1
|
Seo WTM, Riffel MN, Oliver AG, Tsui EY. Metal-cation-induced shifts in thiolate redox and reduced sulfur speciation. Chem Sci 2024; 15:7332-7341. [PMID: 38756819 PMCID: PMC11095376 DOI: 10.1039/d4sc01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Sulfur-containing anions (e.g. thiolates, polysulfides) readily exchange in solution, making control over their solution speciation and distribution challenging. Here, we demonstrate that different redox-inactive alkali, alkaline earth, and transition metals (Li+, Na+, K+, Mg2+, Ca2+, Zn2+, and Cd2+) shift the equilibria of sulfur catenation or sulfur reduction/oxidation between thiolate, polysulfanide, and polysulfide anions in acetonitrile solution. The thermodynamic factors that govern these equilibria are examined by identification of intermediate metal thiolate and metal polysulfide species using a combination of NMR spectroscopy, electronic absorption spectroscopy, and mass spectrometry. Electrochemical measurements demonstrate that the metal cation of the electrolyte modulates both sulfur reduction and thiolate oxidation potentials. DFT calculations suggest that the changes in equilibria are driven by stronger covalent interactions between polysulfide anions and more highly charged cations.
Collapse
Affiliation(s)
- W T Michael Seo
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN USA
| | - Madeline N Riffel
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN USA
| | - Emily Y Tsui
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN USA
| |
Collapse
|
2
|
Okada T, Kawawaki T, Takemae K, Tomihari S, Kosaka T, Niihori Y, Negishi Y. Tiara-like Hexanuclear Nickel-Platinum Alloy Nanocluster. J Phys Chem Lett 2024; 15:1539-1545. [PMID: 38299566 PMCID: PMC10860137 DOI: 10.1021/acs.jpclett.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Tiara-like metal nanoclusters (TNCs) have attracted a great deal of attention because of their high stability and easy synthesis under atmospheric conditions as well as their high activity in various catalytic reactions. Alloying is one of the methods that can be used to control the physicochemical properties of nanoclusters, but few studies have reported on alloy TNCs. In this study, we synthesized alloy TNCs [NixPt6-x(PET)12, where x = 1-5 and PET = 2-phenylethanethiolate] consisting of thiolate, nickel (Ni), and platinum (Pt). We further evaluated the stability, geometric structure, and electronic structure by high-performance liquid chromatography and density functional theory calculations. The results revealed that NixPt6-x(PET)12 has a distorted structure and is therefore less stable than single-metal TNCs.
Collapse
Affiliation(s)
- Tomoshige Okada
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Kana Takemae
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Shiho Tomihari
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Taiga Kosaka
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Yoshiki Niihori
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| |
Collapse
|
3
|
Fujisawa K, Kataoka T, Terashima K, Kurihara H, de Santis Gonçalves F, Lehnert N. Coordinatively Unsaturated Nickel Nitroxyl Complex: Structure, Physicochemical Properties, and Reactivity toward Dioxygen. Molecules 2023; 28:6206. [PMID: 37687034 PMCID: PMC10489029 DOI: 10.3390/molecules28176206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
For its important roles in biology, nitrogen monoxide (·NO) has become one of the most studied and fascinating molecules in chemistry. ·NO itself acts as a "noninnocent" or "redox active" ligand to transition metal ions to give metal-NO (M-NO) complexes. Because of this uncertainty due to redox chemistry, the real description of the electronic structure of the M-NO unit requires extensive spectroscopic and theoretical studies. We previously reported the Ni-NO complex with a hindered N3 type ligand [Ni(NO)(L3)] (L3- denotes hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate anion), which contains a high-spin (hs) nickel(II) center and a coordinated 3NO-. This complex is very stable toward dioxygen due to steric protection of the nickel(II) center. Here, we report the dioxygen reactivity of a new Ni-NO complex, [Ni(NO)(I)(L1″)], with a less hindered N2 type bis(pyrazolyl)methane ligand, which creates a coordinatively unsaturated ligand environment about the nickel center. Here, L1″ denotes bis(3,5-diisopropyl-1-pyrazolyl)methane. This complex is also described as a hs-nickel(II) center with a bound 3NO-, based on spectroscopic and theoretical studies. Unexpectedly, the reaction of [Ni(NO)(I)(L1″)] with O2 yielded [Ni(κ2-O2N)(L1″)2](I3), with the oxidation of both 3NO- and the I- ion to yield NO2- and I3-. Both complexes were characterized by X-ray crystallography, IR, and UV-Vis spectroscopy and theoretical calculations.
Collapse
Affiliation(s)
- Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Taisei Kataoka
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Kohei Terashima
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Haruka Kurihara
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Felipe de Santis Gonçalves
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA;
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA;
| |
Collapse
|
4
|
Gaza JT, Nellas RB. Reparameterization of Non-Bonded Parameters for Copper Ions in Plastocyanin: An Adaptive Force Matching Study. J Chem Inf Model 2023; 63:4654-4663. [PMID: 37459569 DOI: 10.1021/acs.jcim.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Molecular mechanics rely on existing experimental and theoretical inputs to confidently calculate the trajectories of molecular systems. These calculations, however, are often hindered by missing force field parameters. A notable subject of this problem is metal centers of proteins. This study parameterized, through an adaptive force matching (AFM) workflow, the copper cofactor of plastocyanin in its two oxidation states. New 12-6 Lennard-Jones (LJ) parameters and atomic partial charges were generated to complete the non-bonded description of the copper site. Our models show uniform distorted tetrahedral structures for reduced plastocyanin, Cu(I), and oxidized plastocyanin, Cu(II). These structures align with the QM/MM MD results and existing crystallography studies. TD-DFT calculations, meanwhile, showed that conformations with elongated axial Cu-SMet and shortened equatorial Cu-SCys bonds retain the experimental UV-Vis profile of blue copper (BC) proteins, thus signifying the importance of Cu-S interactions on BC proteins' unique spectroscopic properties.
Collapse
Affiliation(s)
- Jokent T Gaza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
5
|
Antony A, Thomas T, Augustine C. On the coordination chemistry of a bacterial siderophore cepabactin from a theoretical perspective. J Mol Model 2023; 29:167. [PMID: 37126124 DOI: 10.1007/s00894-023-05565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Iron is one of the essential metals required by almost all living organisms. However, nature has certain constraints in distributing this element among tissues. Since polymeric oxide-bridged Fe (III) is the prominent source of Fe (III) ions, the insolubility of Fe (III) ions in aqueous systems reduces the direct uptake by cells. Secondly, the free-Fe entities which generate .OH radicals pave the way to the destruction of the cells. Hence, a protective coordination environment via sophisticated chemical systems is required for the acquisition of Fe, its successive transport, storage, and effective utilization in various tissues. Siderophores are polydentate ligands used by bacterial cells for Fe acquisition, with a relatively high affinity for Fe (III) ions. Secreted from the bacterial cells into the external aqueous medium, they sequester Fe to give a soluble complex which re-enters the organism at a specific receptor. Once it gets inside the cell, the Fe is released from the complex and utilized for essential biochemical reactions. The medicinal applications of these natural ligands, developing progressively in various research groups, necessitate the theoretical aspects of their coordination chemistry. This research paper deals with the coordination chemistry of one of the siderophores, cepabactin (Cep). The chemical computations confirm that the FeIII(Cep)3 complex is octahedral and high spin. The oxygen atoms of Cep, which are hard and negatively charged, thus act as electron donors in the FeIII(Cep)3 complex formation. This in turn makes the siderophores relatively less attractive towards Fe (II) ions.
Collapse
Affiliation(s)
- Arsha Antony
- Department of Chemistry, St. Berchmans College, Mahatma Gandhi University, Kottayam, India
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Cyril Augustine
- Department of Chemistry, St. Berchmans College, Mahatma Gandhi University, Kottayam, India.
| |
Collapse
|
6
|
Pro-Gly based dipeptide containing sulphonamide functionality, their antidiabetic, antioxidant, and anti-inflammatory activities. Synthesis, characterization and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Solution Equilibria Formation of Manganese(II) Complexes with Ethylenediamine, 1,3-Propanediamine and 1,4-ButanediaMine in Methanol. MOLBANK 2022. [DOI: 10.3390/m1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Manganese is an abundant element that plays critical roles and is at the reaction center of several enzymes. In order to promote an understanding of the behavior of manganese(II) ion with several aliphatic ligands, in this work, the stability and spectral behavior of the complexes with manganese(II) and ethylenediamine, 1,3-propanediamine or 1,4-butanediamine were explored. A spectrophotometric study of its speciation in methanol was performed at 293 K. The formation constants obtained for these systems were: manganese(II)-ethylenediamine log β110 = 3.98 and log β120 = 7.51; for the manganese(II)-1,3-propanediamine log β110 = 5.08 and log β120 = 8.66; and for manganese(II)-1,4-butanediamine log β110 = 4.36 and log β120 = 8.46. These results were obtained by fitting the experimental spectrophotometric data using the HypSpec software. The complexes reported in this study show a spectral pattern that could be related to a chelate effect in which the molar absorbance is not directly related to the increase in the carbon chain of the ligands.
Collapse
|
8
|
Ha Y, Dille SA, Braun A, Colston K, Hedman B, Hodgson KO, Basu P, Solomon EI. S K-edge XAS of Cu II, Cu I, and Zn II oxidized Dithiolene complexes: Covalent contributions to structure and the Jahn-Teller effect. J Inorg Biochem 2022; 230:111752. [PMID: 35202982 PMCID: PMC9680909 DOI: 10.1016/j.jinorgbio.2022.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
Reduced dithiolene ligands are bound to high valent Mo centers in the active site of the oxotransferase family of enzymes. Related model complexes have been studied with great insight by Prof. Holm and his colleagues. This study focuses on the other limit of dithiolene chemistry: an investigation of the 2-electron oxidized dithiolene bound to low-valent late transition metal (TM) ions (ZnII, CuI, and CuII). The bonding descriptions of the oxidized dithiolene [N,N-dimethyl piperazine 2,3-dithione (Me2Dt0)] complexes are probed using S K-edge X-ray absorption spectroscopy (XAS) and the results are correlated to density functional theory (DFT) calculations. These experimentally supported calculations are then extended to explain the different geometric structures of the three complexes. The ZnII(Me2Dt0)2 complex has only ligand-ligand repulsion so it is stabilized at the D2d symmetry limit. The CuI(Me2Dt0)2 complex has additional weak backbonding thus distorts somewhat from D2d toward D2h symmetry. The CuII(Me2Dt0)2 complex has a strong σ donor bond that leads to both a large Jahn-Teller stabilization to D2h and an additional covalent contribution to the geometry. The combined strong stabilization results in the square planar, D2h structure. This study quantifies the competition between the ligand-ligand repulsion and the change in electronic structures in determining the final geometric structures of the oxidized dithiolene complexes, and provides quantitative insights into the Jahn-Teller stabilization energy and its origin.
Collapse
Affiliation(s)
- Yang Ha
- Department of Chemistry, Stanford University, Stanford, CA 94035, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States; Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Sara A Dille
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN 46202, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, CA 94035, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States
| | - Kyle Colston
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN 46202, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94035, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN 46202, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA 94035, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, United States.
| |
Collapse
|
9
|
Hrubaru MM, Bartha E, Ekennia AC, Okafor SN, Badiceanu CD, Udu DA, Onwudiwe DC, Shova S, Draghici C. Ni(II), Pd(II) and Pt(II) complexes of N,N-bis(3,3-dimethyl-allyl)-dithiocarbamate: Synthesis, spectroscopic characterization, antimicrobial and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Mohan B, Modi K, Parikh J, Ma S, Kumar S, Kumar Manar K, Sun F, You H, Ren P. Efficacy of 2-nitrobenzylidene-hydrazine-based selective and rapid sensor for Cu2+ ions, histidine, and tyrosine: Spectral and computational study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Ma C, Liu H, Qiu J, Zhang X. Bimetallic Zn/Co-ZIF tubular membrane for highly efficient pervaporation separation of Methanol/MTBE mixture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Ramek M, Pejić J, Sabolović J. Structure prediction of neutral physiological copper(II) compounds with l-cysteine and l-histidine. J Inorg Biochem 2021; 223:111536. [PMID: 34274876 DOI: 10.1016/j.jinorgbio.2021.111536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/19/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Bis(aminoacidato)copper(II) [CuII(aa)2] coordination compounds are the physiological species of copper(II) amino acid compounds in blood plasma. Since there are no experimental data in the literature about the geometries that physiological CuII(aa)2 could form with l-cysteine (Cys), that is, for bis(l-cysteinato)copper(II) [Cu(Cys)2] and the ternary (l-histidinato)(l-cysteinato)copper(II) [Cu(His)(Cys)], this paper computationally examines the possible conformations that the two compounds could form with the Cys ligand having a protonated sulfur, as in the conventional zwitterion, which was determined to be prevailing in aqueous solution. These two amino acids can bind metals in a tridentate fashion and thus form many possible coordination patterns. Density functional calculations were performed for the conformational analyses in the gas phase and in implicitly modeled aqueous solution using a polarizable continuum model. Additionally, we examine which coordination mode, with thiol or thiolate group, is more stable. The Cys coordination via the amino N and carboxylato O atoms (a glycinato mode) is obtained as the most stable one in aqueous Cu(Cys)2, and also in Cu(His)(Cys) when the His glycinato or histaminato mode combines with the intact thiol group. Whereas the conformers with N and thiol S as the copper(II) donor atoms are predicted to be the least stable, those with the Cu-N and Cu-S(thiolate) bonding (and protonated carboxylato group) are the most stable. The differences are explained by different covalent and ionic contributions of Cu-S(thiol) vs. Cu-S(thiolate). The study can contribute to the insight into formation and reactivity of the copper(II) cysteinato complexes in solution.
Collapse
Affiliation(s)
- Michael Ramek
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Jelena Pejić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Jasmina Sabolović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| |
Collapse
|
13
|
Cordeiro LL, Dmitrenko O, Yap GPA, Riordan CG. Synthesis and Reactivity Studies of a Series of Nickel(II) Arylchalcogenolates. Inorg Chem 2021; 60:6327-6338. [PMID: 33851821 DOI: 10.1021/acs.inorgchem.1c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two series of high-spin nickel complexes, [TpPh,Me]Ni(EAr) (E = O, Se, Te; Ar = C6H5) and [TpPh,Me]Ni(SeC6H4-4-X) (X = H, Cl, Me, OMe), were prepared by metathetical reaction of the nickel(II) halide precursor with sodium salts of the corresponding chalcogen, NaEAr. X-ray crystallographic characterization and spectroscopic studies have established the geometric and electronic structures of these complexes. The observed spectroscopic and structural characteristics reveal distinct trends in accordance with the variation of the identity of the arylchalcogenolate and para substituent. Reaction of the [TpPh,Me]Ni(EAr) complexes with methyl iodide proceeded readily, producing the corresponding methylarylchalcogen and [TpPh,Me]NiI. A kinetic and computational analysis of the reaction of [TpPh,Me]Ni(SeC6H5) with MeI supports that the electrophilic alkylation reactions occur via an associative mechanism via a classical SN2 transition state.
Collapse
Affiliation(s)
- Lauren L Cordeiro
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Charles G Riordan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
An experimental and theoretical study of the electronic spectra of tetraethylammonium [tris(1,3-dithiole-2-thione-4,5-dithiolato)M] and tetraethylammonium [tris(1,3-dithiole-2-one-4,5-dithiolato)M], for M = Sn(IV) and Sb(V). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Dulay H, Tabares M, Kashefi K, Reguera G. Cobalt Resistance via Detoxification and Mineralization in the Iron-Reducing Bacterium Geobacter sulfurreducens. Front Microbiol 2020; 11:600463. [PMID: 33324382 PMCID: PMC7726332 DOI: 10.3389/fmicb.2020.600463] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria in the genus Geobacter thrive in iron- and manganese-rich environments where the divalent cobalt cation (CoII) accumulates to potentially toxic concentrations. Consistent with selective pressure from environmental exposure, the model laboratory representative Geobacter sulfurreducens grew with CoCl2 concentrations (1 mM) typically used to enrich for metal-resistant bacteria from contaminated sites. We reconstructed from genomic data canonical pathways for CoII import and assimilation into cofactors (cobamides) that support the growth of numerous syntrophic partners. We also identified several metal efflux pumps, including one that was specifically upregulated by CoII. Cells acclimated to metal stress by downregulating non-essential proteins with metals and thiol groups that CoII preferentially targets. They also activated sensory and regulatory proteins involved in detoxification as well as pathways for protein and DNA repair. In addition, G. sulfurreducens upregulated respiratory chains that could have contributed to the reductive mineralization of the metal on the cell surface. Transcriptomic evidence also revealed pathways for cell envelope modification that increased metal resistance and promoted cell-cell aggregation and biofilm formation in stationary phase. These complex adaptive responses confer on Geobacter a competitive advantage for growth in metal-rich environments that are essential to the sustainability of cobamide-dependent microbiomes and the sequestration of the metal in hitherto unknown biomineralization reactions.
Collapse
Affiliation(s)
- Hunter Dulay
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Marcela Tabares
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Kazem Kashefi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Yusuf TL, Ibeji CU, van Zyl WE. Nickel(II) complexes from phosphor-dichalcogenide (P/Se2 and P/S2) type ligands: Synthesis, structure and theoretical calculations. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Synthesis, spectral, structure and computational studies of novel transition Metal(II) complexes of (Z)-((dimethylcarbamothioyl)thio) ((1,1,1-trifluoro-4-(naphthalen-2-yl)-4-oxobut-2-en-2-yl)oxy). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Chioma F, Ibeji CU, Okpareke O. Novel 3d divalent metallic complexes of 3-[(2-hydroxy-5-methyl-phenylimino)-methyl]-napthalen-2-ol: Synthesis, spectral characterization, antimicrobial and computational studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Kisgeropoulos EC, Griese JJ, Smith ZR, Branca RMM, Schneider CR, Högbom M, Shafaat HS. Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein. J Am Chem Soc 2020; 142:5338-5354. [PMID: 32062969 DOI: 10.1021/jacs.0c00333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heterobimetallic Mn/Fe proteins represent a new cofactor paradigm in bioinorganic chemistry and pose countless outstanding questions. The assembly of the active site defies common chemical convention by contradicting the Irving-Williams series, while the scope of reactivity remains unexplored. In this work, the assembly and C-H bond activation process in the Mn/Fe R2-like ligand-binding oxidase (R2lox) protein is investigated using a suite of biophysical techniques, including time-resolved optical spectroscopy, global kinetic modeling, X-ray crystallography, electron paramagnetic resonance spectroscopy, protein electrochemistry, and mass spectrometry. Selective metal binding is found to be under thermodynamic control, with the binding sites within the apo-protein exhibiting greater MnII affinity than FeII affinity. The comprehensive analysis of structure and reactivity of wild-type R2lox and targeted primary and secondary sphere mutants indicate that the efficiency of C-H bond activation directly correlates with the Mn/Fe cofactor reduction potentials and is inversely related to divalent metal binding affinity. These findings suggest the R2lox active site is precisely tuned for achieving both selective heterobimetallic binding and high levels of reactivity and offer a mechanism to examine the means by which proteins achieve appropriate metal incorporation.
Collapse
Affiliation(s)
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | - Rui M M Branca
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, SE-171 21 Solna, Sweden
| | | | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
20
|
Inoue S, Yan YN, Yamanishi K, Kataoka Y, Kawamoto T. Photocatalytic and electrocatalytic hydrogen production using nickel complexes supported by hemilabile and non-innocent ligands. Chem Commun (Camb) 2020; 56:2829-2832. [PMID: 32073053 DOI: 10.1039/c9cc09568c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel complexes with non-innocent ligands generated by one-electron reduction of octahedral Schiff base nickel(ii) complexes with hemilabile ligands exhibited excellent catalytic activities of over 5000 TONs through a metal-ligand cooperation mechanism for hydrogen evolution from water under visible light irradiation.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| | - Yin-Nan Yan
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| | - Katsunori Yamanishi
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| | - Yusuke Kataoka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Tatsuya Kawamoto
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| |
Collapse
|
21
|
Drummond MJ, Miller TJ, Ford CL, Fout AR. Catalytic Perchlorate Reduction Using Iron: Mechanistic Insights and Improved Catalyst Turnover. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael J. Drummond
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Tabitha J. Miller
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Courtney L. Ford
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Ha Y, Hu H, Higgins K, Maroney M, Hedman B, Hodgson K, Solomon E. The Electronic Structure of the Metal Active Site Determines the Geometric Structure and Function of the Metalloregulator NikR. Biochemistry 2019; 58:3585-3591. [PMID: 31339709 DOI: 10.1021/acs.biochem.9b00542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NikR is a nickel-responsive metalloregulator protein that controls the level of Ni2+ ions in living cells. Previous studies have shown that NikR can bind a series of first-row transition metal ions but binds to DNA with high affinity only as a Ni2+ complex. To understand this metal selectivity, S K-edge X-ray absorption spectroscopy of NikR bound to different metal ions was used to evaluate the different electronic structures. The experimental results are coupled with density functional theory calculations on relevant models. This study shows that both the Zeff of the metal ion and the donor nature of the ligands determine the electronic structure of the metal site. This impacts the geometric structure of the metal site and thus the conformation of the protein. This contribution of electronic structure to geometric structure can be extended to other metal selective metalloregulators.
Collapse
Affiliation(s)
- Yang Ha
- Department of Chemistry , Stanford University , Stanford , California 94035 , United States.,Stanford Synchrotron Radiation Lightsource, SLAC , Stanford University , Menlo Park , California 94025 , United States
| | - Heidi Hu
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Khadine Higgins
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Michael Maroney
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC , Stanford University , Menlo Park , California 94025 , United States
| | - Keith Hodgson
- Department of Chemistry , Stanford University , Stanford , California 94035 , United States.,Stanford Synchrotron Radiation Lightsource, SLAC , Stanford University , Menlo Park , California 94025 , United States
| | - Edward Solomon
- Department of Chemistry , Stanford University , Stanford , California 94035 , United States.,Stanford Synchrotron Radiation Lightsource, SLAC , Stanford University , Menlo Park , California 94025 , United States
| |
Collapse
|
23
|
Ganguly T, Das A, Majumdar A. Iron(II) Mediated Desulfurization of Organosulfur Substrates Produces Nonheme Diiron(II)-hydrosulfides. Inorg Chem 2019; 58:9998-10011. [DOI: 10.1021/acs.inorgchem.9b01144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tuhin Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Ayan Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
24
|
Gummidi L, Kerru N, Ibeji CU, Singh P. Crystal structure and DFT studies of (E)-1-(4-fluorophenyl)-3-(1H-indol-1-yl)-4-styrylazetidin-2-one. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Okagu OD, Ugwu KC, Ibeji CU, Ekennia AC, Okpareke OC, Ezeorah CJ, Anarado CJ, Babahan I, Coban B, Yıldız U, Cömert F, Ujam OT. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a benzohydrazone derivative: Spectroscopic, DFT, antipathogenic and DNA binding studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Ekennia AC, Ibezim EC, Okpareke OC, Ibeji CU, Anarado CJ, Babahan I, Coban B, Abulhasanov B, Cömert F, Ujam OT. Novel 3‐Hydroxy‐2‐naphthoic hydrazone and Ni(II), Co(II) and Cu(II) Complexes: Synthesis, Spectroscopic Characterization, Antimicrobial, DNA Cleavage and Computational Studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anthony C. Ekennia
- Department of ChemistryAlex Ekwueme Federal University Ndufu‐Alike (AE‐FUNAI) Ikwo, P.M.B 1010 Abakaliki Ebonyi State Nigeria
| | - Elochukwu C. Ibezim
- Department of Pure and Industrial Chemistry, Faculty of Physical SciencesUniversity of Nigeria Nsukka 410001 Enugu State Nigeria
| | - Obinna C. Okpareke
- Department of Pure and Industrial Chemistry, Faculty of Physical SciencesUniversity of Nigeria Nsukka 410001 Enugu State Nigeria
- Department of ChemistryUniversity of Waikato Private Bag 3105 Hamilton New Zealand
| | - Collins U. Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical SciencesUniversity of Nigeria Nsukka 410001 Enugu State Nigeria
- Catalysis and Peptide Research Unit, School of Health SciencesUniversity of KwaZulu‐Natal Durban 4041 South Africa
| | - Chigozie J.O. Anarado
- Department of Pure and Industrial ChemistryNnamdi Azikwe University Awka Anambra State Nigeria
| | - Ilknur Babahan
- Department of ChemistryAdnan Menderes University Aydin 09010 Turkey
| | - Burak Coban
- Department of Chemistry, Faculty of Arts and SciencesZonguldak Bulent Ecevit University Zonguldak 67100 Turkey
| | - Bahruz Abulhasanov
- Department of Chemistry, Faculty of Arts and SciencesZonguldak Bulent Ecevit University Zonguldak 67100 Turkey
| | - Füsun Cömert
- Department of Microbiology, Faculty of MedicineZonguldak Bulent Ecevit University Zonguldak 67100 Turkey
| | - Oguejiofo T. Ujam
- Department of Pure and Industrial Chemistry, Faculty of Physical SciencesUniversity of Nigeria Nsukka 410001 Enugu State Nigeria
| |
Collapse
|
27
|
Fujisawa K, Soma S, Kurihara H, Ohta A, Dong HT, Minakawa Y, Zhao J, Alp EE, Hu MY, Lehnert N. Stable Ferrous Mononitroxyl {FeNO}8 Complex with a Hindered Hydrotris(pyrazolyl)borate Coligand: Structure, Spectroscopic Characterization, and Reactivity Toward NO and O2. Inorg Chem 2019; 58:4059-4062. [DOI: 10.1021/acs.inorgchem.9b00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Shoko Soma
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Haruka Kurihara
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Ayuri Ohta
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Hai T. Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yurika Minakawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - E. Ercan Alp
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Y. Hu
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Kusamoto T, Nishihara H. Zero-, one- and two-dimensional bis(dithiolato)metal complexes with unique physical and chemical properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Bhatt KD, Shah HD, Modi KM, Narechania MB, Patel C. Calix[4]pyrrole virtuous sensor: a selective and sensitive recognition for Pb(II) ions by spectroscopic and computational study. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1568434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Keyur D. Bhatt
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, India
| | - Hemangini D. Shah
- Department of Chemistry, C. U. Shah University, Wadhwan, Gujarat, India
| | - Krunal M. Modi
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | | | - Chirag Patel
- School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
30
|
Tabrizi L, Olasunkanmi LO, Fadare OA. Experimental and theoretical investigations of cyclometalated ruthenium(ii) complex containing CCC-pincer and anti-inflammatory drugs as ligands: synthesis, characterization, inhibition of cyclooxygenase and in vitro cytotoxicity activities in various cancer cell lines. Dalton Trans 2019; 48:728-740. [DOI: 10.1039/c8dt03266a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cyclometalated ruthenium(ii) complex was synthesized and studied for cytotoxicity. The interaction of Ru(ii) complex with COX-2 was studied by experimental and molecular docking.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- University Road
- Galway
| | - Lukman O. Olasunkanmi
- Department of Chemistry
- Faculty of Science
- Obafemi Awolowo University
- Ile-Ife 220005
- Nigeria
| | - Olatomide A. Fadare
- Department of Chemistry
- Faculty of Science
- Obafemi Awolowo University
- Ile-Ife 220005
- Nigeria
| |
Collapse
|
31
|
Selvan D, Prasad P, Crane S, Abuhagr A, Covington R, Artyushkova K, Ramakrishna G, Chakraborty S. Intrinsically fluorescent gold nanoclusters stabilized within a copper storage protein that follow the Irving–Williams trend in metal ion sensing. Analyst 2019; 144:3949-3958. [DOI: 10.1039/c9an00426b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A copper storage protein is used to synthesize gold clusters with tunable emission that follow the Irving–Williams series for metal detection.
Collapse
Affiliation(s)
- Dhanashree Selvan
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Pallavi Prasad
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Skyler Crane
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Abubkr Abuhagr
- Department of Chemistry
- Western Michigan University
- Kalamazoo
- USA
| | - Richard Covington
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering
- Center for Micro-Engineered Materials (CMEM)
- University of New Mexico
- Albuquerque
- USA
| | | | - Saumen Chakraborty
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| |
Collapse
|
32
|
Ekennia AC, Onwudiwe DC, Osowole AA, Okpareke OC, Olubiyi OO, Lane JR. Coordination compounds of heterocyclic bases: synthesis, characterization, computational and biological studies. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Gordon JB, McGale JP, Prendergast JR, Shirani-Sarmazeh Z, Siegler MA, Jameson GNL, Goldberg DP. Structures, Spectroscopic Properties, and Dioxygen Reactivity of 5- and 6-Coordinate Nonheme Iron(II) Complexes: A Combined Enzyme/Model Study of Thiol Dioxygenases. J Am Chem Soc 2018; 140:14807-14822. [PMID: 30346746 PMCID: PMC6596423 DOI: 10.1021/jacs.8b08349] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of four new FeII(N4S(thiolate)) complexes as models of the thiol dioxygenases are described. They are composed of derivatives of the neutral, tridentate ligand triazacyclononane (R3TACN; R = Me, iPr) and 2-aminobenzenethiolate (abtx; X = H, CF3), a non-native substrate for thiol dioxygenases. The coordination number of these complexes depends on the identity of the TACN derivative, giving 6-coordinate (6-coord) complexes for FeII(Me3TACN)(abtx)(OTf) (1: X = H; 2: X = CF3) and 5-coordinate (5-coord) complexes for [FeII(iPr3TACN)(abtx)](OTf) (3: X = H; 4: X = CF3). Complexes 1-4 were examined by UV-vis, 1H/19F NMR, and Mössbauer spectroscopies, and density functional theory (DFT) calculations were employed to support the data. Mössbauer spectroscopy reveals that the 6-coord 1-2 and 5-coord 3- 4 exhibit distinct spectra, and these data are compared with that for cysteine-bound CDO, helping to clarify the coordination environment of the cys-bound FeII active site. Reaction of 1 or 2 with O2 at -95 °C leads to S-oxygenation of the abt ligand, and in the case of 2, a rare di(sulfinato)-bridged complex, [Fe2III(μ-O)((2-NH2) p-CF3C6H3SO2)2](OTf)2 ( 5), was obtained. Parallel enzymatic studies on the CDO variant C93G were carried out with the abt substrate and show that reaction with O2 leads to disulfide formation, as opposed to S-oxygenation. The combined model and enzyme studies show that the thiol dioxygenases can operate via a 6-coord FeII center, in contrast to the accepted mechanism for nonheme iron dioxygenases, and that proper substrate chelation to Fe appears to be critical for S-oxygenation.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| | - Jeremy P McGale
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| | - Joshua R Prendergast
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| | - Zahra Shirani-Sarmazeh
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| | - Guy N L Jameson
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| |
Collapse
|
34
|
Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Coordination Behavior of Ni 2+, Cu 2+, and Zn 2+ in Tetrahedral 1-Methylimidazole Complexes: A DFT/CSD Study. Bioinorg Chem Appl 2018; 2018:3157969. [PMID: 29887877 PMCID: PMC5977000 DOI: 10.1155/2018/3157969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
The interaction between nickel (Ni2+), copper (Cu2+), and zinc (Zn2+) ions and 1-methylimidazole has been studied by exploring the geometries of eleven crystal structures in the Cambridge Structural Database (CSD). The coordination behavior of the respective ions was further investigated by means of density functional theory (DFT) methods. The gas-phase complexes were fully optimized using B3LYP/GENECP functionals with 6-31G∗ and LANL2DZ basis sets. The Ni2+ and Cu2+ complexes show distorted tetrahedral geometries around the central ions, with Zn2+ being a perfect tetrahedron. Natural bond orbital (NBO) analysis and natural population analysis (NPA) show substantial reduction in the formal charge on the respective ions. The interaction between metal d-orbitals (donor) and ligand orbitals (acceptor) was also explored using second-order perturbation of the Fock matrix. These interactions followed the order Ni2+ > Cu2+ > Zn2+ with Zn2+ having the least interaction with the ligand orbitals. Examination of the frontier orbitals shows the stability of the complexes in the order Ni2+ > Cu2+ < Zn2+ which is consistent with the Irving–Williams series.
Collapse
|
36
|
Chioma F, Ekennia AC, Osowole AA, Okafor SN, Ibeji CU, Onwudiwe DC, Ujam OT. Synthesis, characterization, in-vitro antimicrobial properties, molecular docking and DFT studies of 3-{(E)-[(4,6-dimethylpyrimidin-2-yl)imino]methyl} naphthalen-2-ol and Heteroleptic Mn(II), Co(II), Ni(II) and Zn(II) complexes. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractHeteroleptic divalent metal complexes [M(L) (bipy)(Y)]•nH2O (where M = Mn, Co, Ni, and Zn; L = Schiff base; bipy = 2,2’-bipyridine; Y = OAc and n = 0, 1) have been synthesized from pyrimidine Schiff base ligand 3-{(E)-[(4,6-dimethylpyrimidin-2-yl)imino]methyl} naphthalen-2-ol, 2,2’-bipyridine and metal(II) acetate salts. The Schiff base and its complexes were characterized by analytical (CHN elemental analyses, solubility, melting point, conductivity) measurements, spectral (IR, UV-vis, 1H and 13C-NMR and MS) and magnetometry. The elemental analyses, Uv-vis spectra and room temperature magnetic moment data provide evidence of six coordinated octahedral geometry for the complexes. The metal complexes’ low molar conductivity values in dimethylsulphoxide suggested that they were non-ionic in nature. The compounds displayed moderate to good antimicrobial and antifungal activities against S. aureus, P. aeruginosa, E. coli, B. cereus, P. mirabilis, K. oxytoca, A. niger, A. flevus and R. Stolonifer. The compounds also exhibited good antioxidant potentials with ferrous ion chelation and, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assays. Molecular docking studies showed a good interaction with drug targets used. The structural and electronic properties of complexes were further confirmed by density functional theory calculations.
Collapse
Affiliation(s)
- Festus Chioma
- Department of Chemistry, Ignatius Ajuru University of EducationPort Harcourt, Rivers State, Nigeria
| | - Anthony C. Ekennia
- Department of Chemistry, Federal University Ndufu-Alike Ikwo (FUNAI), P.M.B 1010, Abakaliki, Ebonyi State, Nigeria
| | - Aderoju A. Osowole
- Inorganic Unit, Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka410001, Enugu State, Nigeria
| | - Collins U. Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University, (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
- Department of Chemistry, School of Mathematical and Physical Sciences, Faculty of Agriculture, Science and Technology, North-West University, (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
| | - Oguejiofo T. Ujam
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
37
|
Ahmed MZ, Habib U. DFT studies of temperature effect on coordination chemistry of Cu(II)-trimethoprim complexes. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1447667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Malik Zaheer Ahmed
- Research Center for Modeling and Simulations (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Uzma Habib
- Research Center for Modeling and Simulations (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
38
|
Ekennia AC, Osowole AA, Onwudiwe DC, Babahan I, Ibeji CU, Okafor SN, Ujam OT. Synthesis, characterization, molecular docking, biological activity and density functional theory studies of novel 1,4-naphthoquinone derivatives and Pd(II), Ni(II) and Co(II) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anthony C. Ekennia
- Department of Chemistry; Federal University Ndufu-Alike Ikwo (FUNAI); PMB 1010 Abakaliki Ebonyi State Nigeria
| | - Aderoju A. Osowole
- Inorganic Unit, Department of Chemistry; University of Ibadan; Oyo State Nigeria
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus); Private Bag X2046 Mmabatho South Africa
- Department of Chemistry, School of Mathematical and Physical Sciences, Faculty of Agriculture, Science and Technology; North-West University (Mafikeng Campus); Private Bag X2046 Mmabatho 2735 South Africa
| | - Ilknur Babahan
- Department of Chemistry; Adnan Menderes University; Aydin 09010 Turkey
- Department of Polymer Engineering; University of Akron; Akron Ohio 44325 U.S.A
| | - Collins U. Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4041 South Africa
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences; University of Nigeria; Nsukka 410001 Enugu State Nigeria
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry; University of Nigeria; Nsukka Nigeria
| | - Oguejiofo T. Ujam
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences; University of Nigeria; Nsukka 410001 Enugu State Nigeria
| |
Collapse
|
39
|
Farmanzadeh D, Ghaderi M. A computational study of PAMAM dendrimer interaction with trans isomer of picoplatin anticancer drug. J Mol Graph Model 2018; 80:1-6. [DOI: 10.1016/j.jmgm.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/19/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
|
40
|
Loftus LM, Li A, Fillman KL, Martin PD, Kodanko JJ, Turro C. Unusual Role of Excited State Mixing in the Enhancement of Photoinduced Ligand Exchange in Ru(II) Complexes. J Am Chem Soc 2017; 139:18295-18306. [PMID: 29226680 PMCID: PMC5901749 DOI: 10.1021/jacs.7b09937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Four Ru(II) complexes were prepared bearing two new tetradentate ligands, cyTPA and 1-isocyTPQA, which feature a piperidine ring that provides a structurally rigid backbone and facilitates the installation of other donors as the fourth chelating arm, while avoiding the formation of stereoisomers. The photophysical properties and photochemistry of [Ru(cyTPA)(CH3CN)2]2+ (1), [Ru(1-isocyTPQA)(CH3CN)2]2+ (2), [Ru(cyTPA)(py)2]2+ (3), and [Ru(1-isocyTPQA)(py)2]2+ (4) were compared. The quantum yield for the CH3CN/H2O ligand exchange of 2 was measured to be Φ400 = 0.033(3), 5-fold greater than that of 1, Φ400 = 0.0066(3). The quantum yields for the py/H2O ligand exchange of 3 and 4 were lower, 0.0012(1) and 0.0013(1), respectively. DFT and related calculations show the presence of a highly mixed 3MLCT/3ππ* excited state as the lowest triplet state in 2, whereas the lowest energy triplet states in 1, 3, and 4 were calculated to be 3LF in nature. The mixed 3MLCT/3ππ* excited state places significant spin density on the quinoline moiety of the 1-isocyTPQA ligand positioned trans to the photolabile CH3CN ligand in 2, suggesting the presence of a trans-type influence in the excited state that enhances ligand exchange. Ultrafast spectroscopy was used to probe the excited states of 1-4, which confirmed that the mixed 3MLCT/3ππ* excited state in 2 promotes ligand dissociation, representing a new manner to effect photoinduced ligand exchange. The findings from this work can be used to design improved complexes for applications that require efficient ligand dissociation, as well as for those that require minimal deactivation of the 3MLCT state through low-lying metal-centered states.
Collapse
Affiliation(s)
- Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kathlyn L. Fillman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philip D. Martin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
41
|
Mohan B, Modi K, Bhatia P, Sharma HK, Mishra D, Jain VK, Arora LS. An ionic receptor for Zn2+ metal ion using synthesised bis-formylpyrazole calix[4]arene and its computational study. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1415437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Brij Mohan
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Krunal Modi
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - H. K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Divya Mishra
- Department of Chemistry, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Vinod K. Jain
- Department of Chemistry, University School of Sciences, Gujarat University, Ahmedabad, India
| | | |
Collapse
|
42
|
Ekennia AC, Osowole AA, Olasunkanmi LO, Onwudiwe DC, Olubiyi OO, Ebenso EE. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Gallo E, Gorelov E, Guda AA, Bugaev AL, Bonino F, Borfecchia E, Ricchiardi G, Gianolio D, Chavan S, Lamberti C. Effect of Molecular Guest Binding on the d–d Transitions of Ni2+ of CPO-27-Ni: A Combined UV–Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study. Inorg Chem 2017; 56:14408-14425. [DOI: 10.1021/acs.inorgchem.7b01471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Erik Gallo
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
- European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, 38043, Grenoble Cedex
9, France
| | - Evgeny Gorelov
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexander A. Guda
- International Research Center “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Aram L. Bugaev
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
- International Research Center “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Francesca Bonino
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
| | - Elisa Borfecchia
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
| | - Gabriele Ricchiardi
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
| | - Diego Gianolio
- Harwell
Science and Innovation Campus, Diamond Light Source Ltd., OX11 0DE Didcot, United Kingdom
| | - Sachin Chavan
- Department of
Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Carlo Lamberti
- International Research Center “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
- CrisDi and INSTM Reference Center, Department of Chemistry, University of Turin, Via P. Giuria 7, I-10125 Torino, Italy
| |
Collapse
|
44
|
Hong S, Sutherlin KD, Vardhaman AK, Yan JJ, Park S, Lee YM, Jang S, Lu X, Ohta T, Ogura T, Solomon EI, Nam W. A Mononuclear Nonheme Iron(V)-Imido Complex. J Am Chem Soc 2017; 139:8800-8803. [PMID: 28628312 PMCID: PMC5843466 DOI: 10.1021/jacs.7b04695] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mononuclear nonheme iron(V)-oxo complexes have been reported previously. Herein, we report the first example of a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [(TAML)FeV(NTs)]- (1). The spectroscopic characterization of 1 revealed an S = 1/2 Fe(V) oxidation state, an Fe-N bond length of 1.65(4) Å, and an Fe-N vibration at 817 cm-1. The reactivity of 1 was demonstrated in C-H bond functionalization and nitrene transfer reactions.
Collapse
Affiliation(s)
- Seungwoo Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Kyle D. Sutherlin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anil Kumar Vardhaman
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - James J. Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sora Park
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Soojeong Jang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
45
|
Sonia AS, Bhaskaran R. Tris dithiocarbamate of Co(III) complexes: Synthesis, characterization, thermal decomposition studies and experimental and theoretical studies on their crystal structures. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Frank P, Szilagyi RK, Gramlich V, Hsu HF, Hedman B, Hodgson KO. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer. Inorg Chem 2017; 56:1080-1093. [PMID: 28068071 PMCID: PMC5733802 DOI: 10.1021/acs.inorgchem.6b00991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [MII(itao)(SO4)(H2O)0,1] (M = Co, Ni, Cu) and [Cu(Me6tren)(SO4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO4)] but not of [Cu(Me6tren)(SO4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [MII(SO4)(H2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. This electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.
Collapse
Affiliation(s)
- Patrick Frank
- Department of Chemistry, Stanford University, Stanford CA, 94305 USA
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford CA, 94309 USA
| | - Robert K. Szilagyi
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 and MTA-ELTE “Momentum” Chemical Structure/Function Laboratory, Budapest, 1117, Hungary
| | - Volker Gramlich
- Laboratorium fuer Kristallographie, Sonneggstrasse 5, ETH-Zentrum, No. G 62, CH-8092 Zürich, Switzerland
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford CA, 94309 USA
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford CA, 94305 USA
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
47
|
A personal perspective on the discovery of dioxygen adducts of copper and iron by Nobumasa Kitajima. J Biol Inorg Chem 2017; 22:237-251. [DOI: 10.1007/s00775-016-1432-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/15/2016] [Indexed: 11/26/2022]
|
48
|
Ekennia AC, Osowole AA, Olasunkanmi LO, Onwudiwe DC, Ebenso EE. Coordination behaviours of new (bidentate N,O-chelating) Schiff bases towards copper(II) and nickel(II) metal ions: synthesis, characterization, antimicrobial, antioxidant, and DFT studies. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-016-2841-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Ruggiero MT, Sibik J, Erba A, Zeitler JA, Korter TM. Quantification of cation–anion interactions in crystalline monopotassium and monosodium glutamate salts. Phys Chem Chem Phys 2017; 19:28647-28652. [DOI: 10.1039/c7cp05544g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific anion–cation orbital interactions lead to the large structural and spectral differences observed in crystalline monosodium and monopotassium glutamates.
Collapse
Affiliation(s)
- Michael T. Ruggiero
- Department of Chemistry
- Syracuse University
- 1-104 Center for Science and Technology
- Syracuse
- USA
| | - Juraj Sibik
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Philippa Fawcett Drive
- Cambridge
- UK
| | - Alessandro Erba
- Dipartimento di Chimica and Centre of Excellence Nanostructured Interfaces and Surfaces, Universita di Torino
- Torino
- Italy
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Philippa Fawcett Drive
- Cambridge
- UK
| | - Timothy M. Korter
- Department of Chemistry
- Syracuse University
- 1-104 Center for Science and Technology
- Syracuse
- USA
| |
Collapse
|
50
|
Fujisawa K, Soma S, Kurihara H, Dong HT, Bilodeau M, Lehnert N. A cobalt–nitrosyl complex with a hindered hydrotris(pyrazolyl)borate coligand: detailed electronic structure, and reactivity towards dioxygen. Dalton Trans 2017; 46:13273-13289. [DOI: 10.1039/c7dt01565h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cobalt–nitrosyl complex [Co(NO)(L3)] is supported by a highly hindered tridentate nitrogen ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3−), and shows a linear Co–N–O unit.
Collapse
Affiliation(s)
| | - Shoko Soma
- Department of Chemistry
- Ibaraki University
- Mito 310-8512
- Japan
| | | | - Hai T. Dong
- Department of Chemistry and Department of Biophysics
- University of Michigan
- Ann Arbor
- USA
| | - Max Bilodeau
- Department of Chemistry and Department of Biophysics
- University of Michigan
- Ann Arbor
- USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|