1
|
Ziółkowska A, Witwicki M. Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes. Int J Mol Sci 2023; 24:ijms24044001. [PMID: 36835412 PMCID: PMC9959031 DOI: 10.3390/ijms24044001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The exchange coupling, represented by the J parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-283 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
2
|
Gracia J. Spin dependent interactions catalyse the oxygen electrochemistry. Phys Chem Chem Phys 2017; 19:20451-20456. [PMID: 28745744 DOI: 10.1039/c7cp04289b] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The technological interest of oxygen reduction and evolution reactions, ORR and OER, for the clean use and storage of energy has resulted in the discovery of multiple catalysts; and the physical and catalytic properties of the most active compositions are only comprehensible with the consideration of magnetic interactions.
Collapse
Affiliation(s)
- J. Gracia
- SynCat@Beijing
- Synfuels China Technology Co. Ltd
- Beijing
- China
- SynCat@Differ
| |
Collapse
|
3
|
Guo D, Knight TE, McCusker JK. Angular Momentum Conservation in Dipolar Energy Transfer. Science 2011; 334:1684-7. [DOI: 10.1126/science.1211459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Yoon ZS, Chan YT, Li S, Newkome GR, Goodson T. Ultrafast Time-Resolved Spectroscopy of Self-Assembled Cyclic Fe(II)−Bisterpyridine Complexes. J Phys Chem B 2010; 114:11731-6. [DOI: 10.1021/jp104836k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zin Seok Yoon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - Yi-Tsu Chan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - Sinan Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - George R. Newkome
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, University of Akron, Akron, Ohio 44325
| |
Collapse
|
5
|
Soler M, McCusker JK. Distinguishing between Dexter and Rapid Sequential Electron Transfer in Covalently Linked Donor−Acceptor Assemblies. J Am Chem Soc 2008; 130:4708-24. [DOI: 10.1021/ja077096i] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monica Soler
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - James K. McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
6
|
Liu JQ, Wang YY, Ma LF, Zhang WH, Zeng XR, Zhong F, Shi QZ, Peng SM. Three new supramolecular networks formed via hydrogen bonding interactions: Syntheses, crystal structures and magnetic properties. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.06.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Guo D, McCusker JK. Spin exchange effects on the physicochemical properties of tetraoxolene-bridged bimetallic complexes. Inorg Chem 2007; 46:3257-74. [PMID: 17371015 DOI: 10.1021/ic070005y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, physical, and spectroscopic properties of a series of metal complexes bridged by the redox-active chloranilate ligand are described. Compounds containing the (CAcat,cat)4- ligand, where (CAcat,cat)4- represents the fully reduced aromatic form of chloranilate, have been prepared by two different routes from H2CA and H4CA starting materials; the corresponding (CAsq,cat)3- analogue was obtained by one-electron oxidation with decamethylferrocenium tetrafluoroborate. Homo- and heterobimetallic complexes containing CrIII and GaIII with chloranilate have been prepared, yielding the following six complexes: [Ga2(tren)2(CAcat,cat)](BPh4)2 (1), [Ga2(tren)2(CAsq,cat)](BPh4)2(BF4) (2), [GaCr(tren)2(CAcat,cat)](BPh4)2 (3), [GaCr(tren)2(CAsq,cat)](BPh4)2(BF4) (4), [Cr2(tren)2(CAcat,cat)] (BPh4)2 (5), and [Cr2(tren)2(CAsq,cat)](BPh4)2(BF4) (6) (where tren is tris(2-aminoethyl)amine). Single-crystal X-ray structures have been obtained for complexes 1, 3, and 5; nearly identical C-C bond distances within the quinoidal ligand confirm the aromatic character of the bridge in each case. Complex 2 exhibits a temperature-independent magnetic moment of microeff = 1.64 +/- 0.04 microB in the solid state between 4 and 350 K, consistent with the CAsq,cat formulation of the ligand and an S = 1/2 ground state for complex 2. Complex 3 exhibits a value of microeff = 3.44 +/- 0.09 microB that is also temperature-independent, indicating an S = 3/2 ground state. Complexes 4-6 are all influenced by Heisenberg spin exchange. The temperature-independent behavior of complexes 4 and 6 indicate the presence of strong antiferromagnetic exchange between the CrIII and the (sq,cat) bridging radical yielding well-isolated ground states of S = 1 and 5/2 for 4 and 6, respectively. In contrast, complex 5 exhibits a weak intramolecular antiferromagnetic exchange interaction between the two CrIII centers (J = -2 cm-1 for H = -2Jŝ1.ŝ2) via superexchange through the diamagnetic CAcat,cat bridge. The absorption spectra of the CAsq,cat-containing complexes exhibit a number of sharp, relatively intense features in fluid solution. Group theoretical arguments coupled with a qualitative ligand-field analysis including the effects of Heisenberg spin exchange suggest that several of the observed transitions are a consequence of exchange interactions in both the ground- and excited-state manifolds of the compounds.
Collapse
Affiliation(s)
- Dong Guo
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
8
|
Esmeraldo M, Gonçalves N, Rios M, Mele G, Vasconcellos L, Mazzetto S. Thermal and photochemical behavior of trans-ruthenium(II) dichloride tetraphosphite complexes. J Photochem Photobiol A Chem 2006. [DOI: 10.1016/j.jphotochem.2006.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Jullien J, Juhász G, Mialane P, Dumas E, Mayer CR, Marrot J, Rivière E, Bominaar EL, Münck E, Sécheresse F. Structure and Magnetic Properties of a Non-Heme Diiron Complex Singly Bridged by a Hydroxo Group. Inorg Chem 2006; 45:6922-7. [PMID: 16903750 DOI: 10.1021/ic0604009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of the first singly bridged non-heme diiron complex with a mu-hydroxo bridging ligand, [{(salten)Fe}2(OH)][B(C6H5)4].(CH3CN)x.(H2O)y (1) [H2salten = 4-azaheptane-1,7-bis(salicylideneiminate)], is reported. The complex has been characterized with X-ray crystallography, FTIR, magnetic susceptibility measurements, and Mössbauer spectroscopy. The data have been compared with the results of DFT calculations on both 1 and a model with an unsupported mu-oxo bridge (2) to verify the formulation of the complex as a mu-hydroxo-bridged species. The X-ray structure [Fe-O(H) = 1.997(1) A and Fe-O(H)-Fe = 159 degrees ] is consistent with the DFT-optimized geometry of 1 [Fe-O(H) = 2.02 A and Fe-O(H)-Fe = 151 degrees ]; the Fe-O(H) distance in 1 is about 0.2 A longer than the Fe-O separations in the optimized geometry of 2 (1.84 A) and in the crystallographic structures of diiron(III) compounds with unsupported mu-oxo bridges (1.77-1.81 A). The formulation of 1 as a hydroxo-bridged compound is also supported by the presence of an O-H stretch band in the FTIR spectrum of the complex. The magnetic susceptibility measurements of 1 reveal antiferromagnetic exchange (J = 42 cm(-1) and H(ex) = JS(1).S(2)). Nearly the same J value is obtained by analyzing the temperature dependence of the Mössbauer spectra (J = 43 cm(-1); other parameters: delta = 0.49 mm s(-1), DeltaE(Q) = -0.97 mm s(-1), and eta = 0.45 at 4.2 K). The experimental J values and Mössbauer parameters agree very well with those obtained from DFT calculations for the mu-hydroxo-bridged compound (J = 46 cm(-1), delta = 0.48 mm s(-1), DeltaE(Q) = -1.09 mm s(-1), and eta = 0.35). The exchange coupling constant in 1 is distinctly different from the value J approximately 200 cm(-1) calculated for the optimized mu-oxo-bridged species, 2. The increased exchange-coupling in 2 arises primarily from a decrease in the Fe-O bond length.
Collapse
Affiliation(s)
- Josseline Jullien
- Institut Lavoisier de Versailles, UMR-CNRS 8180, University of Versailles, 78035 Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gutkina EA, Trukhan VM, Pierpont CG, Mkoyan S, Strelets VV, Nordlander E, Shteinman AA. Tetranuclear iron(iii) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Dalton Trans 2006:492-501. [PMID: 16395449 DOI: 10.1039/b512069a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the octadentate ligand 2,6-bis{3-[N,N-di(2-pyridylmethyl)amino]propoxy}benzoic acid (LH) with Fe(ClO4)3 leads to the formation of the tetranuclear complexes [Fe4(mu-O)2(LH)2(ClCH2-CO2)4](ClO4)4 (1), [{Fe2(mu-O)L(R-CO2)}2](ClO4)4 (2 R = C6H5-, 3 R = CH3-, 4, R = ClCH2-). The crystal structures of complexes 1 and 2 reveal that they consist of two Fe(III)2(mu-O)(mu-RCO2)2 cores that are linked via the two LH/L ligands to give a "dimer of dimers" structure. Complex assumes a helical shape, with protonated carboxylic acid moieties of the two ligands forming a hydrogen-bonded pair at the center of the cation. In complexes 2, 3 and 4, central carboxylates of the two ligands bridge the iron ions in each of the two Fe2O units, with an interdimer iron-iron separation of approximately 10 A and an intradimer separation of approximately 3.1 A. The second carboxylate bridge within the Fe2O units is defined by exogenous benzoate (2), acetate (3) or chloroacetate (4) ligands. The aqua complex [{Fe2(mu-O)L(H2O)2}2](ClO4)6 (5) is proposed to have a similar structure, but with the exogenous bridging carboxylates replaced by two terminal water ligands. These complexes exhibit electronic and Mössbauer spectral features that are similar to those of (mu-oxo)diiron(III) proteins as well as other related (mu-oxo)bis(mu-carboxylato)diiron(III) complexes. This similarity shows that these properties are not significantly affected by the nature of the bridging exogenous carboxylate, and that the octadentate framework ligand is essential in stabilizing the "dimer of dimers" structure. This structural feature remains in highly diluted solution (10(-5) M) as evidenced by electrospray ionization mass-spectroscopy (ES MS). Cyclic voltammetric studies of complexes 2 and 5 showed two irreversible two-electron reductions, indicating that the two Fe2O units of the tetranuclear complexes behave as distinct redox entities. Complexes 2, 3 and, especially, the aqua complex 5 are active alkane oxidation catalysts. Catalytic reactions carried out with alkane substrate molecules and hydrogen peroxide predominantly gave alcohols. High stereospecificity in the oxidation of cis-1,2-dimethylcyclohexane supports the metal-based molecular mechanism of O-insertion into C-H bonds postulated for non-heme iron enzymes such as methane monooxygenase.
Collapse
Affiliation(s)
- Elena A Gutkina
- Institute of Problems of Chemical Physics, 142432, Chernogolovka, Moscow district, Russia
| | | | | | | | | | | | | |
Collapse
|
11
|
Picraux LB, Smeigh AL, Guo D, McCusker JK. Intramolecular Energy Transfer Involving Heisenberg Spin-Coupled Dinuclear Iron−Oxo Complexes. Inorg Chem 2005; 44:7846-59. [PMID: 16241134 DOI: 10.1021/ic0506761] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, structure, and physical properties of a series of oxo-bridged dinuclear Fe(III) complexes containing pendant naphthalene groups are described. The compounds [Fe(2)O(O(2)CCH(2)-C(10)H(7))(tren)(2)](BPh(4))(NO(3))(2) (8), [Fe(2)O(O(2)CCH(2)-C(10)H(7))(TPA)(2)](ClO(4))(3) (9), Fe(2)O(O(2)CCH(2)-C(10)H(7))(2)(Tp)(2) (10), and Fe(2)O((O(2)CCH(2)CH(2))(2)-C(10)H(6))(Tp)(2) (11) (where tren is tris(2-aminoethyl)amine, TPA is tris(2-pyridyl)amine, and Tp is hydrotrispyrazolylborate) have been characterized in terms of their structural, spectroscopic, magnetic, and photophysical properties. All four complexes exhibit moderately strong intramolecular antiferromagnetic exchange between the high-spin ferric ions (ca. -130 cm(-)(1) for H = -2JS(1).S(2)). Room-temperature steady-state emission spectra for compounds 8-11 in deoxygenated CH(3)CN solution reveal spectral profiles similar to methyl-2-naphthyl acetate and [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) (13, where TACN-Me(3) is N,N,N-1,4,7-trimethyltriazacyclononane) but are significantly weaker in intensity relative to these latter two compounds. Time-resolved emission data for the iron complexes following excitation at 280 nm can be fit to simple exponential decay models with tau(obs)(S)()1 = 36 +/- 2, 32 +/- 4, 30 +/- 5, and 39 +/- 3 ns for compounds 8-11, respectively. The decays are assigned to the S(1) --> S(0) fluorescence of naphthalene; all of the lifetimes are less than that of the zinc model complex (tau(obs)(S)()1 = 45 +/- 2 ns), indicating quenching of the S(1) state by the iron-oxo core. Nanosecond time-resolved absorption data on [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4)) reveal a feature at lambda(max) = 420 nm that can be assigned as the T(1) --> T(n) absorption of the naphthalene triplet; the rise time of 50 +/- 10 ns corresponds to an intersystem crossing rate of 2 x 10(7) s(-1). A similar feature (though much weaker in intensity) is also observed for compound 8. The order-of-magnitude reduction in the T(1) lifetime of the pendant naphthalene for all of the iron-oxo complexes (tau(obs)(T)1 = 5 +/- 2 micros vs 90 +/- 10 micros for [Zn(2)(OH)(O(2)CCH(2)-C(10)H(7))(2)(TACN-Me(3))(2)](ClO(4))) indicates quenching of the naphthalene triplet with an efficiency of >90%. Neither the naphthalene radical cation nor the reduced Fe(II)Fe(III) species were observed by transient absorption spectroscopy, implying that energy transfer is the most likely origin for the quenching of both the S(1) and T(1) states. Spectral overlap considerations strongly support a Förster (i.e., dipolar) mechanism for energy transfer from the S(1) state, whereas the lack of phosphorescence from either the free naphthyl ester or the Zn model complex suggests Dexter transfer to the diiron(III) core as the principal mechanism of triplet quenching. The notion of whether spin exchange within the diiron(III) core is in part responsible for the unusual ability of the iron-oxo core to engage in energy transfer from both the singlet and triplet manifolds of naphthalene is discussed.
Collapse
Affiliation(s)
- Laura B Picraux
- Department of Chemistry, Michigan State University, East Lansing, 48824, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Shultz DA, Fico RM, Bodnar SH, Kumar RK, Vostrikova KE, Kampf JW, Boyle PD. Trends in exchange coupling for trimethylenemethane-type Bis(semiquinone) biradicals and correlation of magnetic exchange with mixed valency for cross-conjugated systems. J Am Chem Soc 2003; 125:11761-71. [PMID: 13129381 DOI: 10.1021/ja0367849] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A magnetostructural correlation (conformational electron spin exchange modulation) within an isostructural series of biradical complexes is presented. X-ray crystal structures, variable-temperature electron paramagnetic resonance spectroscopy, zero-field splitting parameters, and variable-temperature magnetic susceptibility measurements were used to evaluate molecular conformation and electron spin exchange coupling in this series of molecules. Our combined results indicate that the ferromagnetic portion of the exchange couplings occurs via the cross-conjugated pi-systems, while the antiferromagnetic portion occurs through space and is equivalent to incipient bond formation. Thus, molecular conformation controls the relative amounts of ferro- and antiferromagnetic contributions to exchange coupling. In fact, the exchange parameter correlates with average semiquinone ring torsion angles via a Karplus-Conroy-type relation. Because of the natural connection between electron spin exchange coupling and electronic coupling related to electron transfer, we also correlate the exchange parameters in the biradical complexes to mixed valency in the corresponding quinone-semiquinone radical anions. Our results suggest that delocalization in the cross-conjugated, mixed-valent radical anions is proportional to the ferromagnetic contribution to the exchange coupling in the biradical oxidation states.
Collapse
Affiliation(s)
- David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Picraux LB, Weldon BT, McCusker JK. Intramolecular excimer formation in a naphthalene-appended dinuclear iron-oxo complex. Inorg Chem 2003; 42:273-82. [PMID: 12693207 DOI: 10.1021/ic026054m] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis, structure, and physical properties of a Heisenberg exchange-coupled cluster containing naphthalene groups are described. [Fe2(O)(O2CCH2C10H7)2(TACN-Me3)2]2+ (3) crystallizes in space group P1 with unit cell parameters a = 12.94(2) A, b = 14.84(2) A, c = 15.23(2) A, alpha = 101.12(7) degrees, beta = 90.8(1) degrees, gamma = 114.14(7) degrees, V = 2605(6) A3, and Z = 2 with R = 0.0425 and wR2 = 0.1182. Variable-temperature magnetic susceptibility data indicate that the two high-spin FeIII centers are antiferromagnetically coupled with J = -105 cm-1 (H = -2 JS1.S2), which is typical for this class of compounds. The room-temperature static emission spectrum of the compound in deoxygenated CH3CN solution is centered near 335 nm and has features reminiscent of both methyl-2-naphthylacetate (1) and [Zn2(OH)(O2CCH2C10H7)2(TACN-Me3)2]+ (2) with the following two caveats: (1) the overall emission intensity is roughly a factor of 10 less than that of the free ester (1, phi = 0.13) or the ZnII analogue (2, phi = 0.14), and (2) there is significant broadening of the low-energy shoulder of the emission envelope. Time-correlated single photon counting data revealed biphasic emission for 3 with tau 1 = 4.6 +/- 1 ns and tau 2 = 47 +/- 1 ns. The latter compares favorably with that found for 2 (tau = 47 +/- 1 ns) and is assigned as the S0-S1 fluorescence of naphthalene. Emission anisotropy, time-gated emission spectra, and nanosecond time-resolved absorption measurements all support the assignment of the 4.6 ns component as being due to a singlet excimer that forms between the two naphthylacetate groups of 3, a process that is likely mediated by the structural constraints of the oxo-bis-carboxylato diiron core. No direct evidence for intramolecular electron and/or energy transfer from the photoexcited naphthyl group to the iron-oxo core was obtained, suggesting that the short-lived excimer may contribute to circumventing such pathways in this type of system.
Collapse
Affiliation(s)
- Laura B Picraux
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|