1
|
Bhattacharya S, Nevonen DE, Auty AJ, Graf A, Appleby M, Chaudhri N, Chekulaev D, Brückner C, Chauvet AAP, Nemykin VN. Photophysical Exploration of Two Isomers of Octaethyltrioxopyrrocorphin. J Phys Chem A 2023; 127:7694-7706. [PMID: 37690121 DOI: 10.1021/acs.jpca.3c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The introduction of three β-oxosubstituents to octaethylporphyrin by means of an oxidation/rearrangement reaction generates the trioxopyrrocorphin chromophore. Pyrrocorphins (hexahydroporphyrins) are generally nonaromatic, but we recently demonstrated trioxopyrrocorphins to possess considerable aromatic character. This contribution explores the photophysical characteristics of these unusual chromophores. In agreement with density functional theory modeling, the UV-vis and magnetic circular dichroism spectra of the two─out of the four possible─triketone regioisomers investigated conform to the Gouterman model of porphyrinoid optical spectra, in alignment with their aromaticity. Their excited-state dynamics shed further light on the degree to which β-oxo substitutions tune the photophysical properties of porphyrinoids. Introduction of β-oxo functionalities increases the rate and yield of intersystem crossing and shortens the triplet state lifetime. Unexpectedly, the singlet oxygen generation yield of both pyrrocorphins remains relatively high, with modes of distortion from planarity likely enhancing triplet energy transfer. This work thus expands our understanding of a rare class of porphyrinoids and further characterizes them as sustaining aromatic porphyrinic π-systems. Our findings suggest triple β-oxo substitution as a viable route toward the development of novel, high-singlet oxygen yield porphyrinic photosensitizers.
Collapse
Affiliation(s)
- Sayantan Bhattacharya
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K
| | - Dustin E Nevonen
- Department of Chemistry, University of Tennessee, 1420 Circle Dr., Knoxville, Tennessee 37996-1600, United States
| | - Alexander J Auty
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K
| | - Arthur Graf
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K
| | - Martin Appleby
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K
| | - Nivedita Chaudhri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Adrien A P Chauvet
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, U.K
| | - Victor N Nemykin
- Department of Chemistry, University of Tennessee, 1420 Circle Dr., Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
2
|
Chaudhri N, Guberman-Pfeffer MJ, Zeller M, Brückner C. Stepwise Reduction of β-Trioxopyrrocorphins: Collapse of the Oxo-Induced Macrocycle Aromaticity. J Org Chem 2022; 87:7179-7192. [PMID: 35605247 DOI: 10.1021/acs.joc.2c00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diatropic ring current that characterizes the unexpectedly aromatic octaethyltrioxopyrrocorphins gets drastically reduced upon chemical reduction of one and particularly two ketone moieties. With increasing reduction, the chromophores containing one pyrrole, one/two pyrrolinone, and one/two pyrrolines become more similar to regular, nonmacrocycle-aromatic pyrrocorphins (hexahydroporphyrins). Single-crystal diffraction analysis shows the reduction products to be idealized planar. With increasing reduction, their UV-vis spectroscopic signatures are those of conjugated but nonaromatic oligopyrroles. Their diatropic ring currents, as assessed by 1H NMR spectroscopy, showed them to possess largely nonaromatic π-systems. Dihydroxylation of select β,β'-dioxobacteriochlorin and β,β'-dioxoisobacteriochlorins also resulted in the formation of equivalent mixed pyrrole/two pyrrolinone/pyrroline chromophores. Computations were able to reproduce the experimental trends of the diatropic ring currents and filled in the data for the regioisomers that could not be experimentally accessed. The work further highlights the electronic influence of the β-oxo-substituents and, more specifically, the origin of the aromaticity of the trioxopyrrocorphins. It also presents a series of chemically robust pyrrocorphins, a chromophore class for which many chemically very sensitive members have been reported.
Collapse
Affiliation(s)
- Nivedita Chaudhri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Chaudhri N, Guberman-Pfeffer MJ, Li R, Zeller M, Brückner C. β-Trioxopyrrocorphins: pyrrocorphins of graded aromaticity. Chem Sci 2021; 12:12292-12301. [PMID: 34603659 PMCID: PMC8480330 DOI: 10.1039/d1sc03403k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
Octaethyltrioxopyrrocorphins unexpectedly show macrocycle-aromatic properties, even though they contain the macrocyclic π-system of the non-aromatic pyrrocorphins (hexahydroporphyrins). Two of the four possible triketone regioisomers were first reported in 1969 by one-pot oxidation of octaethylporphyrin but remained essentially unexplored since. We detail here the targeted preparation of the remaining two triketone isomers and the optical and NMR spectroscopic properties of all isomers. All four regioisomers possess unique electronic properties, including broadly varying degrees of diatropicity that were experimentally determined using 1H NMR spectroscopy and computationally verified. Structural patterns modulating the aromaticity were recognized. These differences highlight the regioisomerically differentiated influences of the three β-oxo-functionalities. We also present the solid state structure of the two most common isomers (in their free base form or as zinc complexes), allowing further conclusions to be made about the resonance structures present in these triketones. Remarkably, also, the halochromic properties of the triketones differ sharply from those of regular (hydro)porphyrins, providing further support for the proposed 16-membered, 18 π-electron aromatic ring-current. The work conceptually expands the understanding of tris-modified hydroporphyrinoid analogues and the factors that enable and control porphyrinoid aromaticity.
Collapse
Affiliation(s)
- Nivedita Chaudhri
- Department of Chemistry, University of Connecticut Storrs CT 06269-3060 USA
| | | | - Ruoshi Li
- Department of Chemistry, University of Connecticut Storrs CT 06269-3060 USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907-2084 USA
| | - Christian Brückner
- Department of Chemistry, University of Connecticut Storrs CT 06269-3060 USA
| |
Collapse
|
4
|
Brückner C, Chaudhri N, Nevonen DE, Bhattacharya S, Graf A, Kaesmann E, Li R, Guberman-Pfeffer MJ, Mani T, Nimthong-Roldán A, Zeller M, Chauvet AAP, Nemykin V. Structural and Photophysical Characterization of All Five Constitutional Isomers of the Octaethyl-β,β'-dioxo-bacterio- and -isobacteriochlorin Series. Chemistry 2021; 27:16189-16203. [PMID: 34535932 DOI: 10.1002/chem.202103014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/11/2022]
Abstract
It is well-known that treatment of β-octaethylporphyrin with H2 O2 /conc. H2 SO4 converts it to a β-oxochlorin as well as all five constitutional isomers of the corresponding β,β'-dioxo-derivatives: two bacteriochlorin-type isomers (β-oxo groups at opposite pyrrolic building blocks) and three isobacteriochlorin-type isomers (β-oxo-groups at adjacent pyrrolic building blocks). By virtue of the presence of the strongly electronically coupled β-oxo auxochromes, none of the chromophores are archetypical chlorins, bacteriochlorins, or isobacteriochlorins. Here the authors present, inter alia, the single crystal X-ray structures of all free-base diketone isomers and a comparative description of their UV-vis absorption spectra in neutral and acidic solutions, and fluorescence emission and singlet oxygen photosensitization properties, Magnetic Circular Dichroism (MCD) spectra, and singlet excited state lifetimes. DFT computations uncover underlying tautomeric equilibria and electronic interactions controlling their electronic properties, adding to the understanding of porphyrinoids carrying β-oxo functionalities. This comparative study lays the basis for their further study and utilization.
Collapse
Affiliation(s)
- Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
| | - Nivedita Chaudhri
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba Winnipeg, Manitoba, R3T 2 N2, Canada
| | - Sayantan Bhattacharya
- Department of Chemistry, University of Sheffield Dainton Building, Sheffield, S3 7HF, United Kingdom
| | - Arthur Graf
- Department of Chemistry, University of Sheffield Dainton Building, Sheffield, S3 7HF, United Kingdom
| | - Elizabeth Kaesmann
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
| | - Ruoshi Li
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
| | | | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
| | - Arunpatcha Nimthong-Roldán
- Department of Chemistry, Youngstown State University One University Plaza, Youngstown, OH 44555-3663, United States
| | - Matthias Zeller
- Department of Chemistry, Youngstown State University One University Plaza, Youngstown, OH 44555-3663, United States.,Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, United States
| | - Adrien A P Chauvet
- Department of Chemistry, University of Sheffield Dainton Building, Sheffield, S3 7HF, United Kingdom
| | - Victor Nemykin
- Department of Chemistry, University of Manitoba Winnipeg, Manitoba, R3T 2 N2, Canada.,Department of Chemistry, University of Tennessee, 552 Buehler Hall, 1420 Circle Dr., Knoxville, TN, 37996-1600, United States
| |
Collapse
|
5
|
Gibbons D, Flanagan KJ, Pounot L, Senge MO. Structure and conformation of photosynthetic pigments and related compounds. 15. Conformational analysis of chlorophyll derivatives – implications for hydroporphyrinsin vivo. Photochem Photobiol Sci 2019; 18:1479-1494. [DOI: 10.1039/c8pp00500a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Controlling the function of chlorophylls depends in part on their 3D conformation. The NSD program presents a powerful tool to identify the distortion modes in phytochlorins.
Collapse
Affiliation(s)
- Dáire Gibbons
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Keith J. Flanagan
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Léa Pounot
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| | - Mathias O. Senge
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- the University of Dublin
| |
Collapse
|
6
|
Cook BJ, Pink M, Chen C, Caulton KG. Electrophile Recruitment as a Structural Element in Bis‐Pyrazolate Pyridine Complex Aggregation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brian J. Cook
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| | - Maren Pink
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
- Indiana University Molecular Structure Center Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| | - Chun‐Hsing Chen
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
- Indiana University Molecular Structure Center Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| | - Kenneth G. Caulton
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| |
Collapse
|
7
|
Purtaş S, Köse M, Tümer F, Tümer M, Gölcü A, Ceyhan G. A novel porphyrin derivative and its metal complexes: Electrochemical, photoluminescence, thermal, DNA-binding and superoxide dismutase activity studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Taniguchi M, Ptaszek M, McDowell BE, Boyle PD, Lindsey JS. Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. III. Spectral and structural properties. Tetrahedron 2007; 63:3850-3863. [PMID: 17479169 PMCID: PMC1865128 DOI: 10.1016/j.tet.2007.02.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The availability of stable chlorins bearing few or no substituents has enabled a variety of fundamental studies. The studies described herein report absorption spectra of diverse chlorins, comparative NMR features of chlorins bearing 0-3 meso-aryl substituents, and X-ray structures of the fully unsubstituted chlorin and the oxochlorin.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | | | | | | | | |
Collapse
|
9
|
Cai S, Shokhireva TK, Lichtenberger DL, Walker FA. NMR and EPR studies of chloroiron(III) tetraphenyl-chlorin and its complexes with imidazoles and pyridines of widely differing basicities. Inorg Chem 2006; 45:3519-31. [PMID: 16634582 PMCID: PMC2504473 DOI: 10.1021/ic0515352] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NMR and EPR spectra of two bisimidazole and three bispyridine complexes of tetraphenylchlorinatoiron(III), [(TPC)Fe(L)2]+ (L = Im-d4, 2-MeHIm, 4-Me2NPy, Py, and 4-CNPy), have been investigated. The full resonance assignments of the [(TPC)Fe(L)2]+ complexes of this study have been made from correlation spectroscopy (COSY) and nuclear Overhauser enhancement spectroscopy (NOESY) experiments and Amsterdam density functional (ADF) calculations. Unlike the [(OEC)Fe(L)2]+ complexes reported previously (Cai, S.; Lichtenberger, D. L.; Walker, F. A. Inorg. Chem. 2005, 44, 1890-1903), the NMR data for the [(TPC)Fe(L)2]+ complexes of this study indicate that the ground state is S = 1/2 for each bisligand complex, whereas a higher spin state was present at NMR temperatures for the Py and 4-CNPy complexes of (OEC)Fe(III). The pyrrole-8,17 and pyrroline-H of all [TPCFe(L)2]+ show large magnitude chemical shifts (hence indicating large spin density on the adjacent carbons that are part of the pi system), while pyrrole-12,13-CH2 and -7,18-CH2 protons show much smaller chemical shifts, as predicted by the spin densities obtained from ADF calculations. The magnitude of the chemical shifts decreases with decreasing donor ability of the substituted pyridine ligands, with the nonhindered imidazole ligand having slightly larger magnitude chemical shifts than the most basic pyridine, even though its basicity is significantly lower (4-Me2NPyH+ pKa = 9.7, H2Im+ pKa = 6.65 (adjusted for the statistical factor of 2 protons)). The temperature dependence of the chemical shifts of all but the 4-Me2NPy bisligand complexes studied over the temperature range of the NMR investigations shows that they have mixed (dxy)2(dxz,dyz)3/(dxzdyz)4(dxy)1 electron configurations that cannot be resolved by temperature-dependent fitting of the proton chemical shifts, with an S = 3/2 excited state in each case that in most cases lies at more than kT at room temperature above the ground state. The observed pattern of chemical shifts of the 4-CNPy complex and analysis of the temperature dependence indicate that it has a pure (dxzdyz)4(dxy)1 ground state and that it is ruffled, because ruffling mixes the a(2u)(pi)-like orbital of the chlorin into the singly occupied molecular orbital (SOMO). This mixing accounts for the negative chemical shift of the pyrroline-H (-6.5 ppm at -40 degrees C) and thus the negative spin density at the pyrroline-alpha-carbons, but the mixing is not to the same extent as observed for [(TPC)Fe(t-BuNC)2]+, whose pyrroline-H chemical shift is -36 ppm at 25 degrees C (Simonneaux, G.; Kobeissi, M. J. Chem. Soc., Dalton Trans. 2001, 1587-1592). Peak assignments for high-spin (TPC)FeCl have been made by saturation transfer techniques that depend on chemical exchange between this complex and its bis-4-Me2NPy adduct.
Collapse
Affiliation(s)
- Sheng Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | | | | | |
Collapse
|