1
|
Saunders AC, Burch CR, Goldsmith CR. Towards gallium(III)-catalyzed aldehyde deformylation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Cao X, Song H, Li XX, Zhao Y, Qiao Q, Wang Y. Which is the real oxidant in the competitive ligand self-hydroxylation and substrate oxidation, a biomimetic iron(II)-hydroperoxo species or an oxo-iron(IV)-hydroxy one? Dalton Trans 2022; 51:7571-7580. [DOI: 10.1039/d2dt00797e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonheme iron(II)-hydroperoxo species (FeII-(η2-OOH)) 1 and the concomitant oxo-iron(IV)-hydroxyl one 2 are proposed as the key intermediates of a large class of 2-oxoglutarate dependent dioxygenases (e.g., isopenicillin N synthase). Extensive...
Collapse
|
3
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
Müller L, Baturin K, Hoof S, Lau C, Herwig C, Limberg C. The Properties of Hydrotris(3‐mesitylpyrazol‐1‐yl) Borate Iron(II) Complexes with Aryl Carboxylate Co‐ligands – Stabilization of an Iron(III) Alkylperoxide. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lars Müller
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Kirill Baturin
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Santina Hoof
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Caroline Lau
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
5
|
Park H, Lee D. Ligand Taxonomy for Bioinorganic Modeling of Dioxygen-Activating Non-Heme Iron Enzymes. Chemistry 2020; 26:5916-5926. [PMID: 31909506 DOI: 10.1002/chem.201904975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/04/2020] [Indexed: 12/15/2022]
Abstract
Novel functions emerge from novel structures. To develop efficient catalytic systems for challenging chemical transformations, chemists often seek inspirations from enzymatic catalysis. A large number of iron complexes supported by nitrogen-rich multidentate ligands have thus been developed to mimic oxo-transfer reactivity of dioxygen-activating metalloenzymes. Such efforts have significantly advanced our understanding of the reaction mechanisms by trapping key intermediates and elucidating their geometric and electronic properties. Critical to the success of this biomimetic approach is the design and synthesis of elaborate ligand systems to balance the thermodynamic stability, structural adaptability, and chemical reactivity. In this Concept article, representative design strategies for biomimetic atom-transfer chemistry are discussed from the perspectives of "ligand builders". Emphasis is placed on how the primary coordination sphere is constructed, and how it can be elaborated further by rational design for desired functions.
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
6
|
Application of 1,2,3-triazolylidene nickel complexes for the catalytic oxidation of n-octane. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. High‐Spin and Low‐Spin Perferryl Intermediates in Fe(PDP)‐Catalyzed Epoxidations. ChemCatChem 2019. [DOI: 10.1002/cctc.201900842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexandra M. Zima
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Oleg Y. Lyakin
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| |
Collapse
|
8
|
Iron(III)–salen ion catalyzed s-oxidation of l-cysteine and s-alkyl-l-cysteines by H2O2: Spectral, kinetic and electrochemical study. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Speciation in iron epoxidation catalysis: A perspective on the discovery and role of non-heme iron(III)-hydroperoxo species in iron-catalyzed oxidation reactions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J Am Chem Soc 2017; 139:10472-10485. [PMID: 28673082 PMCID: PMC5568637 DOI: 10.1021/jacs.7b05389] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
11
|
Kadwa E, Friedrich HB, Bala MD. Base metal Schiff base complexes applied as catalysts for the oxidation of n -octane. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Godhani DR, Nakum HD, Parmar DK, Mehta JP, Desai NC. Zeolite Y encaged Ru(III) and Fe(III) complexes for oxidation of styrene, cyclohexene, limonene, and α-pinene: An eye-catching impact of H2SO4 on product selectivity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Chakraborty B, Jana RD, Singh R, Paria S, Paine TK. Reductive Activation of O2 by Non-Heme Iron(II) Benzilate Complexes of N4 Ligands: Effect of Ligand Topology on the Reactivity of O2-Derived Oxidant. Inorg Chem 2016; 56:359-371. [DOI: 10.1021/acs.inorgchem.6b02282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Rahul Dev Jana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Reena Singh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sayantan Paria
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Sutherlin KD, Liu LV, Lee YM, Kwak Y, Yoda Y, Saito M, Kurokuzu M, Kobayashi Y, Seto M, Que L, Nam W, Solomon EI. Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites. J Am Chem Soc 2016; 138:14294-14302. [PMID: 27726349 DOI: 10.1021/jacs.6b07227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FeIII-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here, we present the NRVS spectra of side-on FeIII-peroxy and end-on FeIII-hydroperoxy model complexes and assign these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe-O-O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of FeIII-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.
Collapse
Affiliation(s)
- Kyle D Sutherlin
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Lei V Liu
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Yong-Min Lee
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Center for Biomimetic Systems, Ewha Womans University , Seoul 120-750, Korea
| | - Yeonju Kwak
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | - Makina Saito
- Research Reactor Institute, Kyoto University , Osaka 590-0494, Japan
| | - Masayuki Kurokuzu
- Research Reactor Institute, Kyoto University , Osaka 590-0494, Japan
| | | | - Makoto Seto
- Research Reactor Institute, Kyoto University , Osaka 590-0494, Japan
| | - Lawrence Que
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Wonwoo Nam
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Center for Biomimetic Systems, Ewha Womans University , Seoul 120-750, Korea
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States.,SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| |
Collapse
|
15
|
Zeolite-Y immobilized Metallo-ligand complexes: A novel heterogenous catalysts for selective oxidation. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Mncube SG, Bala MD. Recoverable aqueous-ionic liquid biphasic catalyst system for the oxidation of n-octane. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
de Sousa DP, Wegeberg C, Vad MS, Mørup S, Frandsen C, Donald WA, McKenzie CJ. Halogen-Bonding-Assisted Iodosylbenzene Activation by a Homogenous Iron Catalyst. Chemistry 2015; 22:3810-20. [DOI: 10.1002/chem.201503112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
- David P. de Sousa
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| | - Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| | - Mads Sørensen Vad
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| | - Steen Mørup
- Department of Physics; Technical University of Denmark; 2800 >Kongens Lyngby Denmark
| | - Cathrine Frandsen
- Department of Physics; Technical University of Denmark; 2800 >Kongens Lyngby Denmark
| | - William A. Donald
- School of Chemistry; University of New South Wales; Sydney, NSW Australia
| | - Christine J. McKenzie
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
18
|
Abstract
Mononuclear nonheme iron-oxygen species, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, are key intermediates involved in dioxygen activation and oxidation reactions catalyzed by nonheme iron enzymes. Because these iron-oxygen intermediates are short-lived due to their thermal instability and high reactivity, it is challenging to investigate their structural and spectroscopic properties and reactivity in the catalytic cycles of the enzymatic reactions themselves. One way to approach such problems is to synthesize biomimetic iron-oxygen complexes and to tune their geometric and electronic structures for structural characterization and reactivity studies. Indeed, a number of biologically important iron-oxygen species, such as mononuclear nonheme iron(III)-superoxo, iron(III)-peroxo, iron(III)-hydroperoxo, iron(IV)-oxo, and iron(V)-oxo complexes, were synthesized recently, and the first X-ray crystal structures of iron(III)-superoxo, iron(III)-peroxo, and iron(IV)-oxo complexes in nonheme iron models were successfully obtained. Thus, our understanding of iron-oxygen intermediates in biological reactions has been aided greatly from the studies of the structural and spectroscopic properties and the reactivities of the synthetic biomimetic analogues. In this Account, we describe our recent results on the synthesis and characterization of mononuclear nonheme iron-oxygen complexes bearing simple macrocyclic ligands, such as N-tetramethylated cyclam ligand (TMC) and tetraamido macrocyclic ligand (TAML). In the case of iron-superoxo complexes, an iron(III)-superoxo complex, [(TAML)Fe(III)(O2)](2-), is described, including its crystal structure and reactivities in electrophilic and nucleophilic oxidative reactions, and its properties are compared with those of a chromium(III)-superoxo complex, [(TMC)Cr(III)(O2)(Cl)](+), with respect to its reactivities in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions. In the case of iron-peroxo intermediates, an X-ray crystal structure of an iron(III)-peroxo complex binding the peroxo ligand in a side-on (η(2)) fashion, [(TMC)Fe(III)(O2)](+), is described. In addition, iron(III)-peroxo complexes binding redox-inactive metal ions are described and discussed in light of the role of redox-inactive metal ions in O-O bond activation in cytochrome c oxidase and O2-evolution in photosystem II. In the case of iron-hydroperoxo intermediates, mononuclear nonheme iron(III)-hydroperoxo complexes can be generated upon protonation of iron(III)-peroxo complexes or by hydrogen atom abstraction (HAA) of hydrocarbon C-H bonds by iron(III)-superoxo complexes. Reactivities of the iron(III)-hydroperoxo complexes in both electrophilic and nucleophilic oxidative reactions are described along with a discussion of O-O bond cleavage mechanisms. In the last section of this Account, a brief summary is presented of developments in mononuclear nonheme iron(IV)-oxo complexes since the first structurally characterized iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+), was reported. Although the field of nonheme iron-oxygen intermediates (e.g., Fe-O2, Fe-O2H, and Fe-O) has been developed greatly through intense synthetic, structural, spectroscopic, reactivity, and theoretical studies in the communities of bioinorganic and biomimetic chemistry over the past 10 years, there is still much to be explored in trapping, characterizing, and understanding the chemical properties of the key iron-oxygen intermediates involved in dioxygen activation and oxidation reactions by nonheme iron enzymes and their biomimetic compounds.
Collapse
Affiliation(s)
- Wonwoo Nam
- Department of Chemistry and
Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
19
|
Cook SA, Hill EA, Borovik AS. Lessons from Nature: A Bio-Inspired Approach to Molecular Design. Biochemistry 2015; 54:4167-80. [PMID: 26079379 DOI: 10.1021/acs.biochem.5b00249] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalloproteins contain actives sites with intricate structures that perform specific functions with high selectivity and efficiency. The complexity of these systems complicates the study of their function and the understanding of the properties that give rise to their reactivity. One approach that has contributed to the current level of understanding of their biological function is the study of synthetic constructs that mimic one or more aspects of the native metalloproteins. These systems allow individual contributions to the structure and function to be analyzed and also permit spectroscopic characterization of the metal cofactors without complications from the protein environment. This Current Topic is a review of synthetic constructs as probes for understanding the biological activation of small molecules. These topics are developed from the perspective of seminal molecular design breakthroughs from the past that provide the foundation for the systems used today.
Collapse
Affiliation(s)
- Sarah A Cook
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Ethan A Hill
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
20
|
Identification of a low-spin acylperoxoiron(III) intermediate in bio-inspired non-heme iron-catalysed oxidations. Nat Commun 2015; 5:3046. [PMID: 24429896 DOI: 10.1038/ncomms4046] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022] Open
Abstract
Synthetically useful hydrocarbon oxidations are catalysed by bio-inspired non-heme iron complexes using hydrogen peroxide as oxidant, and carboxylic acid addition enhances their selectivity and catalytic efficiency. Talsi has identified a low-intensity g=2.7 electron paramagnetic resonance signal in such catalytic systems and attributed it to an oxoiron(V)-carboxylate oxidant. Herein we report the use of Fe(II)(TPA*) (TPA*=tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) to generate this intermediate in 50% yield, and have characterized it by ultraviolet-visible, resonance Raman, Mössbauer and electrospray ionization mass spectrometric methods as a low-spin acylperoxoiron(III) species. Kinetic studies show that this intermediate is not itself the oxidant but decays via a unimolecular rate-determining step to unmask a powerful oxidant. The latter is shown by density functional theory calculations to be an oxoiron(V) species that oxidises substrate without a barrier. This study provides a mechanistic scenario for understanding catalyst reactivity and selectivity as well as a basis for improving catalyst design.
Collapse
|
21
|
|
22
|
Loukopoulos E, Berkoff B, Griffiths K, Keeble V, Dokorou VN, Tsipis AC, Escuer A, Kostakis GE. Cobalt(ii/iii), nickel(ii) and copper(ii) coordination clusters employing a monoanionic Schiff base ligand: synthetic, topological and computational mechanistic aspects. CrystEngComm 2015. [DOI: 10.1039/c5ce01294e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nine coordination clusters (M = CoII/III, NiII, CuII) using a monoanionic Schiff base ligand were synthesized and characterized. A series of transformations occur in the ligand in certain compounds.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton BN1 9QJ, UK
| | - Benjamin Berkoff
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton BN1 9QJ, UK
| | - Kieran Griffiths
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton BN1 9QJ, UK
| | - Victoria Keeble
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton BN1 9QJ, UK
| | - Vassiliki N. Dokorou
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton BN1 9QJ, UK
| | - Athanassios C. Tsipis
- Laboratory of Inorganic and General Chemistry
- Department of Chemistry
- University of Ioannina
- 451 10 Ioannina, Greece
| | - Albert Escuer
- Departamento de Quimica Inorganica
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - George E. Kostakis
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton BN1 9QJ, UK
| |
Collapse
|
23
|
|
24
|
Hammond C, Hermans I, Dimitratos N. Biomimetic Oxidation with Fe-ZSM-5 and H2O2? Identification of an Active, Extra-Framework Binuclear Core and an FeIIIOOH Intermediate with Resonance-Enhanced Raman Spectroscopy. ChemCatChem 2014. [DOI: 10.1002/cctc.201402642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Iyer SR, Javadi MM, Feng Y, Hyun MY, Oloo WN, Kim C, Que L. A chameleon catalyst for nonheme iron-promoted olefin oxidation. Chem Commun (Camb) 2014; 50:13777-80. [DOI: 10.1039/c4cc06164k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Bang S, Park S, Lee YM, Hong S, Cho KB, Nam W. Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Bang S, Park S, Lee YM, Hong S, Cho KB, Nam W. Demonstration of the heterolytic O-O bond cleavage of putative nonheme iron(II)-OOH(R) complexes for Fenton and enzymatic reactions. Angew Chem Int Ed Engl 2014; 53:7843-7. [PMID: 24916304 DOI: 10.1002/anie.201404556] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/13/2014] [Indexed: 01/06/2023]
Abstract
One-electron reduction of mononuclear nonheme iron(III) hydroperoxo (Fe(III)-OOH) and iron(III) alkylperoxo (Fe(III)-OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one-electron reduced iron(II) (hydro/alkyl)peroxo species is the rate-determining step, followed by the heterolytic O-O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O-O bond-cleavage mechanism. The present results provide the first example showing the one-electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O-O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.
Collapse
Affiliation(s)
- Suhee Bang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea)
| | | | | | | | | | | |
Collapse
|
28
|
Zhang Q, Goldsmith CR. Kinetic Analysis of the Formation and Decay of a Non-Heme Ferric Hydroperoxide Species Susceptible to O–O Bond Homolysis. Inorg Chem 2014; 53:5206-11. [DOI: 10.1021/ic5003786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiao Zhang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
29
|
Hong S, Lee YM, Cho KB, Seo MS, Song D, Yoon J, Garcia-Serres R, Clémancey M, Ogura T, Shin W, Latour JM, Nam W. Conversion of high-spin iron(iii)–alkylperoxo to iron(iv)–oxo species via O–O bond homolysis in nonheme iron models. Chem Sci 2014. [DOI: 10.1039/c3sc52236a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Zhang Q, Gorden JD, Goldsmith CR. C–H Oxidation by H2O2 and O2 Catalyzed by a Non-Heme Iron Complex with a Sterically Encumbered Tetradentate N-Donor Ligand. Inorg Chem 2013; 52:13546-54. [DOI: 10.1021/ic402501k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qiao Zhang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
31
|
Yu WF, Meng XG, Peng X, Li XH, Liu Y. Selective oxidation of Mandelic acids catalyzed by copper (II) complexes. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Li F, Van Heuvelen KM, Meier KK, Münck E, Que L. Sc3+-triggered oxoiron(IV) formation from O2 and its non-heme iron(II) precursor via a Sc3+-peroxo-Fe3+ intermediate. J Am Chem Soc 2013; 135:10198-201. [PMID: 23802702 PMCID: PMC3760346 DOI: 10.1021/ja402645y] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that redox-inactive Sc(3+) can trigger O2 activation by the Fe(II)(TMC) center (TMC = tetramethylcyclam) to generate the corresponding oxoiron(IV) complex in the presence of BPh4(-) as an electron donor. To model a possible intermediate in the above reaction, we generated an unprecedented Sc(3+) adduct of [Fe(III)(η(2)-O2)(TMC)](+) by an alternative route, which was found to have an Fe(3+)-(μ-η(2):η(2)-peroxo)-Sc(3+) core and to convert to the oxoiron(IV) complex. These results have important implications for the role a Lewis acid can play in facilitating O-O bond cleavage during the course of O2 activation at non-heme iron centers.
Collapse
Affiliation(s)
- Feifei Li
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Katherine M. Van Heuvelen
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Katlyn K. Meier
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
33
|
Kim YM, Cho KB, Cho J, Wang B, Li C, Shaik S, Nam W. A mononuclear non-heme high-spin iron(III)-hydroperoxo complex as an active oxidant in sulfoxidation reactions. J Am Chem Soc 2013; 135:8838-41. [PMID: 23721290 DOI: 10.1021/ja404152q] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first direct experimental evidence showing that a high-spin iron(III)-hydroperoxo complex bearing an N-methylated cyclam ligand can oxidize thioanisoles. DFT calculations showed that the reaction pathway involves heterolytic O-O bond cleavage and that the choice of the heterolytic pathway versus the homolytic pathway is dependent on the spin state and the number of electrons in the d(xz) orbital of the Fe(III)-OOH species.
Collapse
Affiliation(s)
- Yun Mi Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Thibon A, Karmazin‐Brelot L, Mandon D. Coordination Versatility and Amide Shift in Mononuclear Fe
II
Complexes with the Asymmetrical Tripod [(6‐Bromo‐2‐pyridyl)methyl][(6‐pivaloylamido‐2‐pyridyl)methyl](2‐pyridylmethyl)amine (BrMPPA). Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aurore Thibon
- Laboratoire de Chimie Biomimétique des Métaux de Transition, UMR CNRS 7177, Institut de Chimie de Strasbourg, Université de Strasbourg, Bâtiment Le Bel, 4 Rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France, Fax: +33‐3‐68851438, http://institut‐chimie.unistra.fr/
| | - Lydia Karmazin‐Brelot
- Service de Radiocristallographie, UMR CNRS no. 7177, Institut de Chimie de Strasbourg et Université de Strasbourg, 1, rue Blaise Pascal, BP 296/R8, 67008 Strasbourg Cedex, France
| | - Dominique Mandon
- Laboratoire de Chimie Biomimétique des Métaux de Transition, UMR CNRS 7177, Institut de Chimie de Strasbourg, Université de Strasbourg, Bâtiment Le Bel, 4 Rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France, Fax: +33‐3‐68851438, http://institut‐chimie.unistra.fr/
| |
Collapse
|
35
|
Saad FA, Knight JC, Kariuki BM, Amoroso AJ. Co-ordinative properties of a tripodal trisamide ligand with a capped octahedral preference. Dalton Trans 2013; 42:14826-35. [DOI: 10.1039/c3dt51791h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Intrinsic properties and reactivities of mononuclear nonheme iron–oxygen complexes bearing the tetramethylcyclam ligand. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Sickerman NS, Park YJ, Ng GKY, Bates JE, Hilkert M, Ziller JW, Furche F, Borovik AS. Synthesis, structure, and physical properties for a series of trigonal bipyramidal M(II)-Cl complexes with intramolecular hydrogen bonds. Dalton Trans 2012; 41:4358-64. [PMID: 22334366 PMCID: PMC3777263 DOI: 10.1039/c2dt12244h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of transition metal chloro complexes with the tetradentate tripodal tris(2-amino-oxazoline)amine ligand (TAO) have been synthesized and characterized. X-Ray structural analyses of these compounds demonstrate the formation of the mononuclear complexes [M(II)(TAO)(Cl)](+), where M(II) = Cr, Mn, Fe, Co, Ni, Cu and Zn. These complexes exhibit distorted trigonal-bipyramidal geometry, coordinating the metal through an apical tertiary amine, three equatorial imino nitrogen atoms, and an axial chloride anion. All the complexes possess an intramolecular hydrogen-bonding (H-bonding) network within the cavity occupied by the metal-bound chloride ion. The metal-chloride bond distances are atypically long, which is attributed to the effects of the H-bonding network. Nuclear magnetic resonance (NMR) spectroscopy of the Zn complex suggests that the solid-state structures are representative of that observed in solution, and that the H-bonding interactions persist as well. Additionally, density functional theory (DFT) calculations were carried out to probe the electronic structures of the complexes.
Collapse
Affiliation(s)
- Nathaniel S Sickerman
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Matsumoto J, Suzuki T, Kajita Y, Masuda H. Synthesis and characterization of cobalt(II) complexes with tripodal polypyridine ligand bearing pivalamide groups. Selective formation of six- and seven-coordinate cobalt(II) complexes. Dalton Trans 2012; 41:4107-17. [PMID: 22301678 DOI: 10.1039/c2dt12056a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reactions of CoX(2) (X = Cl(-), Br(-), I(-) and ClO(4)(-)) with the tripodal polypyridine N(4)O(2)-type ligand bearing pivalamide groups, bis(6-(pivalamide-2-pyridyl)methyl)(2-pyridylmethyl)amine ligand (H(2)BPPA), afforded two types of Co(II) complexes as follows. One type is purple-coloured Co(II) complexes, [CoCl(2)(H(2)BPPA)] (1(Cl)) and [CoBr(2)(H(2)BPPA)] (1(Br)) which were prepared when X = Cl(-) and Br(-), respectively. The other type is pale pink-coloured Co(II) complexes, [Co(MeOH)(H(2)BPPA)](ClO(4)(-))(2) (2·(ClO(4)(-))(2)) and [Co(MeCN)(H(2)BPPA)](I(-))(2) (2·(I(-))(2)), which were obtained when X = I(-) and ClO(4)(-), respectively. From the reaction of 1(Cl) and NaN(3), a purple-coloured complex, [Co(N(3))(2)(H(2)BPPA)] (1(azide)), was obtained. These Co(II) complexes were characterized by X-ray structural analysis, IR and reflectance spectroscopies, and magnetic susceptibility measurements. All these Co(II) complexes were shown to be in a d(7) high-spin state based on magnetic susceptibility measurements. The former Co(II) complexes revealed a six-coordinate octahedron with one amine nitrogen, three pyridyl nitrogens, and two counter anions, and one coordinated anion, Cl(-), Br(-) and N(3)(-), forming intramolecular hydrogen bonds with two pivalamide N-H groups. On the other hand, the latter Co(II) complexes showed a seven-coordinate face-capped octahedron with one amine nitrogen, three pyridyl nitrogens, two pivalamide carbonyl oxygens and MeCN or MeOH. In these structures, intramolecular hydrogen bonding interaction was not observed, and the metal ion was coordinated by the pivalamide carbonyl oxygens and solvent molecule instead of the counter anions. The difference in coordination geometries might be attributable to the coordination ability and ionic radii of the counteranions; smaller strongly binding anions such as Cl(-), Br(-) and N(3)(-) gave the former complexes, whereas bulky weakly binding anions such as I(-) and ClO(4)(-) afforded the latter ones. In order to demonstrate this hypothesis, the small stronger coordinating ligand, azide, was added to complexes 2·(ClO(4)(-))(2) to obtain the dinuclear cobalt(II) complex in which two six-coordinate octahedral cobalt(II) species were bridged with azide, 3·(ClO(4)(-)). Also, the abstraction reaction of halogen anions from complexes 1(Cl) by AgSbF(6) gave a pale pink Co(II) complex assignable to 2·(SbF(6)(-))(2).
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | | | | | | |
Collapse
|
39
|
Thibon A, Jollet V, Ribal C, Sénéchal-David K, Billon L, Sorokin AB, Banse F. Hydroxylation of Aromatics with the Help of a Non-Haem FeOOH: A Mechanistic Study under Single-Turnover and Catalytic Conditions. Chemistry 2012; 18:2715-24. [DOI: 10.1002/chem.201102252] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Indexed: 11/12/2022]
|
40
|
Ibrahim M, Kincaid JR. Spectroscopic studies of peroxo/hydroperoxo derivatives of heme proteins and model compounds. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The spectroscopic characterization of peroxo- and hydroperoxo- intermediates of heme proteins and enzymes has long interested scientists studying the structure and function of these important biochemical systems. Until very recently, little progress had been made in studying these fleeting intermediates by vibrational spectroscopic methods. In this brief review, recent studies reporting the Resonance Raman and Infrared spectra of such intermediates and pertinent model compounds are reviewed and compared to corresponding studies utilizing electronic absorption and electron paramagnetic resonance spectrometric methods.
Collapse
Affiliation(s)
- Mohammed Ibrahim
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA
| | - James R. Kincaid
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
41
|
He Y, Goldsmith CR. Observation of a ferric hydroperoxide complex during the non-heme iron catalysed oxidation of alkenes and alkanes by O2. Chem Commun (Camb) 2012; 48:10532-4. [DOI: 10.1039/c2cc34634f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Cho J, Jeon S, Wilson SA, Liu LV, Kang EA, Braymer JJ, Lim MH, Hedman B, Hodgson KO, Valentine JS, Solomon EI, Nam W. Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex. Nature 2011; 478:502-5. [PMID: 22031443 DOI: 10.1038/nature10535] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/05/2011] [Indexed: 12/23/2022]
Abstract
Oxygen-containing mononuclear iron species--iron(III)-peroxo, iron(III)-hydroperoxo and iron(IV)-oxo--are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes. It has been difficult to generate synthetic analogues of these three active iron-oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)-peroxo complex, [Fe(III)(TMC)(OO)](+). We also report a series of chemical reactions in which this iron(III)-peroxo complex is cleanly converted to the iron(III)-hydroperoxo complex, [Fe(III)(TMC)(OOH)](2+), via a short-lived intermediate on protonation. This iron(III)-hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)](2+), via homolytic O-O bond cleavage of the iron(III)-hydroperoxo species. All three of these iron species--the three most biologically relevant iron-oxygen intermediates--have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)-hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)-oxo complex in C-H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)-hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes.
Collapse
Affiliation(s)
- Jaeheung Cho
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li F, Meier KK, Cranswick MA, Chakrabarti M, Van Heuvelen KM, Münck E, Que L. Characterization of a high-spin non-heme Fe(III)-OOH intermediate and its quantitative conversion to an Fe(IV)═O complex. J Am Chem Soc 2011; 133:7256-9. [PMID: 21517091 DOI: 10.1021/ja111742z] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted.
Collapse
Affiliation(s)
- Feifei Li
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Jaafar H, Vileno B, Thibon A, Mandon D. Tuning the conversion of cyclohexane into cyclohexanol/one by molecular dioxygen, protons and reducing agents at a single non-porphyrinic iron centre and chemical versatility of the tris(2-pyridylmethyl)amine TPAFeIICl2complex in mild oxidation chemistry. Dalton Trans 2011; 40:92-106. [DOI: 10.1039/c0dt00756k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Mandon D, Jaafar H, Thibon A. Exploring the oxygen sensitivity of FeCl2 complexes with tris(2-pyridylmethyl)amine-type ligands: O2 coordination and a quest for superoxide. NEW J CHEM 2011. [DOI: 10.1039/c1nj20283a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Oldenburg PD, Feng Y, Pryjomska-Ray I, Ness D, Que L. Olefin Cis-Dihydroxylation with Bio-Inspired Iron Catalysts. Evidence for an FeII/FeIV Catalytic Cycle. J Am Chem Soc 2010; 132:17713-23. [DOI: 10.1021/ja1021014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul D. Oldenburg
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yan Feng
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Iweta Pryjomska-Ray
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel Ness
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
47
|
Park YJ, Sickerman NS, Ziller JW, Borovik A. Utilizing tautomerization of 2-amino-oxazoline in hydrogen bonding tripodal ligands. Chem Commun (Camb) 2010; 46:2584-6. [PMID: 20449315 PMCID: PMC3777267 DOI: 10.1039/c000160k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A tetradentate tripodal ligand containing 2-amino-oxazoline moieties has been developed. This system tautomerizes upon chelation of a metal ion, forming a flexible cavity capable of accommodating ligands via an intramolecular hydrogen bonding network.
Collapse
Affiliation(s)
- Young Jun Park
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| | - Nathaniel S. Sickerman
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| | - Joseph W. Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| | - A.S. Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| |
Collapse
|
48
|
Shook RL, Borovik A. Role of the secondary coordination sphere in metal-mediated dioxygen activation. Inorg Chem 2010; 49:3646-60. [PMID: 20380466 PMCID: PMC3417154 DOI: 10.1021/ic901550k] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alfred Werner proposed nearly 100 years ago that the secondary coordination sphere has a role in determining the physical properties of transition-metal complexes. We now know that the secondary coordination sphere impacts nearly all aspects of transition-metal chemistry, including the reactivity and selectivity in metal-mediated processes. These features are highlighted in the binding and activation of dioxygen by transition-metal complexes. There are clear connections between control of the secondary coordination sphere and the ability of metal complexes to (1) reversibly bind dioxygen or (2) bind and activate dioxygen to form highly reactive metal-oxo complexes. In this Forum Article, several biological and synthetic examples are presented and discussed in terms of structure-function relationships. Particular emphasis is given to systems with defined noncovalent interactions, such as intramolecular H-bonds involving dioxygen-derived ligands. To further illustrate these effects, the homolytic cleavage of C-H bonds by metal-oxo complexes with basic oxo ligands is described.
Collapse
Affiliation(s)
- Ryan L. Shook
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025
| | - A.S. Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025
| |
Collapse
|
49
|
Superoxide interaction with nickel and iron superoxide dismutases. J Mol Graph Model 2009; 28:156-61. [DOI: 10.1016/j.jmgm.2009.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/22/2022]
|
50
|
|