1
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
2
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
3
|
Boos JR, Jandrain HN, Hagiuda E, Taguchi AT, Hasegawa K, Fedun BL, Taylor SJ, Elad SM, Faber SE, Kumasaka T, Iwasaki T, Geldenhuys WJ. Structure and biological evaluation of Caenorhabditis elegans CISD-1/mitoNEET, a KLP-17 tail domain homologue, supports attenuation of paraquat-induced oxidative stress through a p38 MAPK-mediated antioxidant defense response. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2022; 6:100048. [PMID: 36533211 PMCID: PMC9757825 DOI: 10.1016/j.arres.2022.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
CISD-1/mitoNEET is an evolutionarily conserved outer mitochondrial membrane [2Fe-2S] protein that regulates mitochondrial function and morphology. The [2Fe-2S] clusters are redox reactive and shown to mediate oxidative stress in vitro and in vivo. However, there is limited research studying CISD-1/mitoNEET mediation of oxidative stress in response to environmental stressors. In this study, we have determined the X-ray crystal structure of Caenorhabditis elegans CISD-1/mitoNEET homologue and evaluated the mechanisms of oxidative stress resistance to the pro-oxidant paraquat in age-synchronized populations by generating C. elegans gain and loss of function CISD-1 models. The structure of the C. elegans CISD-1/mitoNEET soluble domain refined at 1.70-Å resolution uniquely shows a reversible disulfide linkage at the homo-dimeric interface and also represents the N-terminal tail domain for dimerization of the cognate kinesin motor protein KLP-17 involved in chromosome segregation dynamics and germline development of the nematode. Moreover, overexpression of CISD-1/mitoNEET in C. elegans has revealed beneficial effects on oxidative stress resistance against paraquat-induced reactive oxygen species generation, corroborated by increased activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade.
Collapse
Affiliation(s)
- Jacob R. Boos
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hanna N. Jandrain
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Emi Hagiuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Alexander T. Taguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Bailey L. Fedun
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah J. Taylor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sofhia M. Elad
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah E. Faber
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Werner J. Geldenhuys
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
4
|
Graham JE, Niks D, Zane GM, Gui Q, Hom K, Hille R, Wall JD, Raman CS. How a Formate Dehydrogenase Responds to Oxygen: Unexpected O 2 Insensitivity of an Enzyme Harboring Tungstopterin, Selenocysteine, and [4Fe–4S] Clusters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel E. Graham
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California92521, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - Qin Gui
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California92521, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - C. S. Raman
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| |
Collapse
|
5
|
Jeoung JH, Rünger S, Haumann M, Neumann B, Klemke F, Davis V, Fischer A, Dau H, Wollenberger U, Dobbek H. Bimetallic Mn, Fe, Co, and Ni Sites in a Four-Helix Bundle Protein: Metal Binding, Structure, and Peroxide Activation. Inorg Chem 2021; 60:17498-17508. [PMID: 34757735 DOI: 10.1021/acs.inorgchem.1c01919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimetallic active sites in enzymes catalyze small-molecule conversions that are among the top 10 challenges in chemistry. As different metal cofactors are typically incorporated in varying protein scaffolds, it is demanding to disentangle the individual contributions of the metal and the protein matrix to the activity. Here, we compared the structure, properties, and hydrogen peroxide reactivity of four homobimetallic cofactors (Mn(II)2, Fe(II)2, Co(II)2, Ni(II)2) that were reconstituted into a four-helix bundle protein. Reconstituted proteins were studied in solution and in crystals. All metals bind with high affinity and yield similar cofactor structures. Cofactor variants react with H2O2 but differ in their turnover rates, accumulated oxidation states, and trapped peroxide-bound intermediates. Varying the metal composition thus creates opportunities to tune the reactivity of the bimetallic cofactor and to study and functionalize reactive species.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- Department of Biology, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Stefan Rünger
- Department of Biology, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Bettina Neumann
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Friederike Klemke
- Department of Biology, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Victoria Davis
- Institute for Inorganic and Analytical Chemistry (IAAC), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.,Freiburg Material Research Center (FMF), University of Freiburg, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79104 Freiburg, Germany.,Cluster of Excellence livMatS@FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79104 Freiburg, Germany
| | - Anna Fischer
- Institute for Inorganic and Analytical Chemistry (IAAC), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.,Freiburg Material Research Center (FMF), University of Freiburg, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79104 Freiburg, Germany.,Cluster of Excellence livMatS@FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79104 Freiburg, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Holger Dobbek
- Department of Biology, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
6
|
Hausrath AC, Ramirez NA, Ly AT, McEvoy MM. The bacterial copper resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. J Biol Chem 2020; 295:11364-11376. [PMID: 32571874 DOI: 10.1074/jbc.ra120.013907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Indexed: 01/31/2023] Open
Abstract
CopG is an uncharacterized protein ubiquitous in Gram-negative bacteria whose gene frequently occurs in clusters of copper resistance genes and can be recognized by the presence of a conserved CxCC motif. To investigate its contribution to copper resistance, here we undertook a structural and biochemical characterization of the CopG protein from Pseudomonas aeruginosa Results from biochemical analyses of CopG purified under aerobic conditions indicate that it is a green copper-binding protein that displays absorbance maxima near 411, 581, and 721 nm and is monomeric in solution. Determination of the three-dimensional structure by X-ray crystallography revealed that CopG consists of a thioredoxin domain with a C-terminal extension that contributes to metal binding. We noted that adjacent to the CxCC motif is a cluster of four copper ions bridged by cysteine sulfur atoms. Structures of CopG in two oxidation states support the assignment of this protein as an oxidoreductase. On the basis of these structural and spectroscopic findings and also genetic evidence, we propose that CopG has a role in interconverting Cu(I) and Cu(II) to minimize toxic effects and facilitate export by the Cus RND transporter efflux system.
Collapse
Affiliation(s)
- Andrew C Hausrath
- Institute for Society and Genetics, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Alan T Ly
- Institute for Society and Genetics, University of California, Los Angeles, California, USA
| | - Megan M McEvoy
- Institute for Society and Genetics, University of California, Los Angeles, California, USA .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Newton MA, Knorpp AJ, Sushkevich VL, Palagin D, van Bokhoven JA. Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem Soc Rev 2020; 49:1449-1486. [DOI: 10.1039/c7cs00709d] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this critical review we examine the current state of our knowledge in respect of the nature of the active sites in copper containing zeolites for the selective conversion of methane to methanol.
Collapse
Affiliation(s)
- Mark A. Newton
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Amy J. Knorpp
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | - Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
- Laboratory for Catalysis and Sustainable Chemistry
| |
Collapse
|
8
|
Lisnyansky M, Yariv E, Segal O, Marom M, Loewenstein A, Ben-Tal N, Giladi M, Haitin Y. Metal Coordination Is Crucial for Geranylgeranyl Diphosphate Synthase–Bisphosphonate Interactions: A Crystallographic and Computational Analysis. Mol Pharmacol 2019; 96:580-588. [DOI: 10.1124/mol.119.117499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022] Open
|
9
|
Caldararu O, Oksanen E, Ryde U, Hedegård ED. Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase. Chem Sci 2019; 10:576-586. [PMID: 30746099 PMCID: PMC6334667 DOI: 10.1039/c8sc03980a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing metalloenzymes that can cleave the glycosidic link in polysaccharides. This could become crucial for production of energy-efficient biofuels from recalcitrant polysaccharides. Although LPMOs are considered oxygenases, recent investigations have shown that H2O2 can also act as a co-substrate for LPMOs. Intriguingly, LPMOs generate H2O2 in the absence of a polysaccharide substrate. Here, we elucidate a new mechanism for H2O2 generation starting from an AA10-LPMO crystal structure with an oxygen species bound, using QM/MM calculations. The reduction level and protonation state of this oxygen-bound intermediate has been unclear. However, this information is crucial to the mechanism. We therefore investigate the oxygen-bound intermediate with quantum refinement (crystallographic refinement enhanced with QM calculations), against both X-ray and neutron data. Quantum refinement calculations suggest a Cu(ii)-O-2 system in the active site of the AA10-LPMO and a neutral protonated -NH2 state for the terminal nitrogen atom, the latter in contrast to the original interpretation. Our QM/MM calculations show that H2O2 generation is possible only from a Cu(i) center and that the most favourable reaction pathway is to involve a nearby glutamate residue, adding two electrons and two protons to the Cu(ii)-O-2 system, followed by dissociation of H2O2.
Collapse
Affiliation(s)
- Octav Caldararu
- Division of Theoretical Chemistry , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden . ;
| | - Esko Oksanen
- European Spallation Source ESS ERIC , P. O. Box 176 , SE-221 00 Lund , Sweden
- Department of Biochemistry and Structural Biology , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden
| | - Ulf Ryde
- Division of Theoretical Chemistry , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden . ;
| | - Erik D Hedegård
- Division of Theoretical Chemistry , Lund University , Chemical Centre , P. O. Box 124 , SE-221 00 Lund , Sweden . ;
| |
Collapse
|
10
|
|
11
|
Kochem A, Molloy JK, Gellon G, Leconte N, Philouze C, Berthiol F, Jarjayes O, Thomas F. A Structurally Characterized Cu III Complex Supported by a Bis(anilido) Ligand and Its Oxidative Catalytic Activity. Chemistry 2017; 23:13929-13940. [PMID: 28742929 DOI: 10.1002/chem.201702010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 01/23/2023]
Abstract
Three copper(II) complexes of the (R,R)-N,N'-bis(3,5-di-tert-butyl-2-aminobenzylidene)-1,2-diaminocyclohexane ligand, namely [Cu(N L)], [Cu(N LH)]+ and [Cu(N LH2 )]2+ , were prepared and structurally characterized. In [Cu(N LH2 )]2+ the copper ion lies in an octahedral geometry with the aniline groups coordinated in equatorial positions. In [Cu(N L)] the anilines are deprotonated (anilido moieties) and coordinated to an almost square-planar metal ion. Complex [Cu(N L)] displays two oxidation waves at E1/2ox, 1 =-0.14 V and E1/2ox, 2 =0.36 V vs. Fc+ /Fc in CH2 Cl2 . Complex [Cu(N LH2 )]2+ displays an irreversible oxidation wave at high potential (1.21 V), but shows a readily accessible and reversible metal-centered reduction at E1/2red =-0.67 V (CuII /CuI redox couple). Oxidation of [Cu(N L)] by AgSbF6 produces [Cu(N L)](SbF6 ), which was isolated as single crystals. X-ray structure analysis discloses a contraction of the coordination sphere by 0.05 Å upon oxidation, supporting a metal-centered process. Complex [Cu(N L)](SbF6 ) displays an intense NIR band at 1260 nm corresponding to an anilido-to-copper(III) charge transfer transition. This compound slowly evolves in CH2 Cl2 solution towards [Cu(N LH)](SbF6 ), which is a copper(II) complex comprised of both anilido and aniline groups coordinated to the metal center. The copper(III) complex [Cu(N L)](SbF6 ) is an efficient catalyst for benzyl alcohol oxidation, with 236 TON in 24 h at 298 K, without additives other than oxygen and a base.
Collapse
Affiliation(s)
- Amélie Kochem
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Jennifer K Molloy
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Gisèle Gellon
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Nicolas Leconte
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Christian Philouze
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Florian Berthiol
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Olivier Jarjayes
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| |
Collapse
|
12
|
Hedegård ED, Ryde U. Multiscale Modelling of Lytic Polysaccharide Monooxygenases. ACS OMEGA 2017; 2:536-545. [PMID: 31457454 PMCID: PMC6641039 DOI: 10.1021/acsomega.6b00521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 05/27/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) enzymes have attracted considerable attention owing to their ability to enhance polysaccharide depolymerization, making them interesting with respect to production of biofuel from cellulose. LPMOs are metalloenzymes that contain a mononuclear copper active site, capable of activating dioxygen. However, many details of this activation are unclear. Some aspects of the mechanism have previously been investigated from a computational angle. Yet, either these studies have employed only molecular mechanics (MM), which are inaccurate for metal active sites, or they have described only the active site with quantum mechanics (QM) and neglected the effect of the protein. Here, we employ hybrid QM and MM (QM/MM) methods to investigate the first steps of the LPMO mechanism, which is reduction of CuII to CuI and the formation of a CuII-superoxide complex. In the latter complex, the superoxide can bind either in an equatorial or an axial position. For both steps, we obtain structures that are markedly different from previous suggestions, based on small QM-cluster calculations. Our calculations show that the equatorial isomer of the superoxide complex is over 60 kJ/mol more stable than the axial isomer because it is stabilized by interactions with a second-coordination-sphere glutamine residue, suggesting a possible role for this residue. The coordination of superoxide in this manner agrees with recent experimental suggestions.
Collapse
|
13
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Reschke S, Mebs S, Sigfridsson-Clauss KGV, Kositzki R, Leimkühler S, Haumann M. Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy. Inorg Chem 2017; 56:2165-2176. [DOI: 10.1021/acs.inorgchem.6b02846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefan Reschke
- Institut für
Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Silke Leimkühler
- Institut für
Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
15
|
Linder DP, Rodgers KR. Methanethiol Binding Strengths and Deprotonation Energies in Zn(II)-Imidazole Complexes from M05-2X and MP2 Theories: Coordination Number and Geometry Influences Relevant to Zinc Enzymes. J Phys Chem B 2015; 119:12182-92. [PMID: 26317178 DOI: 10.1021/acs.jpcb.5b07115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Zn(II) is used in nature as a biocatalyst in hundreds of enzymes, and the structure and dynamics of its catalytic activity are subjects of considerable interest. Many of the Zn(II)-based enzymes are classified as hydrolytic enzymes, in which the Lewis acidic Zn(II) center facilitates proton transfer(s) to a Lewis base, from proton donors such as water or thiol. This report presents the results of a quantum computational study quantifying the dynamic relationship between the zinc coordination number (CN), its coordination geometry, and the thermodynamic driving force behind these proton transfers originating from a charge-neutral methylthiol ligand. Specifically, density functional theory (DFT) and second-order perturbation theory (MP2) calculations have been performed on a series of [(imidazole)nZn-S(H)CH3](2+) and [(imidazole)nZn-SCH3](+) complexes with the CN varied from 1 to 6, n = 0-5. As the number of imidazole ligands coordinated to zinc increases, the S-H proton dissociation energy also increases, (i.e., -S(H)CH3 becomes less acidic), and the Zn-S bond energy decreases. Furthermore, at a constant CN, the S-H proton dissociation energy decreases as the S-Zn-(ImH)n angles increase about their equilibrium position. The zinc-coordinated thiol can become more or less acidic depending upon the position of the coordinated imidazole ligands. The bonding and thermodynamic relationships discussed may apply to larger systems that utilize the [(His)3Zn(II)-L] complex as the catalytic site, including carbonic anhydrase, carboxypeptidase, β-lactamase, the tumor necrosis factor-α-converting enzyme, and the matrix metalloproteinases.
Collapse
Affiliation(s)
- Douglas P Linder
- Department of Chemistry and Physics, Southwestern Oklahoma State University , Weatherford, Oklahoma 73096, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| |
Collapse
|
16
|
Laitaoja M, Valjakka J, Jänis J. Zinc coordination spheres in protein structures. Inorg Chem 2013; 52:10983-91. [PMID: 24059258 DOI: 10.1021/ic401072d] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.
Collapse
Affiliation(s)
- Mikko Laitaoja
- University of Eastern Finland , Department of Chemistry, P.O. Box 111, FI-80101 Joensuu, Finland
| | | | | |
Collapse
|
17
|
Hemsworth GR, Davies GJ, Walton PH. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 2013; 23:660-8. [PMID: 23769965 DOI: 10.1016/j.sbi.2013.05.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Recently the role of oxidative enzymes in the degradation of polysaccharides by saprophytic bacteria and fungi was uncovered, challenging the classical model of polysaccharide degradation of being solely via a hydrolytic pathway. 3D structural analyses of lytic polysaccharide mono-oxygenases of both bacterial AA10 (formerly CBM33) and fungal AA9 (formerly GH61) enzymes revealed structures with β-sandwich folds containing an active site with a metal coordinated by an N-terminal histidine. Following some initial confusion about the identity of the metal ion it has now been shown that these enzymes are copper-dependent oxygenases. Here we assess recent developments in the academic literature, focussing on the structures of the copper active sites. We provide critical comparisons with known small-molecules studies of copper-oxygen complexes and with copper methane monoxygenase, another of nature's powerful copper oxygenases.
Collapse
Affiliation(s)
- Glyn R Hemsworth
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | |
Collapse
|
18
|
Hemsworth GR, Taylor E, Kim RQ, Gregory RC, Lewis SJ, Turkenburg J, Parkin A, Davies GJ, Walton PH. The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 2013; 135:6069-77. [PMID: 23540833 PMCID: PMC3636778 DOI: 10.1021/ja402106e] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 12/16/2022]
Abstract
The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61.
Collapse
Affiliation(s)
- Glyn R. Hemsworth
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Edward
J. Taylor
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Robbert Q. Kim
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Rebecca C. Gregory
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Sally J. Lewis
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Johan
P. Turkenburg
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Alison Parkin
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| | - Paul H. Walton
- Department
of Chemistry, University of
York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
19
|
Kepp KP, Dasmeh P. Effect of Distal Interactions on O2 Binding to Heme. J Phys Chem B 2013; 117:3755-70. [DOI: 10.1021/jp400260u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kasper P. Kepp
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Pouria Dasmeh
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Sigfridsson KGV, Chernev P, Leidel N, Popović-Bijelić A, Gräslund A, Haumann M. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase. J Biol Chem 2013; 288:9648-9661. [PMID: 23400774 DOI: 10.1074/jbc.m112.438796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.
Collapse
Affiliation(s)
| | - Petko Chernev
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Nils Leidel
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Ana Popović-Bijelić
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Michael Haumann
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany.
| |
Collapse
|
21
|
Abstract
Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O(2) binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies.
Collapse
Affiliation(s)
- Megen A. Culpepper
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
22
|
Cotelesage JJ, Pushie MJ, Grochulski P, Pickering IJ, George GN. Metalloprotein active site structure determination: Synergy between X-ray absorption spectroscopy and X-ray crystallography. J Inorg Biochem 2012; 115:127-37. [DOI: 10.1016/j.jinorgbio.2012.06.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/30/2022]
|
23
|
Tomkowicz Z, Ostrovsky S, Foro S, Calvo-Perez V, Haase W. Magnetooptical and Structural Investigations of Five Dimeric Cobalt(II) Complexes Mimicking Metalloenzyme Active Sites. Inorg Chem 2012; 51:6046-55. [DOI: 10.1021/ic202529p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Z. Tomkowicz
- Eduard-Zintl-Institute
of Inorganic and Physical Chemistry, Darmstadt University of Technology, Petersenstrasse 20, 64287
Darmstadt, Germany
- Institute of Physics, Jagiellonian University, Reymonta 4,
30-059 Kraków, Poland
| | - S. Ostrovsky
- Eduard-Zintl-Institute
of Inorganic and Physical Chemistry, Darmstadt University of Technology, Petersenstrasse 20, 64287
Darmstadt, Germany
- Institute of Applied
Physics, Academy of Sciences of Moldova, Academy str. 5, MD-2028 Chisinau, Moldova
| | - S. Foro
- Clemens-Schoepf-Institute
of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Petersenstrasse 23, 64287
Darmstadt, Germany
| | - V. Calvo-Perez
- Facultad Ciencias
Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - W. Haase
- Eduard-Zintl-Institute
of Inorganic and Physical Chemistry, Darmstadt University of Technology, Petersenstrasse 20, 64287
Darmstadt, Germany
| |
Collapse
|
24
|
Leidel N, Popović-Bijelić A, Havelius KGV, Chernev P, Voevodskaya N, Gräslund A, Haumann M. High-valent [MnFe] and [FeFe] cofactors in ribonucleotide reductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:430-44. [PMID: 22222354 DOI: 10.1016/j.bbabio.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-Ia RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Ct R2, two different Mn(IV)Fe(III) site configurations were assigned either L(4)Mn(IV)(μO)(2)Fe(III)L(4) (metal-metal distance of ~2.75Å, L = ligand) prevailing in metal-grown R2, or L(4)Mn(IV)(μO)(μOH)Fe(III)L(4) (~2.90Å) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (~2.55Å) with a L(4)Fe(IV)(μO)(2)Fe(III)L(3) core structure. Several Mn,Fe(III)Fe(III) (~2.9-3.1Å) and Mn,Fe(III)Fe(II) species (~3.3-3.4Å) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit R1. In Ct R2, the protonation of a bridging oxide in the Mn(IV)(μO)(μOH)Fe(III) core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.
Collapse
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Ferguson-Miller S, Hiser C, Liu J. Gating and regulation of the cytochrome c oxidase proton pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:489-94. [PMID: 22172738 DOI: 10.1016/j.bbabio.2011.11.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
As a consumer of 95% of the oxygen we breathe, cytochrome c oxidase plays a major role in the energy balance of the cell. Regulation of its oxygen reduction and proton pumping activity is therefore critical to physiological function in health and disease. The location and structure of pathways for protons that are required to support cytochrome c oxidase activity are still under debate, with respect to their requirements for key residues and fixed waters, and how they are gated to prevent (or allow) proton backflow. Recent high resolution structures of bacterial and mammalian forms reveal conserved lipid and steroid binding sites as well as redox-linked conformational changes that provide new insights into potential regulatory ligands and gating modes. Mechanistic interpretation of these findings and their significance for understanding energy regulation is discussed.
Collapse
|
26
|
Iwasaki T, Kappl R, Bracic G, Shimizu N, Ohmori D, Kumasaka T. ISC-like [2Fe-2S] ferredoxin (FdxB) dimer from Pseudomonas putida JCM 20004: structural and electron-nuclear double resonance characterization. J Biol Inorg Chem 2011; 16:923-35. [PMID: 21647778 DOI: 10.1007/s00775-011-0793-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/16/2011] [Indexed: 12/11/2022]
Abstract
The crystal structure of the ISC-like [2Fe-2S] ferredoxin (FdxB), probably involved in the de novo iron-sulfur cluster biosynthesis (ISC) system of Pseudomonas putida JCM 20004, was determined at 1.90-Å resolution and displayed a novel tail-to-tail dimeric form. P. putida FdxB lacks the consensus free cysteine usually present near the cluster of ISC-like ferredoxins, indicating its primarily electron transfer role in the iron-sulfur cluster. Orientation-selective electron-nuclear double resonance spectroscopic analysis of reduced FdxB in conjunction with the crystal structure has identified the innermost Fe2 site with a high positive spin population as the nonreducible iron retaining the Fe(3+) valence and the outermost Fe1 site as the reduced iron with a low negative spin density. The average g (max) direction is skewed, forming an angle of about 27.3° (±4°) with the normal of the [2Fe-2S] plane, whereas the g (int) and g (min) directions are distributed in the cluster plane, presumably tilted by the same angle with respect to this plane. These results are related to those for other [2Fe-2S] proteins in different electron transport chains (e.g. adrenodoxin) and suggest a significant distortion of the electronic structure of the reduced [2Fe-2S] cluster under the influence of the protein environment around each iron site in general.
Collapse
Affiliation(s)
- Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Li X, Hayik SA, Merz KM. QM/MM X-ray refinement of zinc metalloenzymes. J Inorg Biochem 2010; 104:512-22. [PMID: 20116858 DOI: 10.1016/j.jinorgbio.2009.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/28/2009] [Accepted: 12/30/2009] [Indexed: 11/16/2022]
Abstract
Zinc metalloenzymes play an important role in biology. However, due to the limitation of molecular force field energy restraints used in X-ray refinement at medium or low resolutions, the precise geometry of the zinc coordination environment can be difficult to distinguish from ambiguous electron density maps. Due to the difficulties involved in defining accurate force fields for metal ions, the QM/MM (quantum-mechanical/molecular-mechanical) method provides an attractive and more general alternative for the study and refinement of metalloprotein active sites. Herein we present three examples that indicate that QM/MM based refinement yields a superior description of the crystal structure based on R and R(free) values and on the inspection of the zinc coordination environment. It is concluded that QM/MM refinement is an useful general tool for the improvement of the metal coordination sphere in metalloenzyme active sites.
Collapse
Affiliation(s)
- Xue Li
- Department of Chemistry and the Quantum Theory Project, 2328 New Physics Building, PO Box 118435, University of Florida, Gainesville, FL 32611-8435, USA
| | | | | |
Collapse
|
29
|
Ginotra YP, Kulkarni PP. Solution Structure of Physiological Cu(His)2: Novel Considerations into Imidazole Coordination. Inorg Chem 2009; 48:7000-2. [DOI: 10.1021/ic9010983] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yamini P. Ginotra
- Biometry and Nutrition Group, Animal Sciences Division, Agharkar Research Institute, Pune 411 004, India
| | - Prasad P. Kulkarni
- Biometry and Nutrition Group, Animal Sciences Division, Agharkar Research Institute, Pune 411 004, India
| |
Collapse
|
30
|
Stripp S, Sanganas O, Happe T, Haumann M. The Structure of the Active Site H-Cluster of [FeFe] Hydrogenase from the Green Alga Chlamydomonas reinhardtii Studied by X-ray Absorption Spectroscopy. Biochemistry 2009; 48:5042-9. [DOI: 10.1021/bi900010b] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sven Stripp
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Oliver Sanganas
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Thomas Happe
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
31
|
Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC. Crystal structure of a two-domain multicopper oxidase: implications for the evolution of multicopper blue proteins. J Biol Chem 2009; 284:10174-80. [PMID: 19224923 PMCID: PMC2665071 DOI: 10.1074/jbc.m900179200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/06/2009] [Indexed: 11/06/2022] Open
Abstract
The two-domain multicopper oxidases are proposed to be key intermediates in the evolution of three-domain multicopper oxidases. A number of two-domain multicopper oxidases have been identified from genome sequences and are classified as type A, type B, or type C on the basis of the predicted location of the type 1 copper center. The crystal structure of blue copper oxidase, a type C two-domain multicopper oxidase from Nitrosomonas europaea, has been determined to 1.9 A resolution. Blue copper oxidase is a trimer, of which each subunit comprises two cupredoxin domains. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The coordination geometry at the trinuclear copper site is consistent with reduction of the copper ions. Although the overall architecture of blue copper oxidase is similar to nitrite reductases, detailed structural alignments show that the fold and domain orientation more closely resemble the three-domain multicopper oxidases. These observations have important implications for the evolution of nitrite reductases and multicopper oxidases.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
32
|
Voevodskaya N, Lendzian F, Sanganas O, Grundmeier A, Gräslund A, Haumann M. Redox Intermediates of the Mn-Fe Site in Subunit R2 of Chlamydia trachomatis Ribonucleotide Reductase. J Biol Chem 2009; 284:4555-66. [DOI: 10.1074/jbc.m807190200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Jackson CJ, Hadler KS, Carr PD, Oakley AJ, Yip S, Schenk G, Ollis DL. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal-ion preference. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:681-5. [PMID: 18678932 DOI: 10.1107/s1744309108017600] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 06/11/2008] [Indexed: 11/10/2022]
Abstract
The structure of a malonate-bound form of the glycerophosphodiesterase from Enterobacter aerogenes, GpdQ, has been refined at a resolution of 2.2 A to a final R factor of 17.1%. The structure was originally solved to 2.9 A resolution using SAD phases from Zn2+ metal ions introduced into the active site of the apoenzyme [Jackson et al. (2007), J. Mol. Biol. 367, 1047-1062]. However, the 2.9 A resolution was insufficient to discern significant details of the architecture of the binuclear metal centre that constitutes the active site. Furthermore, kinetic analysis revealed that the enzyme lost a significant amount of activity in the presence of Zn2+, suggesting that it is unlikely to be a catalytically relevant metal ion. In this communication, a higher resolution structure of GpdQ is presented in which malonate is visibly coordinated in the active site and analysis of the native metal-ion preference is presented using atomic absorption spectroscopy and anomalous scattering. Catalytic implications of the structure and its Fe2+ metal-ion preference are discussed.
Collapse
Affiliation(s)
- Colin J Jackson
- Research School of Chemistry, Australian National University, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Methanotrophic bacteria oxidize methane to methanol in the first step of their metabolic pathway. Two forms of methane monooxygenase (MMO) enzymes catalyze this reaction: soluble MMO (sMMO) and membrane-bound or particulate MMO (pMMO). pMMO is expressed when copper is available, and its active site is believed to contain copper. Whereas sMMO is well characterized, most aspects of pMMO biochemistry remain unknown and somewhat controversial. This review emphasizes advances in the past two to three years related to pMMO and to copper uptake and copper-dependent regulation in methanotrophs. The pMMO metal centers have been characterized spectroscopically, and the first pMMO crystal structure has been determined. Significant effort has been devoted to improving in vitro pMMO activity. Proteins involved in sMMO regulation and additional copper-regulated proteins have been identified, and the Methylococcus capsulatus (Bath) genome has been sequenced. Finally, methanobactin (mb), a small copper chelator proposed to facilitate copper uptake, has been characterized.
Collapse
Affiliation(s)
- Amanda S Hakemian
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
35
|
Kovacs JA, Brines LM. Understanding how the thiolate sulfur contributes to the function of the non-heme iron enzyme superoxide reductase. Acc Chem Res 2007; 40:501-9. [PMID: 17536780 PMCID: PMC3703784 DOI: 10.1021/ar600059h] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Toxic superoxide radicals, generated via adventitious reduction of dioxygen, have been implicated in a number of disease states. The cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR) degrades superoxide via reduction. Biomimetic analogues which provide insight into why nature utilizes a trans-thiolate to promote SOR function are described. Spectroscopic and/or structural characterization of the first examples of thiolate-ligated Fe (III)-peroxo complexes provides important benchmark parameters for the identification of biological intermediates. Oxidative addition of superoxide is favored by low redox potentials. The trans influence of the thiolate appears to significantly weaken the Fe-O peroxo bond, favoring proton-induced release of H 2O 2 from a high-spin Fe(III)-OOH complex.
Collapse
Affiliation(s)
- Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
36
|
Fettouhi M, Wazeer MIM, Isab AA. Zinc halide complexes of imidazolidine-2-thione and its derivatives: X-ray structures, solid state, solution NMR and antimicrobial activity studies. J COORD CHEM 2007. [DOI: 10.1080/00958970600780965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohammed Fettouhi
- a Department of Chemistry , King Fahd University of Petroleum and Minerals , Dhahran 31261, Saudi Arabia
| | - Mohamed I. M. Wazeer
- a Department of Chemistry , King Fahd University of Petroleum and Minerals , Dhahran 31261, Saudi Arabia
| | - Anvarhusein A. Isab
- a Department of Chemistry , King Fahd University of Petroleum and Minerals , Dhahran 31261, Saudi Arabia
| |
Collapse
|
37
|
George GN, Nelson KJ, Harris HH, Doonan CJ, Rajagopalan KV. Interaction of product analogues with the active site of rhodobacter sphaeroides dimethyl sulfoxide reductase. Inorg Chem 2007; 46:3097-104. [PMID: 17361996 PMCID: PMC1945231 DOI: 10.1021/ic0619052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a structural characterization using X-ray absorption spectroscopy of Rhodobacter sphaeroides dimethyl sulfoxide (DMSO) reductase reduced with trimethylarsine and show that this is structurally analogous to the physiologically relevant dimethyl sulfide reduced DMSO reductase. Our data unambiguously indicate that these species should be regarded as formal MoIV species and indicate a classical coordination complex of trimethylarsine oxide, with no special structural distortions. The similarity of the trimethylarsine and dimethyl sulfide complexes suggests, in turn, that the dimethyl sulfide reduced enzyme possesses a classical coordination of DMSO with no special elongation of the S-O bond, as previously suggested.
Collapse
Affiliation(s)
- Graham N George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | |
Collapse
|
38
|
Theoretically optimized geometry based qualitative explanations for the 1H NMR and voltammetry behaviors of [Mg(OBTTAP)]. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Periyasamy G, Sundararajan M, Hillier IH, Burton NA, McDouall JJW. The binding of nitric oxide at the Cu(i) site of copper nitrite reductase and of inorganic models: DFT calculations of the energetics and EPR parameters of side-on and end-on structures. Phys Chem Chem Phys 2007; 9:2498-506. [PMID: 17508082 DOI: 10.1039/b701083d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations have been used to probe the end-on and side-on bonding motifs of nitric oxide at the Cu(i) centre in the enzyme copper nitrite reductase and in three inorganic model systems. We find that irrespective of a range of functionals used, the end-on structure is preferred by up to 40 kJ mol(-1), although this preference is smaller for the enzyme than for the inorganic model systems. We have calculated the g-tensor and atomic hyperfine coupling constants for these structures. When compared to available experimental data, for one model compound the calculated EPR parameters definitely favour an end-on structure, although this preference is somewhat less for the enzyme. Our prediction of NO end-on binding in the enzyme is at variance with structural data.
Collapse
Affiliation(s)
- Ganga Periyasamy
- School of Chemistry, University of Manchester, Manchester, UKM13 9PL, UK
| | | | | | | | | |
Collapse
|
40
|
Jackson C, Carr P, Kim HK, Liu JW, Herrald P, Mitić N, Schenk G, Smith C, Ollis D. Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochem J 2006; 397:501-8. [PMID: 16686603 PMCID: PMC1533316 DOI: 10.1042/bj20060276] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial phosphotriesterases are binuclear metalloproteins for which the catalytic mechanism has been studied with a variety of techniques, principally using active sites reconstituted in vitro from apoenzymes. Here, atomic absorption spectroscopy and anomalous X-ray scattering have been used to determine the identity of the metals incorporated into the active site in vivo. We have recombinantly expressed the phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in medium supplemented with 1 mM CoCl2 and in unsupplemented medium. Anomalous scattering data, collected from a single crystal at the Fe-K, Co-K and Zn-K edges, indicate that iron and cobalt are the primary constituents of the two metal-binding sites in the catalytic centre (alpha and beta) in the protein expressed in E. coli grown in supplemented medium. Comparison with OpdA expressed in unsupplemented medium demonstrates that the cobalt present in the supplemented medium replaced zinc at the beta-position of the active site, which results in an increase in the catalytic efficiency of the enzyme. These results suggest an essential role for iron in the catalytic mechanism of bacterial phosphotriesterases, and that these phosphotriesterases are natively heterobinuclear iron-zinc enzymes.
Collapse
Affiliation(s)
- Colin J. Jackson
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Paul D. Carr
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Hye-Kyung Kim
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
| | - Paul Herrald
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Nataša Mitić
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- †School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Clyde A. Smith
- ‡Stanford Linear Accelerator Center/Stanford Synchrotron Radiation Laboratory (SLAC/SSRL), MS:99, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A
| | - David L. Ollis
- *Research School of Chemistry, Building 35, Australian National University, Canberra, ACT 0200, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Mesu JG, Beale AM, de Groot FMF, Weckhuysen BM. Probing the Influence of X-rays on Aqueous Copper Solutions Using Time-Resolved in Situ Combined Video/X-ray Absorption Near-Edge/Ultraviolet−Visible Spectroscopy. J Phys Chem B 2006; 110:17671-7. [PMID: 16942113 DOI: 10.1021/jp062618m] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a microreactor. This series included both non biologically relevant (pyridine, bipyridine, neocuproine, terpyridine, dimethylpyridine, ammonia, ethylenediamine, and 1,10-phenanthroline) and biologically relevant (histidine, glycine, and imidazole) ligands. It was found that when water is present as solvent, gas bubbles are formed under the influence of the X-ray beam. At the liquid-gas interface of these bubbles, in particular cases colloidal copper nanoparticles are formed. This reduction process was found to be influenced by the type of copper precursor salt (SO(4)(2-), NO(3)(-), and Cl(-)), the ligands surrounding the copper cation, and the redox potential of the copper complexes (ranging between +594 and -360 mV). In other words, in some cases, no reduction was encountered (e.g., ammonia in the presence of SO(4)(2-) and NO(3)(-)), whereas in other cases reduction to either Cu(+) (neocuproine with SO(4)(2-)) or Cu(0) (e.g., histidine and imidazole both with SO(4)(2-), NO(3)(-), and Cl(-)) was observed. These results illustrate the added value of video spectroscopy for the interpretation of in situ XANES studies. Not only do the results give an illustration of the parameters that are important in the redox processes that occur in biological systems, they also show the potential problems associated with studying catalytic processes in aqueous solutions by XANES spectroscopy.
Collapse
Affiliation(s)
- J Gerbrand Mesu
- Inorganic Chemistry and Catalysis, Department of Chemistry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
42
|
Glesne D, Vogt S, Maser J, Legnini D, Huberman E. Regulatory properties and cellular redistribution of zinc during macrophage differentiation of human leukemia cells. J Struct Biol 2006; 155:2-11. [PMID: 16495082 DOI: 10.1016/j.jsb.2005.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/22/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Many proteins require the binding of trace metals such as Ca, Fe, Cu, or Zn, which may modulate their structure, function, or activity. To determine if there were any overall changes in metalloprotein distribution or metal concentration during the process of macrophage differentiation we induced human myeloid HL-60 leukemia cells with phorbol 12-myristate 13-acetate (PMA) and quantitatively mapped their metal content using hard X-ray fluorescence micro-analysis. We found a transient increase in the zinc content of HL-60 cell nuclei during the early stages of differentiation induction. This finding was confirmed by spectrofluorometry in HL-60 cells and extended to U-937 leukemia cells. A role for protein kinase C-beta (PKC-beta) in this process was established by examining zinc content in an HL-60 variant, HL-525, which is PKC-beta deficient, and in HL-525 cells in which PKC-beta was restored by stable overexpression. Chemical chelation of both Cu and Zn served to inhibit macrophage differentiation in HL-60 cells, indicating a requirement for these metals during this process. Finally, we demonstrate that growth of HL-60 cells in a low-zinc environment removes their susceptibility to PMA-induced differentiation, and that this capacity can be partially restored by the addition of exogenous zinc.
Collapse
Affiliation(s)
- David Glesne
- Biosciences Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439, USA
| | | | | | | | | |
Collapse
|
43
|
Smirnov VV, Brinkley DW, Lanci MP, Karlin KD, Roth JP. Probing metal-mediated O2 activation in chemical and biological systems. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcata.2006.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Choi DW, Antholine WE, Do YS, Semrau JD, Kisting CJ, Kunz RC, Campbell D, Rao V, Hartsel SC, DiSpirito AA. Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath. Microbiology (Reading) 2005; 151:3417-3426. [PMID: 16207923 DOI: 10.1099/mic.0.28169-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Improvements in the purification of methanobactin (mb) from eitherMethylosinus trichosporiumOB3bTorMethylococcus capsulatusBath resulted in preparations that stimulated methane-oxidation activity in both whole-cell and cell-free fractions ofMethylococcus capsulatusBath expressing the membrane-associated methane monooxygenase (pMMO). By using washed membrane factions with pMMO activities in the 290 nmol propylene oxidized min−1(mg protein)−1range, activities approaching 400 nmol propylene oxidized min−1(mg protein)−1were commonly observed following addition of copper-containing mb (Cu–mb), which represented 50–75 % of the total whole-cell activity. The stimulation of methane-oxidation activity by Cu–mb was similar to or greater than that observed with equimolar concentrations of Cu(II), without the inhibitory effects observed with high copper concentrations. Stimulation of pMMO activity was not observed with copper-free mb, nor was it observed when the copper-to-mb ratio was <0·5 Cu atoms per mb. The electron paramagnetic resonance (EPR) spectra of mb differed depending on the copper-to-mb ratio. At copper-to-mb ratios of <0·4 Cu(II) per mb, Cu(II) addition to mb showed an initial coordination by both sulfur and nitrogen, followed by reduction to Cu(I) in <2 min. At Cu(II)-to-mb ratios between 0·4 and 0·9 Cu(II) per mb, the intensity of the Cu(II) signal in EPR spectra was more representative of the Cu(II) added and indicated more nitrogen coordination. The EPR spectral properties of mb and pMMO were also examined in the washed membrane fraction following the addition of Cu(II), mb and Cu–mb in the presence or absence of reductants (NADH or duroquinol) and substrates (CH4and/or O2). The results indicated that Cu–mb increased electron flow to the pMMO, increased the free radical formed following the addition of O2and decreased the residual free radical following the addition of O2plus CH4. The increase in pMMO activity and EPR spectral changes to the pMMO following Cu–mb addition represent the first positive evidence of interactions between the pMMO and Cu–mb.
Collapse
Affiliation(s)
- Dong W Choi
- Department of Biochemistry, Biophysics and Molecular Biology, 4164 Molecular Biology Building, Iowa State University, Ames, IA 50011-3211, USA
| | - William E Antholine
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Young S Do
- Department of Biochemistry, Biophysics and Molecular Biology, 4164 Molecular Biology Building, Iowa State University, Ames, IA 50011-3211, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Clint J Kisting
- Department of Biochemistry, Biophysics and Molecular Biology, 4164 Molecular Biology Building, Iowa State University, Ames, IA 50011-3211, USA
| | - Ryan C Kunz
- Department of Biochemistry, Biophysics and Molecular Biology, 4164 Molecular Biology Building, Iowa State University, Ames, IA 50011-3211, USA
| | - Damon Campbell
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702, USA
| | - Vinay Rao
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702, USA
| | - Scott C Hartsel
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702, USA
| | - Alan A DiSpirito
- Department of Biochemistry, Biophysics and Molecular Biology, 4164 Molecular Biology Building, Iowa State University, Ames, IA 50011-3211, USA
| |
Collapse
|
45
|
Mezei G, McGrady JE, Raptis RG. First Structural Characterization of a Delocalized, Mixed-Valent, Triangular Cu37+ Species: Chemical and Electrochemical Oxidation of a CuII3(μ3-O) Pyrazolate and Electronic Structure of the Oxidation Product. Inorg Chem 2005; 44:7271-3. [PMID: 16212340 DOI: 10.1021/ic050729e] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical or electrochemical one-electron oxidation of the all-CuII complex [Cu3(mu3-O)(mu-pz)3X3]2- leads to its formally CuII2CuIII analogue (pz = pyrazolato anion; X = Cl- and PhCOO-). The X-ray single-crystal structure and density functional theory analysis of the latter agree in revealing the delocalized nature of its mixed-valent Cu3(7+) core.
Collapse
Affiliation(s)
- Gellert Mezei
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346
| | | | | |
Collapse
|
46
|
Lieberman RL, Rosenzweig AC. The quest for the particulate methane monooxygenase active site. Dalton Trans 2005:3390-6. [PMID: 16234916 DOI: 10.1039/b506651d] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Particulate methane monooxygenase is a copper-containing, membrane-bound metalloenzyme that converts methane to methanol in Nature. How pMMO accomplishes this difficult reaction under ambient conditions is one of the major unsolved problems in bioinorganic chemistry. Despite considerable research efforts in the past 20 years, the active site of the enzyme remains unknown. We recently solved the first crystal structure of pMMO to 2.8 è resolution, revealing the overall structure, oligomerization state, subunit ratio, and composition and location of the metal centers. Almost none of the key structural features were predicted. In this Perspective, we review the state of knowledge before and after the structure determination, emphasizing elucidation of the pMMO active site.
Collapse
Affiliation(s)
- Raquel L Lieberman
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|