1
|
Wang J, Xie Z, Xie H, Mo Z, Wang W, Zhu Y. A novel, portable, and cost-effective turbidimetric sensor for sensitive alkaline phosphatase activity assay. Biosens Bioelectron 2025; 267:116857. [PMID: 39426277 DOI: 10.1016/j.bios.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The development of enzyme activity analysis methods is critical for precise and rapid assessments of enzyme activity levels within biological systems, facilitating a more profound comprehension of physiological functions and disease mechanisms. Alkaline phosphatase (ALP) participates in various physiological processes involving phosphate ester hydrolysis. Altered ALP activity levels are often indicative of different diseases, underscoring the necessity for accurate ALP activity determination in medical diagnostics. This study innovatively applies turbidity as a physical variable, proposing a turbidimetric sensor based on an enhanced ammonium molybdate reagent for phosphate analysis. By integrating this with the ALP substrate p-nitrophenyl phosphate, a turbidimetric sensor was devised and employed for ALP activity analysis. The proposed turbidimetric sensor demonstrated high sensitivity both for phosphate (0.18 μmol/L) and ALP activity (0.03 mU/mL) assay. In practical applications, this turbidimetric sensor has been effectively employed to detect ALP activity in mouse feces, showcasing its potential for auxiliary diagnosis of inflammatory bowel disease. Significantly, this novel turbidity-based approach offers not only swift and straightforward procedures but also remarkable portability and cost-efficiency. Requiring solely a handheld turbidimeter and eliminating the need for bulky instruments, this approach holds significant potential for point-of-care testing applications.
Collapse
Affiliation(s)
- Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Zhulan Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ziyi Mo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weiguo Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Yanli Zhu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
2
|
George T, Brosseau CL, Masuda JD. Electrochemical and X-ray structural evidence of multiple molybdenum precursor candidates from a reported non-aqueous electrodeposition of molybdenum disulfide. RSC Adv 2023; 13:32199-32216. [PMID: 37920754 PMCID: PMC10619629 DOI: 10.1039/d3ra04605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
A published report of electrodeposited molybdenum(iv) disulfide microflowers at 100 °C in the ionic liquid N-methyl-N-propylpiperidinium bis(trifluoromethane)sulfonimide (PP13-TFSI) from 1,4-butanedithiol and the concentrated filtrate from a reaction mixture of molybdenum(vi) trioxide and ethylene glycol could not be reproduced reliably, affording numerous uniquely coloured reaction mixtures that precipitated a variety of crystalline molybdenum coordination complexes. Further attempts to use the same two of these filtrates to electrodeposit molybdenum(iv) disulfide from 0.1 M PP13-TFSI in tetrahydrofuran with 1,4-butanedithiol at room temperature were unsuccessful. Various crude reaction mixtures grew crystals of different identity from eight attempts to synthesize the reported molybdenum-precursor. Single crystal X-ray diffraction (SC-XRD) offered insight into a wide range of structural features from four candidate paramagnetic precursor compounds, including a novel organomolybdenum cluster. Electrochemical studies of the various molybdenum-precursor filtrates, ethylene glycol, and 1,4-butanedithiol were conducted in 0.1 M PP13-TFSI in tetrahydrofuran, offering insight into differences between preparations of the molybdenum-precursor and interference between ethylene glycol and 1,4-butanedithiol on platinum working electrodes. Molybdenum(iv) disulfide electrodeposition attempts included cyclic voltammetry and chronoamperometry on platinum and glassy carbon working electrodes, which led to either no deposited material, or molybdenum, carbon, oxygen, and sulfur containing amorphous and non-homogenous deposits, as indicated by SEM-EDS analysis.
Collapse
Affiliation(s)
- Tanner George
- Department of Chemistry, Saint Mary's University Halifax Nova Scotia Canada B3H 3C3
| | - Christa L Brosseau
- Department of Chemistry, Saint Mary's University Halifax Nova Scotia Canada B3H 3C3
| | - Jason D Masuda
- Department of Chemistry, Saint Mary's University Halifax Nova Scotia Canada B3H 3C3
| |
Collapse
|
3
|
Kitzmann WR, Hunger D, Reponen APM, Förster C, Schoch R, Bauer M, Feldmann S, van Slageren J, Heinze K. Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorg Chem 2023; 62:15797-15808. [PMID: 37718553 DOI: 10.1021/acs.inorgchem.3c02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - David Hunger
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Roland Schoch
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
4
|
Deng L, Zhou ZH. Chiral Supramolecular Microporous Thio-Oxomolybdenum(V) Tartrates for the Selective Adsorptions of Gases. Inorg Chem 2022; 61:14787-14799. [PMID: 36057097 DOI: 10.1021/acs.inorgchem.2c02283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two pairs of enantiomerically pure hexanuclear and tetranuclear microporous molybdenum(V) d/l-tartrates, (H2trz)3[Mo6O6(μ2-O)3(μ2-S)3(d/l-Htart)3(Htrz)6]·8H2O (abbreviated as d-1 and l-1; H4tart = tartaric acid, Htrz = 1,2,4-triazole) and (H22-mim)8[Mo4O4(μ2-S)4(d/l-tart)2]2·4H2O (d-2/l-2; H2-mim = 2-methylimidazole), have been isolated in reduced media and well characterized. These enantiomers are observed to finish self-assemblies with single chiral configurations. Structural analyses indicate that tartrates adopt different coordination modes with α-carboxy and/or α-alkoxy groups in 1 and 2, which are further completed with nitrogen-containing ligands. There are two types of micropores that exist in 1 and 2, separately, which are all formed by the isolated molecules themselves. The significant roles of hydrogen bonding among lattice molecules, tartrates, and multi-azoles are suggested, where 1 and 2 exhibited interesting supramolecular networks only through intramolecular self-sorts. Adsorption tests show that 1 has good affinities toward CO2 and O2, while 2 is the most potential O2 adsorbent compared with other common gases CO2, H2, CH4, and N2 under different pressures. In addition, IR, UV-vis, CD (circular dichroism), and solid-state 13C NMR spectroscopies have demonstrated the special chemical properties of these novel molybdenum d/l-tartrates.
Collapse
Affiliation(s)
- Lan Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Alizadeh S, Mague JT, Takjoo R. Structural, theoretical investigations and HSA-interaction studies of three new copper(II) isothiosemicarbazone complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Maiti M, Thakurta S, Pilet G, Bauzá A, Frontera A. Two new hydrogen-bonded supramolecular dioxo-molybdenum(VI) complexes based on acetyl-hydrazone ligands: Synthesis, crystal structure and DFT studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Assignment of protonated R-homocitrate in extracted FeMo-cofactor of nitrogenase via vibrational circular dichroism spectroscopies. Commun Chem 2020; 3:145. [PMID: 34337161 PMCID: PMC8323615 DOI: 10.1038/s42004-020-00392-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protonation of FeMo-cofactor is important for the process of substrate hydrogenation. Its structure has been clarified as Δ-Mo*Fe7S9C(R-homocit*)(cys)(Hhis) for the efforts of nearly 30 years, while it remains controversial whether FeMo-cofactor is protonated or deprotonated with chelated ≡C-O(H) homocitrate. We have used protonated molybdenum(V) lactates 1 and its enantiomer as model compounds for R-homocitrate in FeMo-cofactor of nitrogenase. Vibrational circular dichroism (VCD) spectrum of 1 at 1051 cm-1 is attributed to ≡C-OH vibration, and molybdenum(VI) R-lactate at 1086 cm-1 is assigned as ≡C-O α-alkoxy vibration. These vibrations set up labels for the protonation state of coordinated α-hydroxycarboxylates. The characteristic VCD band of NMF-extracted FeMo-cofactor is assigned to ν(C-OH), which is based on the comparison of molybdenum(VI) R-homocitrate. Density Functional Theory calculations are in consistent with these assignments. To the best of our knowledge, this is the first time that protonated R-homocitrate in FeMo-cofactor is confirmed by VCD spectra.
Collapse
|
8
|
Ahmed K, Saikia G, Paul S, Baruah SD, Talukdar H, Sharma M, Islam NS. Water-soluble polymer anchored peroxotitanates as environmentally clean and recyclable catalysts for mild and selective oxidation of sulfides with H2O2 in water. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Modec B, Dolenc D. Molybdenum complexes with citrate revisited. A mononuclear [MoVOCl4(H2O)]− ion as a new synthetic entry. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Wang SY, Dai JW, Chen HB, Zhou ZH. 2,2′-Bipyridine or 1,10-phenanthroline chelated oxomolybdenum(V) complexes with glycolate, lactate and malate in acidic media. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Zhang N, Königsberger E, Duan S, Lin K, Yi H, Zeng D, Zhao Z, Hefter G. Nature of Monomeric Molybdenum(VI) Cations in Acid Solutions Using Theoretical Calculations and Raman Spectroscopy. J Phys Chem B 2019; 123:3304-3311. [PMID: 30913876 DOI: 10.1021/acs.jpcb.9b00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The composition and structures of the two protonated species formed from uncharged molybdic acid, MoO2(OH)2(OH2)20, in strongly acidic solutions have been investigated using a combination of density functional theory calculations, first-principles molecular dynamics simulations, and Raman spectroscopy. The calculations show that both protonated species maintain the original octahedral structure of molybdic acid. Computed p Ka values indicated that the ═O moieties are the proton acceptor sites and, therefore, that MoO(OH)3(OH2)2+ and Mo(OH)4(OH2)22+ are the probable protonated forms of Mo(VI) in strong acid solutions, rather than the previously accepted MoO2(OH)2- x(OH2)2+ x x+ ( x = 1, 2) species. This finding is shown to be broadly consistent with the observed Raman spectra. Structural details of MoO(OH)3(OH2)2+ and Mo(OH)4(OH2)22+ are reported.
Collapse
Affiliation(s)
- Ning Zhang
- College of Science , Central South University of Forestry and Technology , Changsha 410004 , Hunan , P.R. China.,College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , P.R. China
| | - Erich Königsberger
- Chemistry Department , Murdoch University , Murdoch , WA 6150 , Australia
| | - Siqi Duan
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , Shanxi , P.R. China
| | - Ke Lin
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , Shanxi , P.R. China
| | - Haibo Yi
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , P.R. China
| | | | | | - Glenn Hefter
- Chemistry Department , Murdoch University , Murdoch , WA 6150 , Australia
| |
Collapse
|
12
|
Jin WT, Wang H, Wang SY, Dapper CH, Li X, Newton WE, Zhou ZH, Cramer SP. Preliminary Assignment of Protonated and Deprotonated Homocitrates in Extracted FeMo-Cofactors by Comparisons with Molybdenum(IV) Lactates and Oxidovanadium Glycolates. Inorg Chem 2019; 58:2523-2532. [PMID: 30726074 DOI: 10.1021/acs.inorgchem.8b03108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A similar pair of protonated and deprotonated mononuclear oxidovanadium glycolates [VO(Hglyc)(phen)(H2O)]Cl·2H2O (1) and [VO(glyc)(bpy)(H2O)] (2) and a mixed-(de)protonated oxidovanadium triglycolate (NH4)2[VO(Hglyc)2(glyc)]·H2O (3) were isolated and examined. The ≡C-O(H) (≡C-OH or ≡C-O) groups coordinated to vanadium were spectroscopically and structurally identified. The glycolate in 1 features a bidentate chelation through protonated α-hydroxy and α-carboxy groups, whereas the glycolate in 2 coordinates through deprotonated α-alkoxy and α-carboxy groups. The glycolates in 3 coordinate to vanadium through α-alkoxy or α-hydroxy and α-carboxy groups and thus have both protonated ≡C-OH and deprotonated ≡C-O bonds simultaneously. Structural investigations revealed that the longer protonated V-Oα-hydroxy bonds [2.234(2) Å and 2.244(2) Å] in 1 and 3 are close to those of FeV-cofactor (FeV-co) 2.17 Å1 (FeMo-co 2.17 Å2), while deprotonated V-Oα-alkoxy bonds [2, 1.930(2); 3, 1.927(2) Å] were obviously shorter. This shows a similar elongated trend as the Mo-O distances in the previously reported deprotonated vs protonated molybdenum lactates (Wang, S. Y. et al. Dalton Trans. 2018, 47, 7412-7421) and these vanadium and molybdenum complexes have the same local V/Mo-homocitrate structures as those of FeV/Mo-cos of nitrogenases. The IR spectra of these oxidovanadium and the previously synthesized molybdenum complexes including different substituted ≡C-O(H) model compounds show red-shifts for ≡C-OH vs ≡C-O alternation, which further assign the two IR bands of extracted FeMo-co at 1084 and 1031 cm-1 to ≡C-O and ≡C-OH vibrations, respectively. Although the structural data or IR spectra for some of the previously synthesized Mo/V complexes and extracted FeMo-co were measured earlier, this is the first time that the ≡C-O(H) coordinated peaks are assigned. The overall structural and IR results well suggest the coexistence of homocitrates coordinated with α-alkoxy (deprotonated) and α-hydroxy (protonated) groups in the extracted FeMo-co.
Collapse
Affiliation(s)
- Wan-Ting Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hongxin Wang
- Department of Chemistry , University of California , Davis , California 95616 , United States.,Physical Biosciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Si-Yuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Christie H Dapper
- Department of Biochemistry , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | - Xing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - William E Newton
- Department of Biochemistry , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Stephen P Cramer
- Department of Chemistry , University of California , Davis , California 95616 , United States.,Physical Biosciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
13
|
Wang SY, Zhou ZH. Molybdenum imidazole citrate and bipyridine homocitrate in different oxidation states – balance between coordinated α-hydroxy and α-alkoxy groups. RSC Adv 2019; 9:519-528. [PMID: 35521591 PMCID: PMC9059298 DOI: 10.1039/c8ra09134j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/11/2018] [Indexed: 01/28/2023] Open
Abstract
Oxo and thiomolybdenum(iv/vi) imidazole hydrocitrates K2{MoIV3O4(im)3[MoVIO3(Hcit)]2}·3im·4H2O (1), (Him)2{MoIV3SO3(im)3[MoVIO3(Hcit)]2}·im·6H2O (2), molybdenum(v) bipyridine homocitrate trans-[(MoVO)2O(H2homocit)2(bpy)2]·4H2O (3) and molybdenum(vi) citrate (Et4N)[MoVIO2Cl(H2cit)]·H2O (4) (H4cit = citric acid, H4homocit = homocitric acid, im = imidazole and bpy = 2,2′-bipyridine) with different oxidation states were prepared. 1 and 2 are the coupling products of [MoVIO3(Hcit)]3− anions and incomplete cubane units [MoIV3O4]4+ ([MoIV3SO3]4+) with monodentate imidazoles, respectively, where tridentate citrates coordinate with α-hydroxy, α-carboxy and β-carboxy groups, forming pentanuclear skeleton structures. The molybdenum atoms in 1 and 2 show unusual +4 and +6 valences based on charge balances, theoretical bond valence calculations and Mo XPS spectrum. The coordinated citrates in 1 and 2 are protonated with α-hydroxy groups, while 3 and 4 with higher oxidation states of +5 and +6 are deprotonated with α-alkoxy group even under strong acidic condition, respectively. This shows the relationship between the oxidation state and protonation of the α-alkoxy group in citrate or homocitrate, which is related to the protonation state of homocitrate in FeMo-cofactor of nitrogenase. The homocitrate in 3 chelates to molybdenum(v) with bidentate α-alkoxy and monodentate α-carboxy groups. Molybdenum(vi) citrate 4 is only protonated with coordinated and uncoordinated β-carboxy groups. The solution behaviours of 1 and 2 are discussed based on 1H and 13C NMR spectroscopies and cyclic voltammograms, showing no decomposition of the species. Oxo and thiomolybdenum(iv/vi) citrates, molybdenum(v) homocitrate and molybdenum(vi) citrate were obtained, showing the influence of coordinated α-hydroxy and α-alkoxy groups with different oxidation states.![]()
Collapse
Affiliation(s)
- Si-Yuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Zhao-Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| |
Collapse
|
14
|
Wang SY, Jin WT, Chen HB, Zhou ZH. Comparison of hydroxycarboxylato imidazole molybdenum(iv) complexes and nitrogenase protein structures: indirect evidence for the protonation of homocitrato FeMo-cofactors. Dalton Trans 2018; 47:7412-7421. [DOI: 10.1039/c8dt00278a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycolato and lactato imidazole molybdenum(iv) complexes are used for structural comparison with FeMo-cofactors of MoFe-protein structures.
Collapse
Affiliation(s)
- Si-Yuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Wan-Ting Jin
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Hong-Bin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Zhao-Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| |
Collapse
|
15
|
Majumder S, Pasayat S, Panda AK, Dash SP, Roy S, Biswas A, Varma ME, Joshi BN, Garribba E, Kausar C, Patra SK, Kaminsky W, Crochet A, Dinda R. Monomeric and Dimeric Oxidomolybdenum(V and VI) Complexes, Cytotoxicity, and DNA Interaction Studies: Molybdenum Assisted C═N Bond Cleavage of Salophen Ligands. Inorg Chem 2017; 56:11190-11210. [DOI: 10.1021/acs.inorgchem.7b01578] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sudarshana Majumder
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sagarika Pasayat
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Alok K. Panda
- School of Basic
Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Odisha, India
| | - Subhashree P. Dash
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
- Department of Basic Sciences, Paralamaharaja Engineering College, Sitalapalli, Brahmapur, Odisha 761003, India
| | - Satabdi Roy
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashis Biswas
- School of Basic
Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Odisha, India
| | - Mokshada E. Varma
- Bioprospecting
Group, Agharkar Research Institute, G.G. Agharkar Road, Pune 411004, India
| | - Bimba N. Joshi
- Bioprospecting
Group, Agharkar Research Institute, G.G. Agharkar Road, Pune 411004, India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna
2, I-07100 Sassari, Italy
| | - Chahat Kausar
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center
for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
16
|
Zhang RH, Zhou XW, Dong X, Zhou ZH. Solid and solution chemistry of protonated and deprotonated mononuclear molybdenum(VI) citrates. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1246721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rong-Hua Zhang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Xin-Wen Zhou
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Xin Dong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhao-Hui Zhou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Copper(II) and molybdenum(VI) complexes of a tridentate ONN donor isothiosemicarbazone: Synthesis, characterization, X-ray, TGA and DFT. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Nagul EA, McKelvie ID, Worsfold P, Kolev SD. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Anal Chim Acta 2015; 890:60-82. [PMID: 26347168 DOI: 10.1016/j.aca.2015.07.030] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/19/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
The molybdenum blue reaction, used predominantly for the determination of orthophosphate in environmental waters, has been perpetually modified and re-optimised over the years, but this important reaction in analytical chemistry is usually treated as something of a 'black box' in the analytical literature. A large number of papers describe a wide variety of reaction conditions and apparently different products (as determined by UV-visible spectroscopy) but a discussion of the chemistry underlying this behaviour is often addressed superficially or not at all. This review aims to rationalise the findings of the many 'optimised' molybdenum blue methods in the literature, mainly for environmental waters, in terms of the underlying polyoxometallate chemistry and offers suggestions for the further enhancement of this time-honoured analytical reaction.
Collapse
Affiliation(s)
- Edward A Nagul
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010, Australia
| | - Ian D McKelvie
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL48AA, UK
| | - Paul Worsfold
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL48AA, UK
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
19
|
Crystalline and solution chemistry of tetrameric and dimeric molybdenum(VI) citrato complexes. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Huta B, Lensboeur JJ, Lowe AJ, Zubieta J, Doyle RP. Metal-citrate complex uptake and CitMHS transporters: From coordination chemistry to possible vaccine development. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Takjoo R, Ahmadi M, Akbari A, Rudbari HA, Nicolò F. Complexes with cis-MoO2 unit of new isothiosemicarbazone. J COORD CHEM 2012. [DOI: 10.1080/00958972.2012.709935] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Reza Takjoo
- a Department of Chemistry, School of Sciences , Ferdowsi University of Mashhad , 91775-1436 Mashhad , Iran
| | - Mehdi Ahmadi
- b Department of Chemistry , Payame Noor University (PNU) , 19395-4697 Tehran , Iran
| | - Alireza Akbari
- b Department of Chemistry , Payame Noor University (PNU) , 19395-4697 Tehran , Iran
| | - Hadi Amiri Rudbari
- c Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica , Università di Messina , Salita Sperone, 31 Contrada Papardo, 98166 Messina , Italy
| | - Francesco Nicolò
- c Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica , Università di Messina , Salita Sperone, 31 Contrada Papardo, 98166 Messina , Italy
| |
Collapse
|
22
|
Das SP, Ankireddy SR, Boruah JJ, Islam NS. Synthesis and characterization of peroxotungsten(vi) complexes bound to water soluble macromolecules and their interaction with acid and alkaline phosphatases. RSC Adv 2012. [DOI: 10.1039/c2ra20358h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
23
|
Boruah JJ, Kalita D, Das SP, Paul S, Islam NS. Polymer-Anchored Peroxo Compounds of Vanadium(V) and Molybdenum(VI): Synthesis, Stability, and Their Activities with Alkaline Phosphatase and Catalase. Inorg Chem 2011; 50:8046-62. [DOI: 10.1021/ic200368g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jeena Jyoti Boruah
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Diganta Kalita
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Siva Prasad Das
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Saurav Paul
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Nashreen S. Islam
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
24
|
Dinoi C, Guedes da Silva MFC, Alegria ECBA, Smoleński P, Martins LMDRS, Poli R, Pombeiro AJL. Molybdenum Complexes Bearing the Tris(1-pyrazolyl)methanesulfonate Ligand: Synthesis, Characterization and Electrochemical Behaviour. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Hamada YZ, Bayakly N, George D, Greer T. Speciation of Molybdenum(VI)-Citric Acid Complexes in Aqueous Solutions. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/15533170802371323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yahia Z. Hamada
- a Division of Natural and Mathematical Sciences , LeMoyne-Owen College , Memphis , TN
| | - Nabil Bayakly
- a Division of Natural and Mathematical Sciences , LeMoyne-Owen College , Memphis , TN
| | - Denisha George
- a Division of Natural and Mathematical Sciences , LeMoyne-Owen College , Memphis , TN
| | - Troy Greer
- a Division of Natural and Mathematical Sciences , LeMoyne-Owen College , Memphis , TN
| |
Collapse
|
26
|
Synthesis and Characterizations of Dinuclear Dioxomolybdenum(VI) Complexes with Thiocarbohydrazides of Salicylaldehyde, Bridged by 4,4'-Dipyridyl or Its Derivatives. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.9.1819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Chen CY, Zhou ZH, Chen HB, Huang PQ, Tsai KR, Chow YL. Formations of Mixed-Valence OxovanadiumV,IV Citrates and Homocitrate with N-Heterocycle Chelated Ligand. Inorg Chem 2008; 47:8714-20. [DOI: 10.1021/ic800553p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Can-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hong-Bin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Qiang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Khi-Rui Tsai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan L. Chow
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
28
|
Zhou ZH, Chen CY, Cao ZX, Tsai KR, Chow YL. N-heterocycle chelated oxomolybdenum(VI and V) complexes with bidentate citrate. Dalton Trans 2008:2475-9. [PMID: 18461203 DOI: 10.1039/b717452g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1,10-phenanthroline (phen) chelated molybdenum(VI) citrate, [(MoO2)2O(H2cit)(phen)(H2O)2] x H2O (1) (H4cit = citric acid), is isolated from the reaction of citric acid, ammonium molybdate and phen in acidic media (pH 0.5-1.0). A citrato oxomolybdenum(V) complex, [(MoO)2O(H2cit)2(bpy)2] x 4H2O (2), is synthesized by the reduction of citrato molybdate with hydrazine hydrochloride in the presence of 2,2'-bipyridine (bpy), and a monomeric molybdenum(VI) citrate [MoO2(H2cit)(bpy)] x H2O (6) is also isolated and characterized structurally. The citrate ligand in the three neutral compounds uses the alpha-alkoxy and alpha-carboxy groups to chelate as a bidentate leaving the two beta-carboxylic acid groups free, that is different from the tridentate chelated mode in the citrato molybdate(VI and V) complexes. 1 and in solution show obvious dissociation based on 13C NMR studies.
Collapse
Affiliation(s)
- Zhao-Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | | | | | | | | |
Collapse
|
29
|
Modec B, Dolenc D, Kasunič M. Complexation of Molybdenum(V) with Glycolic Acid: An Unusual Orientation of Glycolato Ligand in {Mo2O4}2+ Complexes. Inorg Chem 2008; 47:3625-33. [DOI: 10.1021/ic7020726] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Modec
- Department of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Darko Dolenc
- Department of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Marta Kasunič
- Department of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
pH Dependent formations of dinuclear molybdenum(V) and incomplete cubane molybdenum(IV) complexes with nitrilotriacetate. INORG CHEM COMMUN 2007. [DOI: 10.1016/j.inoche.2007.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Li FY, Xu L, Gao GG, Fan LH, Bi B. Unusual Magnetic Behavior of a 2D Citrate-Bridged Dysprosium(III) Coordination Polymer. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Cui LF, Li DM, Wu JF, Cui XB, Wang TG, Xu JQ. Synthesis, structural determination and photochromism characterization of two complexes with [MO2(O2CCOPh2)2]2− cores [M=Mo or W]. J Mol Struct 2006. [DOI: 10.1016/j.molstruc.2006.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|