1
|
Cordeiro LL, Dmitrenko O, Yap GPA, Riordan CG. Synthesis and Reactivity Studies of a Series of Nickel(II) Arylchalcogenolates. Inorg Chem 2021; 60:6327-6338. [PMID: 33851821 DOI: 10.1021/acs.inorgchem.1c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two series of high-spin nickel complexes, [TpPh,Me]Ni(EAr) (E = O, Se, Te; Ar = C6H5) and [TpPh,Me]Ni(SeC6H4-4-X) (X = H, Cl, Me, OMe), were prepared by metathetical reaction of the nickel(II) halide precursor with sodium salts of the corresponding chalcogen, NaEAr. X-ray crystallographic characterization and spectroscopic studies have established the geometric and electronic structures of these complexes. The observed spectroscopic and structural characteristics reveal distinct trends in accordance with the variation of the identity of the arylchalcogenolate and para substituent. Reaction of the [TpPh,Me]Ni(EAr) complexes with methyl iodide proceeded readily, producing the corresponding methylarylchalcogen and [TpPh,Me]NiI. A kinetic and computational analysis of the reaction of [TpPh,Me]Ni(SeC6H5) with MeI supports that the electrophilic alkylation reactions occur via an associative mechanism via a classical SN2 transition state.
Collapse
Affiliation(s)
- Lauren L Cordeiro
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Charles G Riordan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Roca Jungfer M, Lang ES, Abram U. Reactions of Schiff Base‐Substituted Diselenides and ‐tellurides with Ni(II), Pd(II) and Pt(II) Phosphine Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Ernesto Schulz Lang
- Laboratorio de Materiais Inorganicos Universidade Federal de Santa Maria Santa Maria/RS Brazil
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
3
|
Dias RDS, Cervo R, Siqueira FDS, Campos MMA, Lang ES, Tirloni B, Schumacher RF, Cargnelutti R. Synthesis and antimicrobial evaluation of coordination compounds containing 2,2′‐bis(3‐aminopyridyl) diselenide as ligand. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Renne de Sousa Dias
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Rodrigo Cervo
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Fallon dos Santos Siqueira
- Programa de Pós‐graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e ToxicológicasUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Marli Matiko Anraku Campos
- Programa de Pós‐graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas e ToxicológicasUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Ernesto Schulz Lang
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Bárbara Tirloni
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Ricardo Frederico Schumacher
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| | - Roberta Cargnelutti
- Departamento de Química, Laboratório de Materiais InorgânicosUniversidade Federal de Santa Maria Santa Maria RS 97105–900 Brazil
| |
Collapse
|
4
|
Banerjee S, Sheet D, Sarkar S, Halder P, Paine TK. Nickel complexes of ligands derived from (o-hydroxyphenyl) dichalcogenide: delocalised redox states of nickel and o-chalcogenophenolate ligands. Dalton Trans 2019; 48:17355-17363. [PMID: 31730150 DOI: 10.1039/c9dt03413g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two monoanionic nickel complexes Bu4N[Ni(LSeO)2] (1) and Bu4N[Ni(LSO)2] (2) (H2LSeO = 3,5-di-tert-butyl-2-hydroxyselenophenol and H2LSO = 3,5-di-tert-butyl-2-hydroxythiophenol) were synthesised by reductive cleavage of the respective 2,2'-dichalcogenobis(4,6-di-tert-butylphenol) (H2LX-X; X = Se, S) with nickel(ii) salts. The crystal structures of 1 and 2 confirm the reductive X-X bond cleavage with the concomitant formation of the corresponding monoanionic square planar complex, where quinoidal distortions of the aromatic rings are observed. The monoanionic complexes (1 and 2) are paramagnetic (S = 1/2), exhibiting rhombic EPR signals, and the g anisotropies are well correlated with the spin-orbit coupling of chalcogenides. The spectral data indicate that the ligands H2LXO in 1 and 2 are redox non-innocent and stabilise the square planar S = 1/2 nickel complexes with a highly delocalised unpaired electron. DFT calculations further support the delocalised electronic structures of the nickel complexes.
Collapse
Affiliation(s)
- Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | | | | | | | | |
Collapse
|
5
|
Inoue S, Mitsuhashi M, Ono T, Yan YN, Kataoka Y, Handa M, Kawamoto T. Photo- and Electrocatalytic Hydrogen Production Using Valence Isomers of N2S2-Type Nickel Complexes. Inorg Chem 2017; 56:12129-12138. [DOI: 10.1021/acs.inorgchem.7b01244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Satoshi Inoue
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Manabu Mitsuhashi
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Takeshi Ono
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Yin-Nan Yan
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Yusuke Kataoka
- Department of Material Science, Interdisciplinary Graduate School
of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Makoto Handa
- Department of Material Science, Interdisciplinary Graduate School
of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Tatsuya Kawamoto
- Department of Chemistry,
Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| |
Collapse
|
6
|
Bublitz F, de Azevedo Mello M, Cocco Durigon D, Tirloni B, Schulz Lang E. Synthesis and X-ray Structural Characterization of Di-p-aminobenzenediselenide [p-H2NC6H4Se]2and its Mercury(II) Derivatives. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201400327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Dutta PK, Asatkar AK, Zade SS, Panda S. Oxidative addition of disulfide/diselenide to group 10 metal(0) and in situ functionalization to form neutral thiasalen/selenasalen group 10 metal(ii) complexes. Dalton Trans 2014; 43:1736-43. [DOI: 10.1039/c3dt52132j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Wang Y. Charge Density Analysis and Bond Characterization of 3d-Transition Metal Complexes. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Lee Y, Hsu I. Theoretical Analysis of Fe K‐edge XANES on Mononitrosyl Iron Complex [(NO)Fe(S
2
C
6
H
4
)
2
][PPN]. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ya‐Wen Lee
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - I‐Jui Hsu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
10
|
Lu M, Campbell JL, Chauhan R, Grapperhaus CA, Chen H. Probing the reactivity and radical nature of oxidized transition metal-thiolate complexes by mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:502-512. [PMID: 23315345 DOI: 10.1007/s13361-012-0537-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 06/01/2023]
Abstract
Transition metal thiolate complexes such as [PPN](+)[RuL3](-) (PPN = bis(triphenylphosphoranylidene) ammonium and L = diphenylphosphinobenzenethiolate) are known to undergo addition reactions with unsaturated hydrocarbons via the formation of new C-S bonds in solution upon oxidation. The reaction mechanism is proposed to involve metal-stabilized thiyl radical intermediates, a new type of distonic ions such as [RuL3](+) ion in the case of [PPN](+)[RuL3](-). This study presents the reactivity and structure investigation of [RuL3](+) by mass spectrometry (MS) in conjunction with ion/molecule reactions. The addition reactions of [RuL3](+) with alkenes or methyl ketones in the gas phase are indeed observed, in agreement with the proposed mechanism. Such reactivity is also maintained by several fragment ions of [RuL3](+), indicating the preserved thiyl diradical core structure is responsible for the addition reaction. The thiyl radical nature of [RuL3](+) was further verified by the ion/molecule reaction of [RuL3](+) with dimethyl disulfide, in which the characteristic CH3S• transfer occurs, both at atmospheric pressure and also at low pressure (~mTorr). These results provide, for the first time, clear mass spectrometric evidence of the radical nature of [RuL3](+) (i.e., the distonic ion structure of [RuL3](+)), arising from the oxidation of non-innocent thiolate ligands of the complex [PPN](+)[RuL3](-). Similar thiolate complexes, including ReL3 and NiL2, were also examined. Although reactions of oxidized ReL3 or NiL2 with CH3SSCH3 take place at atmospheric pressure, the corresponding reaction did not occur in vacuum. Consistent with these data, the addition of ethylene was not observed either, indicating lower reactivities of [ReL3](+) and [NiL2](+) in comparison to [RuL3](+).
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | |
Collapse
|
11
|
Rotthaus O, Jarjayes O, Philouze C, Del Valle CP, Thomas F. One-electron oxidized nickel(II) complexes of bis and tetra(salicylidene) phenylenediamine Schiff bases: from monoradical to interacting Ni(III) ions. Dalton Trans 2009:1792-800. [DOI: 10.1039/b811702k] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Lin CH, Chen CG, Tsai ML, Lee GH, Liaw WF. Monoanionic {Mn(NO)}5 and Dianionic {Mn(NO)}6 Thiolatonitrosylmanganese Complexes: [(NO)Mn(L)2]− and [(NO)Mn(L)2]2− (LH2 = 1,2-Benzenedithiol and Toluene-3,4-dithiol). Inorg Chem 2008; 47:11435-43. [DOI: 10.1021/ic801553s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chia-Huei Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, and Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Chien-Ge Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, and Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, and Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, and Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, and Instrumentation Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Rotthaus O, Labet V, Philouze C, Jarjayes O, Thomas F. Pseudo-Octahedral Schiff Base Nickel(II) Complexes: Does Single Oxidation Always Lead to the Nickel(III) Valence Tautomer? Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800410] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Levesanos N, Robertson SD, Maganas D, Raptopoulou CP, Terzis A, Kyritsis P, Chivers T. Ni[(EPiPr2)2N]2 complexes: stereoisomers (E = Se) and square-planar coordination (E = Te). Inorg Chem 2008; 47:2949-51. [PMID: 18345597 DOI: 10.1021/ic800272v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of ((i)Pr 2PE) 2NM.TMEDA (M = Li, E = Se; M = Na, E = Te) with NiBr 2.DME in THF affords Ni[(SeP (i)Pr 2) 2N] 2 as either square-planar (green) or tetrahedral (red) stereoisomers, depending on the recrystallization solvent; the Te analogue is obtained as the square-planar complex Ni[(TeP (i)Pr 2) 2N] 2.
Collapse
Affiliation(s)
- Nikolaos Levesanos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-157 71 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Grapperhaus CA, Kozlowski PM, Kumar D, Frye HN, Venna KB, Poturovic S. Singlet Diradical Character of an Oxidized Ruthenium Trithiolate: Electronic Structure and Reactivity. Angew Chem Int Ed Engl 2007; 46:4085-8. [PMID: 17450515 DOI: 10.1002/anie.200700297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Grapperhaus C, Kozlowski P, Kumar D, Frye H, Venna K, Poturovic S. Singlet Diradical Character of an Oxidized Ruthenium Trithiolate: Electronic Structure and Reactivity. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Rotthaus O, Jarjayes O, Perez Del Valle C, Philouze C, Thomas F. A versatile electronic hole in one-electron oxidized NiIIbis-salicylidene phenylenediamine complexes. Chem Commun (Camb) 2007:4462-4. [DOI: 10.1039/b710027b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Rotthaus O, Thomas F, Jarjayes O, Philouze C, Saint-Aman E, Pierre JL. Valence Tautomerism in Octahedral and Square-Planar Phenoxyl–Nickel(II) Complexes: Are Imino Nitrogen Atoms Good Friends? Chemistry 2006; 12:6953-62. [PMID: 16810650 DOI: 10.1002/chem.200600258] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The two tetradentate ligands H(2)L and H(2)L(Me) afford the slightly distorted square-planar low-spin Ni(II) complexes 1 and 2, which comprise two coordinated phenolate groups. Complex 1 has been electrochemically oxidized into 1(+), which contains a coordinated phenoxyl radical, with a contribution from the nickel orbital. In the presence of pyridine, 1(+) is converted into 1(Py) (+), an octahedral phenolate nickel(III) complex with two pyridines axially coordinated: An intramolecular electron transfer (valence tautomerism) is promoted by the geometrical changes, from square planar to octahedral, around the metal center. The tetradentate ligand H(2)L(Me), in the presence of pyridine, and the hexadentate ligand H(2)L(Py) in CH(2)Cl(2) afford, respectively, the octahedral high-spin Ni(II) complexes 2(Py) and 3, which involve two equatorial phenolates and two axially coordinated pyridines. At 100 K, the one-electron-oxidized product 2(Py) (+) comprises a phenoxyl radical ferromagnetically coupled to the high-spin Ni(II) ion, with large zero-field splitting parameters, while 3(+) involves a phenoxyl radical antiferromagnetically coupled to the high-spin Ni(II) ion.
Collapse
Affiliation(s)
- Olaf Rotthaus
- Laboratoire de Chimie Biomimétique, LEDSS, UMR CNRS 5616, Université J. Fourier, BP 53, 38041 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
20
|
Rotthaus O, Jarjayes O, Thomas F, Philouze C, Perez Del Valle C, Saint-Aman E, Pierre JL. Fine Tuning of the Oxidation Locus, and Electron Transfer, in Nickel Complexes of Pro-Radical Ligands. Chemistry 2006; 12:2293-302. [PMID: 16370005 DOI: 10.1002/chem.200500915] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A large number of complexes of the first-row transition metals with non-innocent ligands has been characterized in the last few years. The localization of the oxidation site in such complexes can lead to discrepancies when electrons can be removed either from the metal center (leading to an M((n+1)+) closed-shell ligand) or from the ligand (leading to an M(n+) open-shell ligand). The influence of the ligand field on the oxidation site in square-planar nickel complexes of redox-active ligands is explored herein. The tetradentate ligands employed herein incorporate two di-tert-butylphenolate (pro-phenoxyl) moieties and one orthophenylenediamine spacer. The links between the spacer and both phenolates are either two imines ([Ni(L1)]), two amidates ([Ni(L3)]2-), or one amidate and one imine ([Ni(L2)]-). The structure of each nickel(II) complex is presented. In the noncoordinating solvent CH2Cl2, the one-electron-oxidized forms are ligand-radical species with a contribution from a singly occupied d orbital of the nickel. In the presence of an exogenous ligand, such as pyridine, a Ni(III) closed-shell ligand form is favored: axial ligation, which stabilizes the trivalent nickel in its octahedral geometry, induces an electron transfer from the metal(II) center to the radical ligand. The affinity of pyridine for the phenoxylnickel(II) species is correlated to the N-donor ability of the linkers.
Collapse
Affiliation(s)
- Olaf Rotthaus
- Laboratoire de Chimie Biomimétique, LEDSS, UMR CNRS 5616, Université J. Fourier, BP 53, 38041, Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Tsai FT, Chiou SJ, Tsai MC, Tsai ML, Huang HW, Chiang MH, Liaw WF. Dinitrosyl iron complexes (DNICs) [L(2)Fe(NO)2]- (L = thiolate): interconversion among {Fe(NO)2}9 DNICs, {Fe(NO)2}10 DNICs, and [2Fe-2S] clusters, and the critical role of the thiolate ligands in regulating NO release of DNICs. Inorg Chem 2005; 44:5872-81. [PMID: 16060642 DOI: 10.1021/ic0505044] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dinitrosyl iron complex [(-SC(7)H(4)SN)(2)Fe(NO)(2)](-) (1) was prepared by reaction of [S(5)Fe(NO)(2)](-) and bis(2-benzothiozolyl) disulfide. In synthesis of the analogous dinitrosyl iron compounds (DNICs), the stronger electron-donating thiolates [RS](-) (R = C(6)H(4)-o-NHCOCH(3), C(4)H(3)S, C(6)H(4)NH(2), Ph), compared to [-SC(7)H(4)SN](-) of complex 1, trigger thiolate-ligand substitution to yield [(-SC(6)H(4)-o-NHCOCH(3))(2)Fe(NO)(2)](-) (2), [(-SC(4)H(3)S)(2)Fe(NO)(2)](-) (3), and [(SPh)(2)Fe(NO)(2)](-) (4), respectively. At 298 K, complexes 2 and 3 exhibit a well-resolved five-line EPR signal at g = 2.038 and 2.027, respectively, the characteristic g value of DNICs. The magnetic susceptibility fit indicates that the resonance hybrid of {Fe(+)((*)NO)(2)}(9) and {Fe(-)((+)NO)(2)}(9) in 2 is dynamic by temperature. The IR nu(NO) stretching frequencies (ranging from (1766, 1716) to (1737, 1693) cm(-)(1) (THF)) of complexes 1-4 signal the entire window of possible electronic configurations for such stable and isolable {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-). The NO-releasing ability of {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) is finely tuned by the coordinated thiolate ligands. The less electron-donating thiolate ligands coordinated to {Fe(NO)(2)}(9) motif act as better NO-donor DNICs in the presence of NO-trapping agent [Fe(S,S-C(6)H(4))(2)](2)(2-). Interconversion between {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) and {Fe(NO)(2)}(10) [(Ph(3)P)(2)Fe(NO)(2)] was verified in the reaction of (a) [(RS)(2)Fe(NO)(2)](-), 10 equiv of PPh(3) and sodium-biphenyl, and (b) 2 equiv of thiol, [RS](-), and [(Ph(3)P)(2)Fe(NO)(2)], respectively. The biomimetic reaction cycle, transformation between {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) and {Fe(NO)(2)}(9) [(R'S)(2)Fe(NO)(2)](-), reversible interconversion of {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs, and degradation/reassembly of [2Fe-2S] clusters may decipher and predict the biological cycle of interconversion of {Fe(NO)(2)}(9) DNICs, {Fe(NO)(2)}(10) DNICs, and the [Fe-S] clusters in proteins.
Collapse
Affiliation(s)
- Fu-Te Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee CM, Chen CH, Chen HW, Hsu JL, Lee GH, Liaw WF. Nitrosylated Iron−Thiolate−Sulfinate Complexes with {Fe(NO)}6/7 Electronic Cores: Relevance to the Transformation between the Active and Inactive NO-Bound Forms of Iron-Containing Nitrile Hydratases. Inorg Chem 2005; 44:6670-9. [PMID: 16156625 DOI: 10.1021/ic050108l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H3R)2]- (R = H (1), m-CH3 (2)), [(NO)Fe(S,S-C6H2-3,6-Cl2)2]- (3), [(NO)Fe(S,S-C6H3R)2]2- (R = H (10), m-CH3 (11)), and [(NO)Fe(S,S-C6H2-3,6-Cl2)2]2- (12) have been isolated and structurally characterized. Sulfur oxygenation of iron-thiolate nitrosyl complexes 1-3 containing the {Fe(NO)}6 core was triggered by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]- (R = H (4), m-CH3 (5)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2(2-) (6), respectively. In contrast, attack of O2 on the {Fe(NO)}7 complex 10 led to the formation of complex 1 accompanied by the minor products, [Fe(S,S-C6H4)2]2(2-) and [NO3]- (yield 9%). Reduction of complexes 4-6 by [EtS]- in CH3CN-THF yielded [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]2- (R = H (7), m-CH3 (8)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2- (9) along with (EtS)2 identified by 1H NMR. Compared to complex 10, complexes 7-9 with the less electron-donating sulfinate ligand coordinated to the {Fe(NO)}7 core were oxidized by O2 to yield complexes 4-6. Obviously, the electronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in complexes 7-9 may serve to regulate the reactivity of complexes 7-9 toward O2. The iron-sulfinate nitrosyl species with the {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety. Complexes 1-4-7-10 (or 2-5-8-11 and 3-6-9-12) are interconvertible under sulfur oxygenation, redox processes, and photolysis, respectively.
Collapse
Affiliation(s)
- Chien-Ming Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Poturovic S, Mashuta MS, Grapperhaus CA. Carbon-Sulfur Bond Formation between a Ruthenium-Coordinated Thiyl Radical and Methyl Ketones. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Poturovic S, Mashuta MS, Grapperhaus CA. Carbon-Sulfur Bond Formation between a Ruthenium-Coordinated Thiyl Radical and Methyl Ketones. Angew Chem Int Ed Engl 2005; 44:1883-7. [PMID: 15712304 DOI: 10.1002/anie.200462713] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Selma Poturovic
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
25
|
Grapperhaus CA, Poturovic S. Electrochemical Investigations of the [Tris(2-(diphenylphosphino)thiaphenolato)ruthenate(II)] Monoanion Reveal Metal- and Ligand-Centered Events: Radical, Reactivity, and Rate. Inorg Chem 2004; 43:3292-8. [PMID: 15132639 DOI: 10.1021/ic035085u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochemical investigations of [bis(triphenylphosphoranylidene)ammonium)][tris(2-(diphenylphosphino)thiaphenolato)ruthenate(II)], PPN[Ru(DPPBT)(3)] (1), and [(bis(2-(diphenylphosphino)thiaphenolato)methane)(2-(diphenylphosphino)thiaphenolato)ruthenium(II)] chloride, [Ru((DPPBT)(2)CH(2))(DPPBT)]Cl (2) are reported. Complex 1 is oxidized reversibly in a metal-centered event by one electron at a potential of +455 mV (vs Ag/AgCl) to the ruthenium(III) derivative [tris(2-(diphenylphosphino)thiaphenolato)ruthenium(III)], 3. Complex 3 can also be prepared by iodine oxidation of 1 in acetonitrile. Oxidation of 3 in acetonitrile is reversible on a cyclic voltammetry time scale but irreversible upon bulk oxidation yielding Ru-X. Monitoring the oxidation of 3 by UV-visible spectroscopy reveals a proposed metal-coordinated thiyl radical intermediate with a maximum absorbance at 850 nm. This intermediate decays at a temperature of -20 degrees C with a rate constant of (5.82 +/- 0.73) x 10(-)(3) s(-)(1) with a small, positive deltaH and a large, negative deltaS. Ru-X can be oxidized reversibly to Ru-Y at a potential of +806 mV but cannot be reduced. Complex 2 is reversibly oxidized by one electron in a metal-centered event to 4 at a potential of +767 mV.
Collapse
Affiliation(s)
- Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|