1
|
Gessmann R, Papadovasilaki M, Drougkas E, Petratos K. Zinc-substituted pseudoazurin solved by S/Zn-SAD phasing. Acta Crystallogr F Struct Biol Commun 2015; 71:19-23. [PMID: 25615962 PMCID: PMC4304741 DOI: 10.1107/s2053230x14025552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/22/2014] [Indexed: 11/10/2022] Open
Abstract
The copper(II) centre of the blue copper protein pseudoazurin from Alcaligenes faecalis has been substituted by zinc(II) via denaturing the protein, chelation and removal of copper and refolding the apoprotein, followed by the addition of an aqueous solution of ZnCl2. Vapour-diffusion experiments produced colourless hexagonal crystals (space group P65), which when cryocooled had unit-cell parameters a=b=49.01, c=98.08 Å. Diffraction data collected at 100 K using a copper sealed tube were phased by the weak anomalous signal of five S atoms and one Zn atom. The structure was fitted manually and refined to 1.6 Å resolution. The zinc-substituted protein exhibits similar overall geometry to the native structure with copper. Zn2+ binds more strongly to its four ligand atoms (His40 Nδ1, Cys78 Sγ, His81 Nδ1 and Met86 Sδ) and retains the tetrahedral arrangement, although the structure is less distorted than the native copper protein.
Collapse
Affiliation(s)
- Renate Gessmann
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), N. Plastira 100, 70 013 Heraklion, Greece
| | - Maria Papadovasilaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), N. Plastira 100, 70 013 Heraklion, Greece
| | - Evangelos Drougkas
- Department of Biology, University of Crete, PO Box 2208, 71 409 Heraklion, Greece
| | - Kyriacos Petratos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), N. Plastira 100, 70 013 Heraklion, Greece
| |
Collapse
|
2
|
Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL. Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1. J Am Chem Soc 2014; 136:7273-85. [PMID: 24754678 PMCID: PMC4046764 DOI: 10.1021/ja410376s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 11/29/2022]
Abstract
In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV-vis, (1)H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Amy R. Marts
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alyssa Hetrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brian Bennett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
3
|
Gessmann R, Kyvelidou C, Papadovasilaki M, Petratos K. The crystal structure of cobalt-substituted pseudoazurin from Alcaligenes faecalis. Biopolymers 2010; 95:202-7. [DOI: 10.1002/bip.21553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
An NMR structural study of nickel-substituted rubredoxin. J Biol Inorg Chem 2009; 15:409-20. [PMID: 19997764 DOI: 10.1007/s00775-009-0613-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The Ni(II) and Zn(II) derivatives of Desulfovibrio vulgaris rubredoxin (DvRd) have been studied by NMR spectroscopy to probe the structure at the metal centre. The beta CH(2) proton pairs from the cysteines that bind the Ni(II) atom have been identified using 1D nuclear Overhauser enhancement (NOE) difference spectra and sequence specifically assigned via NOE correlations to neighbouring protons and by comparison with the published X-ray crystal structure of a Ni(II) derivative of Clostridium pasteurianum rubredoxin. The solution structures of DvRd(Zn) and DvRd(Ni) have been determined and the paramagnetic form refined using pseudocontact shifts. The determination of the magnetic susceptibility anisotropy tensor allowed the contact and pseudocontact contributions to the observed chemical shifts to be obtained. Analysis of the pseudocontact and contact chemical shifts of the cysteine H beta protons and backbone protons close to the metal centre allowed conclusions to be drawn as to the geometry and hydrogen-bonding pattern at the metal binding site. The importance of NH-S hydrogen bonds at the metal centre for the delocalization of electron spin density is confirmed for rubredoxins and can be extrapolated to metal centres in Cu proteins: amicyanin, plastocyanin, stellacyanin, azurin and pseudoazurin.
Collapse
|
5
|
Nickel(II)-substituted azurin I from Alcaligenes xylosoxidans as characterized by resonance Raman spectroscopy at cryogenic temperature. J Biol Inorg Chem 2009; 14:611-20. [DOI: 10.1007/s00775-009-0475-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
|
6
|
Abdelhamid RF, Obara Y, Kohzuma T. Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination. J Inorg Biochem 2008; 102:1373-9. [PMID: 18343503 DOI: 10.1016/j.jinorgbio.2008.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/08/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH approximately 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH>11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu-S(Cys) stretching frequency was shifted to higher frequency region at pH approximately 11. The higher frequency shift of Cu-S(Cys) bond is implied the stronger Cu-S(Cys) bond at alkaline transition pH approximately 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH>11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH>11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine -SCH3 part and coordinated histidine imidazole moiety. The introduction of pi-pi interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.
Collapse
Affiliation(s)
- Rehab F Abdelhamid
- Institute of Applied Beam Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | | | | |
Collapse
|
7
|
Worrall JAR, Machczynski MC, Keijser BJF, di Rocco G, Ceola S, Ubbink M, Vijgenboom E, Canters GW. Spectroscopic characterization of a high-potential lipo-cupredoxin found in Streptomyces coelicolor. J Am Chem Soc 2007; 128:14579-89. [PMID: 17090042 DOI: 10.1021/ja064112n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many streptomycetes, a distinct dependence on the "bioavailability" of copper ions for their morphological development has been reported. Analysis of the Streptomyces coelicolor genome reveals a number of gene products encoding for putative copper-binding proteins. One of these appears as an unusual copper-binding protein with a lipoprotein signal sequence and a cupredoxin-like domain harboring a putative Type-1 copper-binding motif. Cloning of this gene from S. coelicolor and subsequent heterologous expression in Escherichia coli has allowed for a thorough spectroscopic interrogation of this putative copper-binding protein. Optical and electron paramagnetic resonance spectroscopies have confirmed the presence of a "classic" Type-1 copper site with the axial ligand to the copper a methionine. Paramagnetic NMR spectroscopy on both the native Cu(II) form and Co(II)-substituted protein has yielded active-site structural information, which on comparison with that of other cupredoxin active sites reveals metal-ligand interactions most similar to the "classic" Type-1 copper site found in the amicyanin family of cupredoxins. Despite this high structural similarity, the Cu(II)/(I) midpoint potential of the S. coelicolor protein is an unprecedented +605 mV vs normal hydrogen electrode at neutral pH (amicyanin approximately +250 mV), with no active-site protonation of the N-terminal His ligand observed. Suggestions for the physiological role/function of this high-potential cupredoxin are discussed.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- Contribution from the Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Copper-containing nitrite reductases (NiRs) possess type 1 (T1) and type 2 (T2) copper sites and can be either green or blue in color owing to differences at their T1 centers. The active sites of a green and a blue NiR were studied by utilizing their T1CuI/T2CoII and T1CoII/T2CoII-substituted forms. The UV/Vis spectra of these derivatives highlight the similarity of the T2 centers in these enzymes and that T1 site differences are also present in the CoII forms. The paramagnetic NMR spectra of T1CuI/T2CoII enzymes allow hyperfine shifted resonances from the three T2 His ligands to be assigned: these exhibit remarkably similar positions in the spectra of both NiRs, emphasizing the homology of the T2 centers. The addition of nitrite results in subtle alterations in the paramagnetic NMR spectra of the T1CuI/T2CoII forms at pH<7, which indicate a geometry change upon the binding of substrate. Shifted resonances from all of the T1 site ligands have been assigned and the CoII--N(His) interactions are alike, whereas the CbetaH proton resonances of the Cys ligand exhibit subtle chemical shift differences in the blue and green NiRs. The strength of the axial CoII--S(Met) interaction is similar in the two NiRs studied, but the altered conformation of the side chain of this ligand results in a dramatically different chemical shift pattern for the CgammaH protons. This indicates an alteration in the bonding of the axial ligand in these derivatives, which could be influential in the CuII proteins.
Collapse
Affiliation(s)
- Katsuko Sato
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
9
|
Riley EA, Petros AK, Smith KA, Gibney BR, Tierney DL. Frequency-switching inversion-recovery for severely hyperfine-shifted NMR: evidence of asymmetric electron relaxation in high-spin Co(II). Inorg Chem 2007; 45:10016-8. [PMID: 17140197 DOI: 10.1021/ic061207h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new method for reliably measuring longitudinal relaxation rates for severely hyperfine-shifted NMR signals in aqueous solutions is presented. The method is illustrated for a well-defined cobalt tetracysteinate, with relevance to cobalt-substituted metalloproteins. The relaxation measurements are indicative of asymmetric electronic relaxation of the high-spin Co(II) ion.
Collapse
Affiliation(s)
- Erin A Riley
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Dennison C, Harrison MD. The Active-Site Structure of Umecyanin, the Stellacyanin from Horseradish Roots. J Am Chem Soc 2004; 126:2481-9. [PMID: 14982457 DOI: 10.1021/ja0375378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type 1 copper sites of cupredoxins typically have a His(2)Cys equatorial ligand set with a weakly interacting axial Met, giving a distorted tetrahedral geometry. Natural variations to this coordination environment are known, and we have utilized paramagnetic (1)H NMR spectroscopy to study the active-site structure of umecyanin (UMC), a stellacyanin with an axial Gln ligand. The assigned spectra of the Cu(II) UMC and its Ni(II) derivative [Ni(II) UMC] demonstrate that this protein has the typical His(2)Cys equatorial coordination observed in other structurally characterized cupredoxins. The NMR spectrum of the Cu(II) protein does not exhibit any paramagnetically shifted resonances from the axial ligand, showing that this residue does not contribute to the singly occupied molecular orbital (SOMO) in Cu(II) UMC. The assigned paramagnetic (1)H NMR spectrum of Ni(II) UMC demonstrates that the axial Gln ligand coordinates in a monodentate fashion via its side-chain amide oxygen atom. The alkaline transition, a feature common to stellacyanins, influences all of the ligating residues but does not alter the coordination mode of the axial Gln ligand in UMC. The structural features which result in Cu(II) UMC possessing a classic type 1 site as compared to the perturbed type 1 center observed for other stellacyanins do not have a significant influence on the paramagnetic (1)H NMR spectra of the Cu(II) or Ni(II) proteins.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
12
|
Dennison C, Sato K. Paramagnetic1H NMR Spectrum of the Cobalt(II) Derivative of Spinach Plastocyanin. Inorg Chem 2004; 43:1502-10. [PMID: 14966988 DOI: 10.1021/ic034861v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The native type 1 copper ion of spinach plastocyanin has been substituted with Co(II). The UV/vis spectrum of this derivative is similar to those for other Co(II)-substituted cupredoxins. The paramagnetic 1H NMR spectrum of Co(II) plastocyanin has been completely assigned. A number of similar studies on Co(II) cupredoxins have been published, but this is the first such analysis of a substituted plastocyanin that possesses the archetypal type 1 active site. A truly representative comparison of the available paramagnetic 1H NMR data for Co(II) cupredoxins is now possible. We demonstrate in this work that there is very little difference in the metal-ligand contacts between the Co(II) derivatives of cupredoxins possessing a type 1 axial site (plastocyanin) and those having perturbed (rhombic) spectroscopic features.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK.
| | | |
Collapse
|