1
|
Ye JY, Gerard TJ, Lee WT. [2Fe-2S] model compounds. Chem Commun (Camb) 2025; 61:2926-2940. [PMID: 39846454 DOI: 10.1039/d4cc04794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels. Additionally, we discuss the redox potentials of synthetic [2Fe-2S] compounds, their deviation from biological systems, and potential strategies to align them with natural counterparts. The review concludes with a discussion of future research directions, particularly the development of models capable of mimicking biological processes such as catalysis and electron transfer reactions. This article serves as a valuable resource for researchers in inorganic chemistry, bioinorganic chemistry, biochemistry, and related fields, offering both fundamental insights and potential applications of [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Jun-Yang Ye
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| | - Theodore J Gerard
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
2
|
Karmakar S, Patra S, Halder R, Karmakar S, Majumdar A. Reduction of Nitrite in an Iron(II)-Nitrito Compound by Thiols and Selenol Produces Dinitrosyl Iron Complexes via an {FeNO} 7 Intermediate. Inorg Chem 2024; 63:23202-23220. [PMID: 39569438 DOI: 10.1021/acs.inorgchem.4c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Reaction of an Fe(II) complex, [Fe(6-COO--tpa)]1+ (1), with PhE- and NO2- produced [Fe(6-COO--tpa)(EPh)] (E = S, 2a; Se, 3) and [Fe(6-COO--tpa)(κ2-O,O'-NO2)] (4), respectively (6-COOH-tpa is bis(2-pyridylmethyl)(6-carboxyl-2-pyridylmethyl)amine). Treatment of 4 with 2 equiv of PhEH (E = S, Se) produced NO in ∼40% yields, respectively, along with 1 and the DNICs, [Fe(EPh)2(NO)2]1- (E = S, Se). Treatment of 4 with excess PhEH produced NO in similar yields, while 4 was converted to the same DNICs and 2a/3 (instead of 1). The DNICs have been proposed to be generated via the reaction of PhE- with an in situ generated, unstable {FeNO}7 intermediate, [Fe(6-COO--tpa)(NO)]1+ (6), which has also been synthesized separately. Compound 6 reacts with PhS- to generate [Fe(SPh)2(NO)2]1-, thus supporting the proposed reaction pathway. Finally, while the treatment of two unique compounds, featuring inbuilt proton sources, [Fe(6-COO--tpa)(S-C6H4-p-COOH)] (7) and [Fe(6-COO--tpa)(S-C6H4-o-OH)] (8), with 0.5 and 1 equiv of NO2- could produce NO only in 8-26% yields, treatment of 4 with HS-C6H4-p-COOH and HS-C6H4-o-OH produced NO in much higher yields (65-77%). The combined results delineated the importance of coordination of NO2- for the proton-assisted reduction of NO2- to generate NO.
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Ritapravo Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suchismita Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
3
|
Karmakar S, Patra S, Pramanik K, Adhikary A, Dey A, Majumdar A. Reactivity of Thiolate and Hydrosulfide with a Mononuclear {FeNO} 7 Complex Featuring a Very High N-O Stretching Frequency. Inorg Chem 2024; 63:8537-8555. [PMID: 38679874 DOI: 10.1021/acs.inorgchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Synthesis, characterization, electronic structure, and redox reactions of a mononuclear {FeNO}7 complex with a very high N-O stretching frequency in solution are presented. Nitrosylation of [(LKP)Fe(DMF)]2+ (1) (LKP = tris((1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methyl)amine) produced a five-coordinate {FeNO}7 complex, [(LKP)Fe(NO)]2+ (2). While complex 2 could accommodate an additional water molecule to generate a six-coordinate {FeNO}7 complex, [(LKP)Fe(NO)(H2O)]2+ (3), the coordinated H2O in 3 dissociates to generate 2 in solution. The molecular structure of 2 features a nearly linear Fe-N-O unit with an Fe-N distance of 1.744(4) Å, N-O distance of 1.162(5) Å, and
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Koushik Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Adhikary
- Department of Chemistry, Technology Campus, University of Calcutta, JD Block, Sector III, Salt Lake, Kolkata 700098, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Hossain K, Atta S, Chakraborty AB, Karmakar S, Majumdar A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem Commun (Camb) 2024; 60:4979-4998. [PMID: 38654604 DOI: 10.1039/d4cc00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intriguing chemistry of chalcogen (S, Se)-containing ligands and their capability to bridge multiple metal centres have resulted in a plethora of reports on transition metal complexes featuring hydrosulfide (HS-) and polychalcogenides (En2-, E = S, Se). While a large number of such molecules are strictly organometallic complexes, examples of non-organometallic complexes featuring HS- and En2- with N-/O-donor ligands are relatively rare. The general synthetic procedure for the transition metal-hydrosulfido complexes involves the reaction of the corresponding metal salts with HS-/H2S and this is prone to generate sulfido bridged oligomers in the absence of sterically demanding ligands. On the other hand, the synthetic methods for the preparation of transition metal-polychalcogenido complexes include the reaction of the corresponding metal salts with En2- or the two electron oxidation of low-valent metals with elemental chalcogen, often at an elevated temperature and/or for a long time. Recently, we have developed new synthetic methods for the preparation of two new classes of binuclear transition metal complexes featuring either HS-, or Sn2- and Sen2- ligands. The new method for the synthesis of transition metal-hydrosulfido complexes involved transition metal-mediated hydrolysis of thiolates at room temperature (RT), while the method for the synthesis of transition metal-polychalcogenido complexes involved redox reaction of coordinated thiolates and exogenous elemental chalcogens at RT. An overview of the synthetic aspects, structural properties and intriguing reactivity of these two new classes of transition metal complexes is presented.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Anuj Baran Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
5
|
Hossain K, Roy Choudhury A, Majumdar A. Generation and Reactivity of Polychalcogenide Chains in Binuclear Cobalt(II) Complexes. JACS AU 2024; 4:771-787. [PMID: 38425921 PMCID: PMC10900221 DOI: 10.1021/jacsau.3c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
A series of six binuclear Co(II)-thiolate complexes, [Co2(BPMP)(S-C6H4-o-X)2]1+ (X = OMe, 2; NH2, 3), [Co2(BPMP)(μ-S-C6H4-o-O)]1+ (4), and [Co2(BPMP)(μ-Y)]1+ (Y = bdt, 5; tdt, 6; mnt, 7), has been synthesized from [Co2(BPMP)(MeOH)2(Cl)2]1+ (1a) and [Co2(BPMP)(Cl)2]1+ (1b), where BPMP1- is the anion of 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol. While 2 and 3 could allow the two-electron redox reaction of the two coordinated thiolates with elemental sulfur (S8) to generate [Co2(BPMP)(μ-S5)]1+ (8), the complexes, 4-7, could not undergo a similar reaction. An analogous redox reaction of 2 with elemental selenium ([Se]) produced [{Co2(BPMP)(μ-Se4)}{Co2(BPMP)(μ-Se3)}]2+ (9a) and [Co2(BPMP)(μ-Se4)]1+ (9b). Further reaction of these polychalcogenido complexes, 8 and 9a/9b, with PPh3 allowed the isolation of [Co2(BPMP)(μ-S)]1+ (10) and [Co2(BPMP)(μ-Se2)]1+ (11), which, in turn, could be converted back to 8 and 9a upon treatment with S8 and [Se], respectively. Interestingly, while the redox reaction of the polyselenide chains in 9a and 11 with S8 produced 8 and [Se], the treatment of 8 with [Se] gave back only the starting material (8), thus demonstrating the different redox behavior of sulfur and selenium. Furthermore, the reaction of 8 and 9a/9b with activated alkynes and cyanide (CN-) allowed the isolation of the complexes, [Co2(BPMP)(μ-E2C2(CO2R)2)]1+ (E = S: 12a, R = Me; 12b, R = Et; E = Se: 13a, R = Me; 13b, R = Et) and [Co2(BPMP)(μ-SH)(NCS)2] (14), respectively. The present work, thus, provides an interesting synthetic strategy, interconversions, and detailed comparative reactivity of binuclear Co(II)-polychalcogenido complexes.
Collapse
Affiliation(s)
- Kamal Hossain
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Angshuman Roy Choudhury
- Department
of Chemical Sciences, Indian
Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Amit Majumdar
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
6
|
Sanina NA, Utenyshev AN, Dorovatovskii PV, Emel'yanova NS, Ovanesyan NS, Kulikov AV, Sulimenkov IV, Luzhkov VB, Pokidova OV, Aldoshin SM. Synthesis of a tetranitrosyl iron complex with unique structure and properties as an inhibitor of phosphodiesterases. Dalton Trans 2023; 52:18090-18101. [PMID: 37997167 DOI: 10.1039/d3dt03104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A novel neutral tetranitrosyl iron complex {[Fe(H2O)4]2+[FeR2(NO)2]22-}·4H2O (1) with R = 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiolyls (C7H5N4S), which is a supramolecular ensemble, has been synthesized and studied. As follows from X-ray diffraction analysis, this is an octahedral Fe2+complex (Lewis acid) with two monoanionic dinitrosyl groups [FeR2(NO)2]- (Lewis base) and 4 water molecules as the ligands. As follows from Mössbauer spectra, the coordinating Fe2+ ion is in a low-spin state S = 0, and the dinitrosyl Fe+ ion is in a low-spin state S = 1/2. According to the data of EPR spectroscopy, mass-spectrometry and amperometry, complex 1 in solution forms dinitrosyl particles of [Fe(C7H6N4S-H)2(NO)2]- composition, which are responsible for NO generation. In addition, complex 1 was shown to be a 5-6 times more efficient phosphodiesterase (PDE) inhibitor at 5 × 10-5 M and 10-4 M concentrations than its thioligand. Probable binding sites of the [FeR2(NO)2]- ligand for the bovine PDE1B model have been determined by molecular docking and quantum-chemical calculations.
Collapse
Affiliation(s)
- N A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
- M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- Federal State University of Education, 141014, Mytishchi, Russia
| | - A N Utenyshev
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
| | - P V Dorovatovskii
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - N S Emel'yanova
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
| | - N S Ovanesyan
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
| | - A V Kulikov
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
| | - I V Sulimenkov
- Chernogolovka Branch of N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1/10, Chernogolovka, 142432, Moscow region, Russia
| | - V B Luzhkov
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
| | - O V Pokidova
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
| | - S M Aldoshin
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, 142432, Russia.
| |
Collapse
|
7
|
Chang WC, Du WT, Lin YX, Jhang RL, Hsieh CH. Phosphine/thiolate-containing dinitrosyl cobalt complexes (DNCCs): synthesis, characterization, interconversion, X-ray diffraction identification and NO release. Dalton Trans 2023; 52:13724-13731. [PMID: 37706636 DOI: 10.1039/d3dt01681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Cobalt carbonyl/nitrosyl complexes, (PPh3)(CO)2Co(NO) (1) and (PPh3)2(CO)Co(NO) (2), were obtained by reacting (CO)3Co(NO) with one equiv. and two equiv. of PPh3, respectively. The process of isoelectronic replacement of CO with NO+ resulted in the formation of a cationic complex {Co(NO)2}10 [(PPh3)2Co(NO)2][BF4] (3). Complex (PPh3)(SPh)Co(NO)2 (4), which contains a thiophenolate ligand, was synthesized by ligand exchange of complex 3 with [PPh4][SPh] in a 1 : 1 molar ratio in THF solution. The addition of one equiv. of [PPh4][SPh] to complex 4 led to the formation of complex [PPh4][(SPh)2Co(NO)2] (5). The interconversions among complexes 1-5 were substantiated with the application of IR spectroscopy and X-ray single-crystal diffraction techniques. Notably, complex 4 exhibited commendable NOs (nitric oxide species: NO+/˙NO/NO-) transfer capabilities in the presence of [Fe(TPP)Cl] (5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride).
Collapse
Affiliation(s)
- Wen-Chieh Chang
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| | - Wan-Tin Du
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| | - Yi-Xuan Lin
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| | - Ruei-Lin Jhang
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| | - Chung-Hung Hsieh
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| |
Collapse
|
8
|
Kim Y, Sridharan A, Suess DLM. The Elusive Mononitrosylated [Fe 4 S 4 ] Cluster in Three Redox States. Angew Chem Int Ed Engl 2022; 61:e202213032. [PMID: 36194444 PMCID: PMC9669169 DOI: 10.1002/anie.202213032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Iron-sulfur clusters are well-established targets in biological nitric oxide (NO) chemistry, but the key intermediate in these processes-a mononitrosylated [Fe4 S4 ] cluster-has not been fully characterized in a protein or a synthetic model thereof. Here, we report the synthesis of a three-member redox series of isostructural mononitrosylated [Fe4 S4 ] clusters. Mononitrosylation was achieved by binding NO to a 3 : 1 site-differentiated [Fe4 S4 ]+ cluster; subsequent oxidation and reduction afforded the other members of the series. All three clusters feature a local high-spin Fe3+ center antiferromagnetically coupled to 3 [NO]- . The observation of an anionic NO ligand suggests that NO binding is accompanied by formal electron transfer from the cluster to NO. Preliminary reactivity studies with the monocationic cluster demonstrate that exposure to excess NO degrades the cluster, supporting the intermediacy of mononitrosylated intermediates in NO sensing/signaling.
Collapse
Affiliation(s)
- Youngsuk Kim
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
- Department of ChemistryPusan National UniversityBusan46241Republic of Korea
| | - Arun Sridharan
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| | - Daniel L. M. Suess
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| |
Collapse
|
9
|
Sanina NA, Kozub GI, Kondrat'eva TA, Korchagin DV, Shilov GV, Morgunov RB, Ovanesyan NS, Kulikov AV, Stupina TS, Terent'ev AA, Aldoshin SM. Anionic dinitrosyl iron complexes – new nitric oxide donors with selective toxicity to human glioblastoma cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ling P, Gao X, Sun X, Yang P, Gao F. Versatile metal-organic frameworks as a catalyst and an indicator of nitric oxide. J Mater Chem B 2022; 10:3817-3823. [PMID: 35481965 DOI: 10.1039/d2tb00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The imaging of nitric oxide (NO) and its donors is crucial to explore NO-related physiological and pathological processes. In this work, we demonstrate the use of Cu-based metal-organic frameworks (Cu-MOFs) as nanoprobes for NO detection and as a catalyst for the generation of NO from the biologically occurring substrate, S-nitrosothiols (RSNOs). The paramagnetic Cu2+ in the MOFs could quench the luminescence of triphenylamine; Cu-MOFs only exhibited weak emission at 450 nm. Upon the addition of NO, the paramagnetic Cu2+ was reduced to diamagnetic Cu+, and thus the luminescence was recovered directly. Cu-MOFs exhibited high selectivity for other species in the reaction system, including NO2-, H2O2, AA, NO3- and 1O2. More significantly, the Cu+ can react with s-nitrosoglutathione (GSNO), s-nitrosocysteine (CysNO), and s-nitrosocysteamine (CysamNO) to generate NO and then oxidize to Cu2+-MOFs with quenched luminescence, respectively, and thus the catalysis is inhibited, noted as a self-controlled process. The Cu-MOFs catalyst was confirmed by powder X-ray diffraction to remain structurally intact in aqueous environments. The Cu-MOFs have been successfully employed in the biological imaging of NO in living cells. The bifunctional MOFs could offer a novel platform for the real-time monitoring of NO species, provide potential for exploiting NO in cancer therapy and improve the methodologies to elucidate the NO-related biological processes.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
11
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
12
|
Tung CY, Tseng YT, Lu TT, Liaw WF. Insight into the Electronic Structure of Biomimetic Dinitrosyliron Complexes (DNICs): Toward the Syntheses of Amido-Bridging Dinuclear DNICs. Inorg Chem 2021; 60:15846-15873. [PMID: 34009960 DOI: 10.1021/acs.inorgchem.1c00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitous function of nitric oxide (NO) guided the biological discovery of the natural dinitrosyliron unit (DNIU) [Fe(NO)2] as an intermediate/end product after Fe nitrosylation of nonheme cofactors. Because of the natural utilization of this cofactor for the biological storage and delivery of NO, a bioinorganic study of synthetic dinitrosyliron complexes (DNICs) has been extensively explored in the last 2 decades. The bioinorganic study of DNICs involved the development of synthetic methodology, spectroscopic discrimination, biological application of NO-delivery reactivity, and translational application to the (catalytic) transformation of small molecules. In this Forum Article, we aim to provide a systematic review of spectroscopic and computational insights into the bonding nature within the DNIU [Fe(NO)2] and the electronic structure of different types of DNICs, which highlights the synchronized advance in synthetic methodology and spectroscopic tools. With regard to the noninnocent nature of a NO ligand, spectroscopic and computational tools were utilized to provide qualitative/quantitative assignment of oxidation states of Fe and NO in DNICs with different redox levels and ligation modes as well as to probe the Fe-NO bonding interaction modulated by supporting ligands. Besides the strong antiferromagnetic coupling between high-spin Fe and paramagnetic NO ligands within the covalent DNIU [Fe(NO)2], in polynuclear DNICs, the effects of the Fe···Fe distance, nature of the bridging ligands, and type of bridging modes on the regulation of the magnetic coupling among paramagnetic DNIU [Fe(NO)2] are further reviewed. In the last part of this Forum Article, the sequential reaction of {Fe(NO)2}10 DNIC [(NO)2Fe(AMP)] (1-red) with NO(g), HBF4, and KC8 establishes a synthetic cycle, {Fe(NO)2}9-{Fe(NO)2}9 DNIC [(NO)2Fe(μ-dAMP)2Fe(NO)2] (1) → {Fe(NO)2}9 DNIC [(NO2)Fe(AMP)][BF4] (1-H) → {Fe(NO)2}10 DNIC 1-red → DNIC 1, for the transformation of NO into HNO/N2O. Of importance, the NO-induced transformation of {Fe(NO)2}10 DNIC 1-red and [(NO)2Fe(DTA)] (2-red; DTA = diethylenetriamine) unravels a synthetic strategy for preparation of the {Fe(NO)2}9-{Fe(NO)2}9 DNICs [(NO)2Fe(μ-NHR)2Fe(NO)2] containing amido-bridging ligands, which hold the potential to feature distinctive physical properties, chemical reactivities, and biological applications.
Collapse
Affiliation(s)
- Chi-Yen Tung
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| |
Collapse
|
13
|
Oakley KM, Zhao Z, Lehane RL, Ma J, Kim E. Generation of H 2S from Thiol-Dependent NO Reactivity of Model [4Fe-4S] Cluster and Roussin's Black Anion. Inorg Chem 2021; 60:15910-15917. [PMID: 34180664 DOI: 10.1021/acs.inorgchem.1c01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron-sulfur clusters (Fe-S) have been well established as a target for nitric oxide (NO) in biological systems. Complementary to protein-bound studies, synthetic models have provided a platform to study what iron nitrosylated products and byproducts are produced depending on a controlled reaction environment. We have previously shown a model [2Fe-2S] system that produced a dinitrosyl iron complex (DNIC) upon nitrosylation along with hydrogen sulfide (H2S), another important gasotransmitter, in the presence of thiol, and hypothesized a similar reactivity pattern with [4Fe-4S] clusters which have largely produced inconsistent reaction products across biological and synthetic systems. Roussin's black anion (RBA), [Fe4(μ3-S)3(NO)7]-, is a previously established reaction product from synthetic [4Fe-4S] clusters with NO. Here, we present a new reactivity for the nitrosylation of a synthetic [4Fe-4S] cluster in the presence of thiol and thiolate. [Et4N]2[Fe4S4(SPh)4] (1) was nitrosylated in the presence of excess PhSH to generate H2S and an "RBA-like" intermediate that when further reacted with [NEt4][SPh] produced a {Fe(NO)2}9 DNIC, [Et4N][Fe(NO)2(SPh)2] (2). This "RBA-like" intermediate proved difficult to isolate but shares striking similarities to RBA in the presence of thiol based on IR υ(NO) stretching frequencies. Surprisingly, the same reaction products were produced when the reaction started with RBA and thiol. Similar to 1/NO, RBA in the presence of thiol and thiolate generates stoichiometric amounts of DNIC while releasing its bridging sulfides as H2S. These results suggest not only that RBA may not be the final product of [4Fe-4S] + NO but also that RBA has unprecedented reactivity with thiols and thiolates which may explain current challenges around identifying biological nitrosylated Fe-S clusters.
Collapse
Affiliation(s)
- Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ziyi Zhao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ryan L Lehane
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ji Ma
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
14
|
Sanina NA, Isaeva YA, Utenyshev AN, Dorovatovskii PV, Ovanesyan NS, Emel'yanova NS, Pokidova OV, Tat'yanenko LV, Sulimenkov IV, Kotel'nikov AI, Aldoshin SM. Synthesis, structure, and PDE inhibiting activity of the anionic DNIC with 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiolyl, the nitric oxide donor. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Aldoshin SM, Bozhenko KV, Utenyshev AN, Sanina NA, Emel'yanova NS. Formation of supramolecular synthons in the crystalline structure of the dinitrosyl iron complexes with aliphatic thiourea ligands. J Mol Model 2020; 26:330. [PMID: 33150462 DOI: 10.1007/s00894-020-04594-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
By means of quantum-chemical calculations using Density Functional Theory, Quantum Theory of Atoms in Molecules, and Natural Bond Orbitals, theoretical modeling of intermolecular interactions has been performed for eight nitrosyl iron complexes with aliphatic thiourea ligands, which was aimed at discovering the presence of the NO…NO intermolecular interactions and at studying the possibility of the NO…NO supramolecular synthon formation in their crystalline structure for explaining their unusual magnetic properties. Such interactions were shown to be either stacking or T-like interactions, depending on the relative position of nitrosyl ligands and energetically corresponding to Van der Waals bonds. Mainly LP(O), π (NO), and π*(NO) orbitals in various combinations participate in their formation, with π (FeN), π(FeО), and LP(N) orbitals hardly being participants. The involvement of the NO bond orbitals results in quenching the orbital moment of the NO groups. If NO groups are isolated from intermolecular interactions, they can preserve the unquenched orbital moment.
Collapse
Affiliation(s)
- S M Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), 142432 Chernogolovka Region, prosp. Acad. Semenova, 1, Moscow, Russian Federation.,Faculty of Fundamental Physicochemical Engineering, Moscow State University, Leninskie Gori, 1, Moscow, Russian Federation, 119991
| | - K V Bozhenko
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), 142432 Chernogolovka Region, prosp. Acad. Semenova, 1, Moscow, Russian Federation.,Faculty of Fundamental Physicochemical Engineering, Moscow State University, Leninskie Gori, 1, Moscow, Russian Federation, 119991
| | - A N Utenyshev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), 142432 Chernogolovka Region, prosp. Acad. Semenova, 1, Moscow, Russian Federation
| | - N A Sanina
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), 142432 Chernogolovka Region, prosp. Acad. Semenova, 1, Moscow, Russian Federation.,Faculty of Fundamental Physicochemical Engineering, Moscow State University, Leninskie Gori, 1, Moscow, Russian Federation, 119991.,Scientific and Educational Center "Medical Chemistry" of Moscow State Regional University, 141014 Mytishchi Region, st. Vera Voloshina, 24, Moscow, Russian Federation
| | - N S Emel'yanova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), 142432 Chernogolovka Region, prosp. Acad. Semenova, 1, Moscow, Russian Federation. .,Faculty of Fundamental Physicochemical Engineering, Moscow State University, Leninskie Gori, 1, Moscow, Russian Federation, 119991.
| |
Collapse
|
16
|
Pokidova ОV, Luzhkov VB, Emel'yanova NS, Krapivin VB, Kotelnikov AI, Sanina NA, Aldoshin SM. Effect of albumin on the transformation of dinitrosyl iron complexes with thiourea ligands. Dalton Trans 2020; 49:12674-12685. [DOI: 10.1039/d0dt02452j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BSA binds the Fe(NO)2+ fragment of DNIC and multiple molecules of [Fe(SC(NH2)2)2(NO)2]+ that prolongs NO donation by this DNIC.
Collapse
Affiliation(s)
- Оlesya V. Pokidova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Victor B. Luzhkov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Nina S. Emel'yanova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Vladimir B. Krapivin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Alexander I. Kotelnikov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Natalia A. Sanina
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| |
Collapse
|
17
|
Cho SL, Liao CJ, Lu TT. Synthetic methodology for preparation of dinitrosyl iron complexes. J Biol Inorg Chem 2019; 24:495-515. [DOI: 10.1007/s00775-019-01668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
18
|
Rudneva TN, Zhukova OS, Shilov GV, Chikileva IO, Kisilevskii MV, Sanina NA, Aldoshin SM. Synthesis, structure and antitumor activity of the binuclear tetranitrosyl iron complex with 2-mercaptobenzthiazole – the nitric oxide donor (NO). J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1583331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tatiana N. Rudneva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Olga S. Zhukova
- N.N. Blokhin Cancer Research Center, Russian Ministry of Health, Moscow, Russia
| | - Gennady V. Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Irina O. Chikileva
- N.N. Blokhin Cancer Research Center, Russian Ministry of Health, Moscow, Russia
| | | | - Nataliya A. Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
19
|
Sanina N, Kozub G, Zhukova O, Korchagin D, Kondrat'eva T, Morgunov R, Talantsev A, Ovanesyan N, Kulikov A, Aldoshin S. New agent for nitric oxide (NO) chemotherapy: Synthesis and properties of DNIC with hydrazinium cation in solid phase and solutions. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Grabarczyk DB, Ash PA, Myers WK, Dodd EL, Vincent KA. Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster. Dalton Trans 2019; 48:13960-13970. [DOI: 10.1039/c9dt00924h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron–sulfur clusters are exceptionally tuneable protein cofactors, and as one of their many roles they are involved in biological responses to nitrosative stress.
Collapse
Affiliation(s)
- Daniel B. Grabarczyk
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Philip A. Ash
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - William K. Myers
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Erin L. Dodd
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Kylie A. Vincent
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| |
Collapse
|
21
|
Liu PH, Tsai FT, Chen BH, Hsu IJ, Hsieh HH, Liaw WF. Insight into chalcogenolate-bound {Fe(NO)2}9 dinitrosyl iron complexes (DNICs): covalent character versus ionic character. Dalton Trans 2019; 48:6040-6050. [DOI: 10.1039/c8dt04670k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, characterization and transformation of the thermally unstable {Fe(NO)2}9 dinitrosyl iron complex (DNIC) [(OMe)2Fe(NO)2]− (2) were investigated.
Collapse
Affiliation(s)
- Pai-Heng Liu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Fu-Te Tsai
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Bo-Hao Chen
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu 30076
- Taiwan
| | - I-Jui Hsu
- Research and Development Center for Smart Textile Technology
- Department of Molecular Science and Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Hung-Hsi Hsieh
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
22
|
Hsiao HY, Chung CW, Santos JH, Villaflores OB, Lu TT. Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Trans 2019; 48:9431-9453. [DOI: 10.1039/c9dt00777f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ubiquitous physiology of nitric oxide enables the bioinorganic engineering of [Fe(NO)2]-containing and NO-delivery scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering
- Chang Gung Memorial Hospital
- Taoyuan
- Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | | | - Oliver B. Villaflores
- Department of Biochemistry
- Faculty of Pharmacy
- University of Santo Tomas
- Manila
- Philippines
| | - Tsai-Te Lu
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
23
|
Lu TT, Wang YM, Hung CH, Chiou SJ, Liaw WF. Bioinorganic Chemistry of the Natural [Fe(NO)2] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorg Chem 2018; 57:12425-12443. [DOI: 10.1021/acs.inorgchem.8b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yun-Ming Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan
| | | | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | | |
Collapse
|
24
|
Ekanger LA, Oyala PH, Moradian A, Sweredoski MJ, Barton JK. Nitric Oxide Modulates Endonuclease III Redox Activity by a 800 mV Negative Shift upon [Fe 4S 4] Cluster Nitrosylation. J Am Chem Soc 2018; 140:11800-11810. [PMID: 30145881 DOI: 10.1021/jacs.8b07362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we characterize the [Fe4S4] cluster nitrosylation of a DNA repair enzyme, endonuclease III (EndoIII), using DNA-modified gold electrochemistry and protein film voltammetry, electrophoretic mobility shift assays, mass spectrometry of whole and trypsin-digested protein, and a variety of spectroscopies. Exposure of EndoIII to nitric oxide under anaerobic conditions transforms the [Fe4S4] cluster into a dinitrosyl iron complex, [(Cys)2Fe(NO)2]-, and Roussin's red ester, [(μ-Cys)2Fe2(NO)4], in a 1:1 ratio with an average retention of 3.05 ± 0.01 Fe per nitrosylated cluster. The formation of the dinitrosyl iron complex is consistent with previous reports, but the Roussin's red ester is an unreported product of EndoIII nitrosylation. Hyperfine sublevel correlation (HYSCORE) pulse EPR spectroscopy detects two distinct classes of NO with 14N hyperfine couplings consistent with the dinitrosyl iron complex and reduced Roussin's red ester. Whole-protein mass spectrometry of EndoIII nitrosylated with 14NO and 15NO support the assignment of a protein-bound [(μ-Cys)2Fe2(NO)4] Roussin's red ester. The [Fe4S4]2+/3+ redox couple of DNA-bound EndoIII is observable using DNA-modified gold electrochemistry, but nitrosylated EndoIII does not display observable redox activity using DNA electrochemistry on gold despite having a similar DNA-binding affinity as the native protein. However, direct electrochemistry of protein films on graphite reveals the reduction potential of native and nitrosylated EndoIII to be 127 ± 6 and -674 ± 8 mV vs NHE, respectively, corresponding to a shift of approximately -800 mV with cluster nitrosylation. Collectively, these data demonstrate that DNA-bound redox activity, and by extension DNA-mediated charge transport, is modulated by [Fe4S4] cluster nitrosylation.
Collapse
|
25
|
Sanina NA, Kurochkin SA, Talansev AD, Rudneva TN, Piryazev AA, Anokhin DV, Emel’yanova NS, Morgunov RB, Aldoshin SM. Stabilization of dinitrosyl iron complexes under matrix isolation conditions: solvent and polymer effects on the synthesis of composites based on poly(methyl methacrylate) and iron complexes [Fe2(μ-NCS-R)2(NO)4]. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Lo FC, Hsieh CC, Maestre-Reyna M, Chen CY, Ko TP, Horng YC, Lai YC, Chiang YW, Chou CM, Chiang CH, Huang WN, Lin YH, Bohle DS, Liaw WF. Crystal Structure Analysis of the Repair of Iron Centers Protein YtfE and Its Interaction with NO. Chemistry 2016; 22:9768-76. [DOI: 10.1002/chem.201600990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Feng-Chun Lo
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chang-Chih Hsieh
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | | | - Chin-Yu Chen
- Department of Life Sciences; National Central University; Taoyuan Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry; Academia Sinica; Taipei Taiwan
| | - Yih-Chern Horng
- Department of Chemistry; National Changhua University of Education; Changhua Taiwan
| | - Yei-Chen Lai
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chih-Mao Chou
- Department of Life Sciences; National Central University; Taoyuan Taiwan
| | | | - Wei-Ning Huang
- Department of Biotechnology; Yuanpei University; Hsinchu Taiwan
| | - Yi-Hung Lin
- National Synchrotron Radiation Research Center Hsinchu; Taiwan
| | - D. Scott Bohle
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A2K6 Canada
| | - Wen-Feng Liaw
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| |
Collapse
|
27
|
Tanifuji K, Tajima S, Ohki Y, Tatsumi K. Interconversion between [Fe4S4] and [Fe2S2] Clusters Bearing Amide Ligands. Inorg Chem 2016; 55:4512-8. [DOI: 10.1021/acs.inorgchem.6b00352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuki Tanifuji
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shunichi Tajima
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yasuhiro Ohki
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuyuki Tatsumi
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
28
|
Sanina NA, Shmatko NY, Korchagin DV, Shilov GV, Terent’ev AA, Stupina TS, Balakina AA, Komleva NV, Ovanesyan NS, Kulikov AV, Aldoshin SM. A new member of the cationic dinitrosyl iron complexes family incorporating N-ethylthiourea is effective against human HeLa and MCF-7 tumor cell lines. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1142536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nataliya A. Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natal’ya Yu. Shmatko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Gennadii V. Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexey A. Terent’ev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana S. Stupina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Anastasiya A. Balakina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natal’ya V. Komleva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nikolay S. Ovanesyan
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Kulikov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
29
|
Liu GN, Li K, Fan QS, Sun H, Li XY, Han XN, Li Y, Zhang ZW, Li C. A simultaneous disulfide bond cleavage, N,S-bialkylation/N-protonation and self-assembly reaction: syntheses, structures and properties of two hybrid iodoargentates with thiazolyl-based heterocycles. Dalton Trans 2016; 45:19062-19071. [DOI: 10.1039/c6dt03776c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Unprecedented multiple in situ reactions were found during preparation of hybrid iodoargentates.
Collapse
Affiliation(s)
- Guang-Ning Liu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Ke Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Qing-Shun Fan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Hui Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Xin-Yu Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Xiao-Nan Han
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Yu Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Zhen-Wei Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Cuncheng Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|
30
|
Tseng YT, Chen CH, Lin JY, Li BH, Lu YH, Lin CH, Chen HT, Weng TC, Sokaras D, Chen HY, Soo YL, Lu TT. To Transfer or Not to Transfer? Development of a Dinitrosyl Iron Complex as a Nitroxyl Donor for the Nitroxylation of an Fe(III) -Porphyrin Center. Chemistry 2015; 21:17570-3. [PMID: 26437878 DOI: 10.1002/chem.201503176] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/16/2022]
Abstract
A positive myocardial inotropic effect achieved using HNO/NO(-) , compared with NO⋅, triggered attempts to explore novel nitroxyl donors for use in clinical applications in vascular and myocardial pharmacology. To develop M-NO complexes for nitroxyl chemistry and biology, modulation of direct nitroxyl-transfer reactivity of dinitrosyl iron complexes (DNICs) is investigated in this study using a Fe(III) -porphyrin complex and proteins as a specific probe. Stable dinuclear {Fe(NO)2 }(9) DNIC [Fe(μ-(Me) Pyr)(NO)2 ]2 was discovered as a potent nitroxyl donor for nitroxylation of Fe(III) -heme centers through an associative mechanism. Beyond the efficient nitroxyl transfer, transformation of DNICs into a chemical biology probe for nitroxyl and for pharmaceutical applications demands further efforts using in vitro/in vivo studies.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, Chung Yuan Christian University No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan)
| | - Chien-Hong Chen
- School of Medical Applied Chemistry, Chung Shan Medical University, No. 110, Section 1, Jianguo North Rd. Taichung, 40201 (Taiwan)
| | - Jing-Yu Lin
- Department of Chemistry, Chung Yuan Christian University No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan)
| | - Bing-Han Li
- Department of Chemistry, Chung Yuan Christian University No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan)
| | - Yu-Huan Lu
- Department of Chemistry, Chung Yuan Christian University No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan)
| | - Chia-Her Lin
- Department of Chemistry, Chung Yuan Christian University No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan)
| | - Hsin-Tsung Chen
- Department of Chemistry, Chung Yuan Christian University No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan)
| | - Tsu-Chien Weng
- SLAC National Accelerator Laboratory 2575 Sand Hill Rd. Menlo Park, CA 94025 (USA)
| | - Dimosthenes Sokaras
- SLAC National Accelerator Laboratory 2575 Sand Hill Rd. Menlo Park, CA 94025 (USA)
| | - Huang-Yeh Chen
- National Synchrotron Radiation Research Center No. 101, Xin'an Rd., Hsinchu, 30076 (Taiwan)
| | - Yun-Liang Soo
- National Synchrotron Radiation Research Center No. 101, Xin'an Rd., Hsinchu, 30076 (Taiwan).,Department of Physics, National Tsing Hua University No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Tsai-Te Lu
- Department of Chemistry, Chung Yuan Christian University No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan).
| |
Collapse
|
31
|
Chiou T, Lu T, Wu Y, Yu Y, Chu L, Liaw W. Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tzung‐Wen Chiou
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Tsai‐Te Lu
- Department of Chemistry, Chung Yuan Christian University, No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan)
| | - Ying‐Hao Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Yi‐Ju Yu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Li‐Kang Chu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Wen‐Feng Liaw
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| |
Collapse
|
32
|
Chiou TW, Lu TT, Wu YH, Yu YJ, Chu LK, Liaw WF. Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode. Angew Chem Int Ed Engl 2015; 54:14824-9. [PMID: 26440930 DOI: 10.1002/anie.201508351] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 12/21/2022]
Abstract
Despite extensive efforts, the electrocatalytic reduction of water using homogeneous/heterogeneous Fe, Co, Ni, Cu, W, and Mo complexes remains challenging because of issues involving the development of efficient, recyclable, stable, and aqueous-compatible catalysts. In this study, evolution of the de novo designed dinitrosyl iron complex DNIC-PMDTA from a molecular catalyst into a solid-state hydrogen evolution cathode, considering all the parameters to fulfill the electronic and structural requirements of each step of the catalytic cycle, is demonstrated. DNIC-PMDTA reveals electrocatalytic reduction of water at neutral and basic media, whereas its deposit on electrode preserves exceptional longevity, 139 h. This discovery will initiate a systematic study on the assembly of [Fe(NO)2] motif into current collector for mass production of H2, whereas the efficiency remains tailored by its molecular precursor [(L)Fe(NO)2].
Collapse
Affiliation(s)
- Tzung-Wen Chiou
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan).
| | - Tsai-Te Lu
- Department of Chemistry, Chung Yuan Christian University, No. 200, Chung Pei Rd. Taoyuan, 32023 (Taiwan).
| | - Ying-Hao Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Yi-Ju Yu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan)
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., Hsinchu, 30013 (Taiwan).
| |
Collapse
|
33
|
Yeh S, Lin C, Liu B, Tsou C, Tsai M, Liaw W. Chelate‐Thiolate‐Coordinate Ligands Modulating the Configuration and Electrochemical Property of Dinitrosyliron Complexes (DNICs). Chemistry 2015; 21:16035-46. [DOI: 10.1002/chem.201502071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Shih‐Wey Yeh
- Department of Chemistry and Frontier Research Center, of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013 (Taiwan)
| | - Chih‐Wei Lin
- Department of Chemistry and Frontier Research Center, of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013 (Taiwan)
| | - Bai‐Heng Liu
- Department of Chemistry and Frontier Research Center, of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013 (Taiwan)
| | - Chih‐Chin Tsou
- Department of Chemistry and Frontier Research Center, of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013 (Taiwan)
| | - Ming‐Li Tsai
- Department of Chemistry and Frontier Research Center, of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013 (Taiwan)
| | - Wen‐Feng Liaw
- Department of Chemistry and Frontier Research Center, of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013 (Taiwan)
| |
Collapse
|
34
|
Rhine MA, Sanders BC, Patra AK, Harrop TC. Overview and New Insights into the Thiol Reactivity of Coordinated NO in {MNO}6/7/8 (M = Fe, Co) Complexes. Inorg Chem 2015; 54:9351-66. [DOI: 10.1021/acs.inorgchem.5b00883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melody A. Rhine
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Brian C. Sanders
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Ashis K. Patra
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Todd C. Harrop
- Department of Chemistry
and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
35
|
Emel’yanova NS, Shmatko NY, Sanina NA, Aldoshin SM. Quantum-chemical study of the Fe(NO)2 fragment in the cation of mononuclear nitrosyl iron complex [Fe(SC(NH2)2)2(NO)2]Сl·H2O. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Sanina NA, Aldoshin SM, Shmatko NY, Korchagin DV, Shilov GV, Knyazkina EV, Ovanesyan NS, Kulikov AV. Nitrosyl iron complexes with enhanced NO donating ability: synthesis, structure and properties of a new type of salt with the DNIC cations [Fe(SC(NH2)2)2(NO)2]+. NEW J CHEM 2015. [DOI: 10.1039/c4nj01693a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new structural type of water-soluble iron nitrosyl complexes with thiocarbamide has been obtained.
Collapse
Affiliation(s)
- Nataliya A. Sanina
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- 142432 Chernogolovka
- Russia
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- 142432 Chernogolovka
- Russia
| | - Natal'ya Yu. Shmatko
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- 142432 Chernogolovka
- Russia
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- 142432 Chernogolovka
- Russia
| | - Gennadii V. Shilov
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- 142432 Chernogolovka
- Russia
| | | | - Nikolay S. Ovanesyan
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- 142432 Chernogolovka
- Russia
| | - Alexander V. Kulikov
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- 142432 Chernogolovka
- Russia
| |
Collapse
|
37
|
Mesomeric tautomerism of ligand is a novel pathway for synthesis of cationic dinitrosyl iron complexes: Х-ray structure and properties of nitrosyl complex with thiourea. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Pinder TA, Montalvo SK, Hsieh CH, Lunsford AM, Bethel RD, Pierce BS, Darensbourg MY. Metallodithiolates as Ligands to Dinitrosyl Iron Complexes: Toward the Understanding of Structures, Equilibria, and Spin Coupling. Inorg Chem 2014; 53:9095-105. [DOI: 10.1021/ic501117f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiffany A. Pinder
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Steven K. Montalvo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chung-Hung Hsieh
- Department of Chemistry, Tamkang University, New Taipei
City 25157, Taiwan
| | - Allen M. Lunsford
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ryan D. Bethel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | | |
Collapse
|
40
|
Tran CT, Williard PG, Kim E. Nitric Oxide Reactivity of [2Fe-2S] Clusters Leading to H2S Generation. J Am Chem Soc 2014; 136:11874-7. [DOI: 10.1021/ja505415c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Camly T. Tran
- Department
of Chemistry, Brown University, 324 Brook Street, Box H, Providence, Rhode Island 02912, United States
| | - Paul G. Williard
- Department
of Chemistry, Brown University, 324 Brook Street, Box H, Providence, Rhode Island 02912, United States
| | - Eunsuk Kim
- Department
of Chemistry, Brown University, 324 Brook Street, Box H, Providence, Rhode Island 02912, United States
| |
Collapse
|
41
|
Monomeric Dinitrosyl Iron Complexes: Synthesis and Reactivity. PROGRESS IN INORGANIC CHEMISTRY: VOLUME 59 2014. [DOI: 10.1002/9781118869994.ch05] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Lo F, Ho Y, Chang P, Lee G, Kuo T, Chen J, Chen C. New Members of a Class of Monomeric {Fe(NO)
2
}
10
Dinitrosyliron Complexes and a Dimeric {Fe(NO)
2
}
10
–{Fe(NO)
2
}
10
Dinitrosyliron Complex. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Feng‐Chun Lo
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi‐Chieh Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan, http://w3.csmu.edu.tw/~cchwind/
| | - Po‐Ya Chang
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan, http://w3.csmu.edu.tw/~cchwind/
| | - Gene‐Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ting‐Shen Kuo
- Instrumentation Center, National Taiwan Normal University, Taipei 10677, Taiwan
| | - Jeng‐Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien‐Hong Chen
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan, http://w3.csmu.edu.tw/~cchwind/
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
43
|
Synthesis, characterization, and fiber-optic infrared reflectance spectroelectrochemical studies of some dinitrosyl iron diphosphine complexes Fe(NO)2L2 (L = P(C6H4X)3). J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Pulukkody R, Kyran SJ, Drummond MJ, Hsieh CH, Darensbourg DJ, Darensbourg MY. Hammett correlations as test of mechanism of CO-induced disulfide elimination from dinitrosyl iron complexes. Chem Sci 2014. [DOI: 10.1039/c4sc01523a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The use of Hammett correlations provide experimental evidence for an unusual role of the frontier molecular orbitals of an iron dinitrosyl unit in CO induced reductive elimination of disulfide.
Collapse
Affiliation(s)
| | - Samuel J. Kyran
- Department of Chemistry
- Texas A & M University
- College Station
- , USA
| | | | - Chung-Hung Hsieh
- Department of Chemistry
- Texas A & M University
- College Station
- , USA
| | | | | |
Collapse
|
45
|
Beck W, Fischer G, Göbel M, Evers J, Klapötke TM. A Review on Nitrosyl Metal Halides and Mass Spectroscopic Support for the Dimeric Structure of [Ni(NO)I] 2and [Pd(NO)Cl] 2. A Tribute to Walter Hieber (1895-1976) and Fritz Seel (1915-1987). Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201200487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Holloway LR, Li L. The Preparation, Structural Characteristics, and Physical Chemical Properties of Metal-Nitrosyl Complexes. STRUCTURE AND BONDING 2013; 154:53-98. [PMID: 29398732 PMCID: PMC5792085 DOI: 10.1007/430_2013_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preparation and characterization of a representative group of novel non-heme metal nitrosyl complexes that have been synthesized over the last decade are discussed here. Their structures are examined and classified based on metal type, the number of metal centers present, and the type of ligand that is coordinated with the metal. The ligands can be phosphorus, nitrogen, or sulfur based (with a few exceptions) and can vary depending on the presence of chelation, intermolecular forces, or the presence of other ligands. Structural and bonding characteristics are summarized and examples of reactivity regarding nitrosyl ligands are given. Some of the relevant physical chemical properties of these complexes, including IR, EPR, NMR, UV-vis, cyclic voltammetry, and X-ray crystallography are examined.
Collapse
Affiliation(s)
- Lauren R Holloway
- Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Lijuan Li
- Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| |
Collapse
|
47
|
Lee Y, Hsu I. Theoretical Analysis of Fe K‐edge XANES on Mononitrosyl Iron Complex [(NO)Fe(S
2
C
6
H
4
)
2
][PPN]. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ya‐Wen Lee
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - I‐Jui Hsu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
48
|
Pulukkody R, Kyran SJ, Bethel RD, Hsieh CH, Hall MB, Darensbourg DJ, Darensbourg MY. Carbon Monoxide Induced Reductive Elimination of Disulfide in an N-Heterocyclic Carbene (NHC)/ Thiolate Dinitrosyl Iron Complex (DNIC). J Am Chem Soc 2013; 135:8423-30. [DOI: 10.1021/ja403916v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Randara Pulukkody
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Samuel J. Kyran
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ryan D. Bethel
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Chung-Hung Hsieh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
49
|
Hsieh CH, Brothers SM, Reibenspies JH, Hall MB, Popescu CV, Darensbourg MY. Ambidentate Thiocyanate and Cyanate Ligands in Dinitrosyl Iron Complexes. Inorg Chem 2013; 52:2119-24. [DOI: 10.1021/ic3025149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chung-Hung Hsieh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Scott M. Brothers
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Joseph H. Reibenspies
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Codrina V. Popescu
- Department
of Chemistry, Ursinus College, Collegeville,
Pennsylvania 19426, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
50
|
Fitzpatrick J, Kalyvas H, Shearer J, Kim E. Dioxygen mediated conversion of {Fe(NO)2}9 dinitrosyl iron complexes to Roussin's red esters. Chem Commun (Camb) 2013; 49:5550-2. [DOI: 10.1039/c3cc40352a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|