) decreases in soil-bound prion infectivity following enzyme treatment, demonstrating that a mild enzymatic treatment could effectively reduce the risk of prion disease transmission via soil or other environmental surfaces.
Collapse
|
18
|
Johnson CJ, Bennett JP, Biro SM, Duque-Velasquez JC, Rodriguez CM, Bessen RA, Rocke TE. Degradation of the disease-associated prion protein by a serine protease from lichens. PLoS One 2011; 6:e19836. [PMID: 21589935 PMCID: PMC3092769 DOI: 10.1371/journal.pone.0019836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
Abstract
The disease-associated prion protein (PrPTSE), the probable
etiological agent of the transmissible spongiform encephalopathies (TSEs), is
resistant to degradation and can persist in the environment. Lichens,
mutualistic symbioses containing fungi, algae, bacteria and occasionally
cyanobacteria, are ubiquitous in the environment and have evolved unique
biological activities allowing their survival in challenging ecological niches.
We investigated PrPTSE inactivation by lichens and found acetone
extracts of three lichen species (Parmelia sulcata,
Cladonia rangiferina and Lobaria
pulmonaria) have the ability to degrade prion protein (PrP) from
TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and
protein misfolding cyclic amplification indicated at least two logs of
reductions in PrPTSE. Degradative activity was not found in closely
related lichen species or in algae or a cyanobacterium that inhabit lichens.
Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not
inhibitors of other proteases or enzymes. Additionally, we found that PrP levels
in PrPTSE-enriched preps or infected brain homogenates are also
reduced following exposure to freshly-collected P. sulcata or
an aqueous extract of the lichen. Our findings indicate that these lichen
extracts efficiently degrade PrPTSE and suggest that some lichens
could have potential to inactivate TSE infectivity on the landscape or be a
source for agents to degrade prions. Further work to clone and characterize the
protease, assess its effect on TSE infectivity and determine which organism or
organisms present in lichens produce or influence the protease activity is
warranted.
Collapse
Affiliation(s)
- Christopher J Johnson
- Prion Research Laboratory, United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | |
Collapse
|
19
|
Saunders SE, Yuan Q, Bartz JC, Bartelt-Hunt S. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions. PLoS One 2011; 6:e18752. [PMID: 21526178 PMCID: PMC3079715 DOI: 10.1371/journal.pone.0018752] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/17/2011] [Indexed: 11/18/2022] Open
Abstract
Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD) and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc)) adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS), sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA). Aging studies investigated PrP(Sc) desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less). Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.
Collapse
Affiliation(s)
- Samuel E. Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| | - Qi Yuan
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Prion sorption to soil is thought to play an important role in the transmission of scrapie and chronic wasting disease (CWD) via the environment. Sorption of PrP to soil and soil minerals is influenced by the strain and species of PrP(Sc) and by soil characteristics. However, the ability of soil-bound prions to convert PrP(c) to PrP(Sc) under these wide-ranging conditions remains poorly understood. We developed a semiquantitative protein misfolding cyclic amplification (PMCA) protocol to evaluate replication efficiency of soil-bound prions. Binding of the hyper (HY) strain of transmissible mink encephalopathy (TME) (hamster) prions to a silty clay loam soil yielded a greater-than-1-log decrease in PMCA replication efficiency with a corresponding 1.3-log reduction in titer. The increased binding of PrP(Sc) to soil over time corresponded with a decrease in PMCA replication efficiency. The PMCA efficiency of bound prions varied with soil type, where prions bound to clay and organic surfaces exhibited significantly lower replication efficiencies while prions bound to sand exhibited no apparent difference in replication efficiency compared to unbound controls. PMCA results from hamster and CWD agent-infected elk prions yielded similar findings. Given that PrP(Sc) adsorption affinity varies with soil type, the overall balance between prion adsorption affinity and replication efficiency for the dominant soil types of an area may be a significant determinant in the environmental transmission of prion diseases.
Collapse
|
21
|
Smith CB, Booth CJ, Pedersen JA. Fate of prions in soil: a review. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:449-461. [PMID: 21520752 PMCID: PMC3160281 DOI: 10.2134/jeq2010.0412] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prions are the etiological agents of transmissible spongiform encephalopathies (TSSEs), a class of fatal neurodegenerative diseases affecting humans and other mammals. The pathogenic prion protein is a misfolded form of the host-encoded prion protein and represents the predominant, if not sole, component of the infectious agent. Environmental routes of TSE transmission areimplicated in epizootics of sheep scrapie and chronic wasting disease (CWD) of deer, elk, and moose. Soil represents a plausible environmental reservoir of scrapie and CWD agents, which can persist in the environment for years. Attachment to soil particles likely influences the persistence and infectivity of prions in the environment. Effective methods to inactivate TSE agents in soil are currently lacking, and the effects of natural degradation mechanisms on TSE infectivity are largely unknown. An improved understanding of the processes affecting the mobility, persistence, and bioaviailability of prions in soil is needed for the management of TSE-contaminated environments.
Collapse
Affiliation(s)
- Christen B. Smith
- Environmental Chemistry and Technology Program, Univ. of Wisconsin, 1525 Observatory Dr., Madison, WI 53706
| | - Clarissa J. Booth
- Molecular and Environmental Toxicology Center, Univ. of Wisconsin, 1525 Observatory Dr., Madison, WI 53706
| | | |
Collapse
|